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Abstract The Planck data on cosmic microwave back-
ground indicates that the Starobinsky-type model with con-
cave inflation potential is favored over the convex-type
chaotic inflation. Is there any reason for that? Here we argue
that if our universe began with a Euclidean wormhole, then
the Starobinsky-type inflation is probabilistically favored. It
is known that for a more generic choice of parameters than
that originally assumed by Hartle and Hawking, the Hartle–
Hawking wave function is dominated by Euclidean worm-
holes, which can be interpreted as the creation of two classical
universes from nothing. We show that only one end of the
wormhole can be classicalized for a convex potential, while
both ends can be classicalized for a concave potential. The
latter is therefore more probable.

1 Introduction

How did the universe begin? This has long been one of the
most fundamental questions in physics. The Big Bang sce-
nario, when tracing back to the Planck time, indicates that
the universe should start from a regime of quantum gravity
[1] that is describable by a wave function of the universe
governed by the Wheeler-DeWitt (WDW) equation [2]. The
WDW equation is a partial differential equation and hence
it requires a boundary condition. This boundary condition
allows one to assign the probability of the initial condition
of our universe. As is well known, to overcome some draw-
backs of the Big Bang scenario, an era of inflation has been
introduced [3,4]. Presumably, the boundary condition of the
WDW equation would dictate the nature of the inflation.
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The Planck data on cosmic microwave background (CMB)
indicates that certain inflation models are more favored than
some others [5]. In particular, the Starobinsky-type model
[6] with concave inflation potential (V ′′ < 0 when the infla-
tion is dominant.) appears to be favored over the convex-type
(V ′′ > 0) chaotic inflation [7]. Is there any reason for this?
Here we argue that if our universe began with a Euclidean
wormhole, then the Starobinsky-type inflation is probabilis-
tically favored.

One reasonable assumption for the boundary condition of
the WDW equation was suggested by Hartle and Hawking
[8], where the ground state of the universe is represented by
the Euclidean path integral between two hypersurfaces. The
Euclidean propagator can be described as follows:

�[hb
μν, χ

b; ha
μν, χ

a] =
∫

DgDφ e−SE[g,φ]

�
∑
a→b

e−Sinstanton
E , (1)

where gμν is the metric, φ is an inflaton field, SE is the
Euclidean action, and ha,b

μν and χa,b are the boundary values
of gμν and φ on the initial (say, a) and the final (say, b) hyper-
surfaces, respectively. Using the steepest-descent approxi-
mation, this path integral can be well approximated by a sum
of instantons [8], where the probability of each instanton
becomes P ∝ e−SE . This approach has been applied to dif-
ferent issues with success: (1) It is consistent with the WKB
approximation, (2) It has good correspondences with pertur-
bative quantum field theory in curved space (e.g., [9,10]),
(3) It renders correct thermodynamic relations of black hole
physics and cosmology [11]. These provide us the confidence
that the eventual quantum theory of gravity should retain this
notion as an effective description.

In their original proposal, Hartle and Hawking considered
only compact instantons. In that case it is proper to assign
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the condition for only one boundary; this is the so-called
no-boundary proposal. In general, however, the path integral
should have two boundaries. If the arrow of time is symmetric
between positive and negative time for classical histories,
then one may interpret this situation as having two universes
created from nothing, where the probability is determined
by the instanton that connects the two classical universes
[12].1 Such a process can be well described by the Euclidean
wormholes2 [13–17] (see also [18–20]).

In this paper, we investigate Euclidean wormholes in the
context of the inflationary scenario in order to answer the
question on the preference of a specific shape of the inflaton
potential. This paper is organized as follows. In Sect. 2, we
first describe our model and then discuss the detailed con-
struction of the Euclidean wormholes. In Sect. 3, we inves-
tigate various inflaton potentials and check their different
characteristics in terms of Euclidean wormholes, especially
in terms of the classicality. Finally, in Sect. 4, we shortly
comment on future perspectives.

2 Model

Let us consider the following action

S =
∫ √−gdx4

[
R

16π
− 1

2
(∇φ)2 − V (φ)

]
(2)

with the Euclidean minisuperspace metric given by

ds2
E = dτ 2 + a2(τ )d�2

3. (3)

Then the equations of motion are as follows:

ȧ2 − 1 − 8πa2

3

(
φ̇2

2
− V

)
= 0, (4)

φ̈ + 3
ȧ

a
φ̇ − V ′ = 0, (5)

ä

a
+ 8π

3

(
φ̇2 + V

)
= 0. (6)

If the inflaton field is constant and the potential is flat
(V (φ) = V0), then we recover the original Hartle–Hawking
no-boundary scenario. In such case the scale factor should
satisfy

ȧ2 + Veff (a) = 0, (7)

1 One can of course interpret this as a uni-directional arrow of time
with a quantum big bounce. Such interpretation will not cause any dif-
ference at the homogeneous level, but will introduce a difference at the
perturbative level.
2 Note that in our approach we did not integrate out the unobserved
part of the universe. This is because in our setting the two universes
are connected through an on-shell solution, and so there is no hidden
degree of freedom to be integrated.

where

Veff (a) = −1 + a2

	2 (8)

and 	2 = 3/8πV0. Since Veff < 0 is the allowed region for
the Euclidean signature, this describes a compact instanton.

