
Eur. Phys. J. C (2018) 78:907
https://doi.org/10.1140/epjc/s10052-018-6344-5

Regular Article - Theoretical Physics

Premetric teleparallel theory of gravity and its local and linear
constitutive law

Yakov Itin1,a, Yuri N. Obukhov2,b, Jens Boos3,c, Friedrich W. Hehl4,d

1 Institute of Mathematics, The Hebrew University of Jerusalem and Jerusalem College of Technology, 91160 Jerusalem, Israel
2 Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow, Russia
3 Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
4 Institute for Theoretical Physics, University of Cologne, 50923 Cologne, Germany

Received: 23 August 2018 / Accepted: 13 October 2018 / Published online: 9 November 2018
© The Author(s) 2018

Abstract We continue to investigate the premetric telepar-
allel theory of gravity (TG) with the coframe (tetrad) as gravi-
tational potential. We start from the field equations and a local
and linear constitutive law. We create a Tonti diagram of TG
in order to disclose the structure of TG. Subsequently we irre-
ducibly decompose the 6th order constitutive tensor under the
linear group. Moreover, we construct the most general consti-
tutive tensors from the metric and the totally antisymmetric
Levi-Civita symbol, and we demonstrate that they encom-
pass nontrivial axion and skewon type pieces. Using these
tools, we derive for TG in the geometric-optics approxima-
tion propagating massless spin 0, 1, and 2 waves, including
the special case of Einstein’s general relativity.
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1 Introduction

Lately we followed in [18] the program of Kottler of 1922
to remove the metric tensor of spacetime, the gravitational
potential within general relativity theory (GR), from the fun-
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damental laws of classical electromagnetism and gravity as
far as possible. In particular, we applied this to the theory
of gravity [31] in that we started from a translational gauge
theory of gravity, also known as teleparallel theory of grav-
ity (TG).1 We assume that our readers are familiar with [31].
The TG approach is reviewed in Blagojević et al. [8], see
also Maluf [36], and Aldrovandi and Pereira [1]. For a some-
what related tetrad approach to gravity, in which affine sym-
metry is exploited, one should compare Sławianowski et al.
[54].

The spacetime geometry of TG is represented by a
four-dimensional (4d) manifold equipped with a coframe
1-form ϑα = eiα dxi and with a linear connection 1-
form Γα

β = Γi α
β dxi , the curvature 2-form of which,

Rα
β = 1

2 Ri jα
βdxi ∧ dx j , vanishes globally: Rα

β ≡ 0.
In the notation we follow basically the book [22]: α and
β are co- and contravariant frame indices, with α, β, . . . =
0̂, 1̂, 2̂, 3̂, whereas i, j, . . . = 0, 1, 2, 3 are coordinate
indices.

Because of the vanishing curvature, we can pick suitable
frames such that Γα

β vanishes globally:

Γα
β ∗= 0 (everywhere in spacetime). (1)

In this ‘teleparallel gauge,’ the covariant exterior derivative
taken with respect to the connection Γα

β is reduced to the
ordinary