2.1 Why Euclidean wormholes?

In general, the kinetic term can be non-vanishing and the
potential non-flat. Transcribing the system from Lorentzian
into Euclidean spacetime, the real-time derivative becomes
purely imaginary. The above generic action then allows for a
Euclidean bounce in the a → 0 regime and thus induces
a Euclidean wormhole. We can see this by using a sim-
ple illustration. Now let us first investigate the flat potential
V (φ) = V0, but with a non-trivial kinetic term. The generic
solution of φ in the Lorentzian signature is

dφ

dt
= A

a3 , (9)

whereA is a constant. When one Wick-rotates the Lorentzian
to the Euclidean time, one obtains

dφ

dτ
= −i

A
a3 . (10)

By inserting this into the Euclidean Friedman equation, the
result is again ȧ2 + Veff (a) = 0, where

Veff (a) = −1 + a2

	2 + a4
0

a4 , (11)

and a4
0 = 4πA2/3. This simple formula shows that Veff has

two zeros amin � a0 and amax � 	, and the Euclidean scale
factor a evolves in the following sequence:

amax → amin → amax. (12)

In this picture, there is no way to remove the initial boundary,
but the Euclidean path integral formalism still works well
nonetheless.

2.2 Inflaton potentials and initial conditions

Now the next step is to generalize our notion to a model with
a non-trivial inflaton potential. For definiteness, we model
the chaotic-type convex potential as

Vch(φ) = 3

8π	2

(
1 + μ2

2
φ2

)
, (13)

and the Starobinsky-type concave inflation as

Vst(φ) = 3

8π	2

(
1 + A tanh2 φ

α

)
, (14)

which has a flat direction in the large φ limit. Here 	 is the
effective Hubble radius of the de Sitter space around the local
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minimum. The detailed dynamics is independent of 	 up to
an overall rescaling of the metric; hence without the loss of
generality, we choose 	 = 2. For numerical demonstrations,
we choose μ = 0.1 for Vch while α = 1/15 and A = μ2α2/2
for Vst, so as to maintain the same effective mass around the
local minimum.

In order to give a consistent initial condition, we impose
the following ansatz:

ar (0) = amin cosh η,

ai (0) = amin sinh η, (15)

ȧr (0) =
√

4π

3

B
a2

min

√
sinh ζ cosh ζ ,

ȧi (0) =
√

4π

3

B
a2

min

√
sinh ζ cosh ζ , (16)

φr (0) = φ0 cos θ, φi (0) = φ0 sin θ,

φ̇r (0) = B
a3

min

sinh ζ, φ̇i (0) = B
a3

min

cosh ζ, (17)

where amin, B, φ0, η, ζ , and θ are free parameters. Here,
amin and η should be further restricted by Eq. (4) to satisfy
the following conditions:

0 = 1 + 8π

3
a2

min (−Vre + 2 cosh η sinh η Vim)

−8πB2

3a4
min

(
1

2
+ 2 cosh ζ sinh ζ cosh η sinh η

)
, (18)

a6
min = B2 cosh η sinh η

−2 cosh η sinh η Vre − Vim
, (19)

where Vre and Vim are the real and the imaginary part of V (φ)

at τ = 0, respectively.
These solutions are in general complex-valued. However,

not all complex instantons are relevant for the creation of
universes. After the Wick rotation to the Lorentzian time, the
manifold should be smoothly connected to a classical and
real-valued observer. This is called the classicality condition
[21,22]. More formally, since we can approximately express
�[qI ] � A[qI ] exp i S[qI ], where qI are canonical variables
with I = 1, 2, 3, ..., the classicality condition can be cast
as |∇I A [qI ]| � |∇I S [qI ]|, for all I . When this classicality
condition is satisfied, the corresponding history obeys the
semi-classical Hamilton-Jacobi equation.

In order to satisfy the classicality condition, θ must be
tuned (the same as compact instanton cases, e.g., [23–25]).
As the complex contour can be represented by τ +i t (where τ

and t are real), one can choose a turning time τ = X where the
spacetime switches from Euclidean to Lorentzian signatures.
Following the Lorentzian contour X + i t and as t → ∞,
we find that the classicality condition requires ai → 0 and
φi → 0. Consequently, a wormhole is characterized by the
remaining three parameters: B, ζ , and φ0, where B is related

to the size of the throat, ζ the degree of asymmetry between
the two ends of the wormhole, and φ0 the initial field value
on a given potential (see [12]).

These three parameters (B, ζ , and φ0) are related to the
shape of the wormhole only and have nothing to do with clas-
sicality. Note that unless both ends of the wormhole are clas-
sicalized, its probability cannot be well defined, and hence
it cannot be a legitimate solution for a consistent Euclidean
quantum cosmology. To attain the classicality of not one but
both ends, the only remaining knob is the shape of the infla-
tion potential.

3 Preference of concave inflaton potential

Figure 1 is an example for the chaotic inflation modelVch. For
the initial conditionB = √

3/4π , φ0 = 0.51, and ζ = 0.001,
there exists a turning time X that satisfies ai → 0 as t → ∞.
By fixing θ � 3π/2 + 0.5923, we can in addition tune φi

to approach zero along the X + i t contour. There should be
another turning time X ′ that governs the evolution of the other
side of the wormhole. In this case, however, no matter how
we optimize X ′, the condition for ai and φi to approach zero
as t → −∞ simply cannot be found. Thus this wormhole
cannot be classicalized at both ends.

The situation is very different for the Starobinsky-type
inflation. Fig. 2 shows the evolution of the Starobinsky-
type inflation model Vst. The classicality of Part C is again
obtained by tuning θ � 3π/2 + 0.5927. Here a major dif-
ference occurs in Part A. Since there is a flat direction in the
potential, φi → constant as t → −∞. As a result, the kinetic
term of the scalar field vanishes and there is no contribution
from the imaginary part of the scalar field. The metric there-
fore approaches a real-valued function, i.e., ai → 0. Because
of this, a solution for X ′ can be found that satisfies ai → 0
and φi → constant as t → −∞.

In both cases, due to the lack of free parameters for fine-
tuning, there is no trivial way to make both ai and φi zero on
both sides of the wormhole. The next option is then to make
ai and φi vanish on one side only and make φi approach
a constant on the other side, which requires that the poten-
tial should have a flat direction at least on one side. This is
the reason why the Starobinsky-type model conforms with
classicalized Euclidean wormholes.

Accordingly, for a convex potential where the Euclidean
wormhole cannot be classicalized, the only contribution to
the probability comes from the compact instantons, which, in
the slow-roll limit V (φ) � V0, is approximately SE � −π	2

[21–25]. On the other hand, both compact and wormhole
instantons are classicalizable for a concave potential and
should therefore both contribute to the probability, with the
latter being

123



863 Page 4 of 6 Eur. Phys. J. C (2018) 78 :863

Fig. 1 Complex time contour and numerical solution of ar , ai , φr , and φi for Vch. The upper figure is a physical interpretation about the wormhole,
where Part A (red) and C (green) are Lorentzian and Part B (blue) is Euclidean

SE = −3π

∫ amax

amin

da
a

(
1 − a2/	2

)
√
Veff(a)

� −π	2
[

1 + 0.16
(a0

	

)5/2
]

, (20)

where a0 = (4πB2/3)1/4 determines the size of the worm-
hole’s throat (the ζ = 0 limit of [12]). Figure 3 is a plot of
the Euclidean action, and therefore the negative of the log-
arithm of the probability, of the compact and the wormhole
instantons as a function of a0/	. The ratio of the tunneling
rates between wormholes and compact instantons is therefore
e+cπ	2

, where c is a number depending on (a0/	)
5/2 � O(1).

Since 	 
 1 for sub-Planckian inflation models, we conclude
that inflation with concave potentials are exponentially more
probable than that with convex potentials.

4 Discussion

In this paper, we investigated Euclidean wormholes with
a non-trivial inflaton potential. We showed that in terms
of probability, the Euclidean path-integral is dominated
by Euclidean wormholes, and only the concave poten-
tial explains the classicality of Euclidean wormholes. This
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Fig. 2 Complex time contour and numerical solution of ar , ai , φr , and φi for Vst . Now both of Part A (red) and C (green) can be classicalized

Fig. 3 SE/π	2 as a function of a0/	. The blue dashed curve is that of
Euclidean wormholes, while the red dashed curve is that of compact
instantons. This shows that SE/π	2 � −1 − 0.16(a0/	)

5/2

helps to explain, in our view, why our universe prefers the
Starobinsky-like model rather than the convex-type chaotic
inflation model.

It should be mentioned that there exist other attempts
to explain the origin of the concave inflation potential. For
example, in [26], it was reported that the Starobinsky-like
concave potential is preferred if a volume-weighted term is

added to the measure. Note that the same principle can be
applied not only to compact instantons but also to Euclidean
wormholes; hence, this proposal may support our result as
well. We must caution, however, that the justification of such
a volume-weighted term is theoretically subtle [27,28].

This is of course not the end of the story. One needs to fur-
ther investigate whether this Euclidean wormhole methodol-
ogy is compatible with other aspects of inflation. It will also
be interesting to explore the relation between the probability
distribution of wormholes and the detailed shapes of various
inflaton potentials. Furthermore, if this Euclidean wormhole
creates any bias from the Bunch-Davies state, then it may
in principle be confirmed or falsified by future observations.
We leave these topics for future investigations.
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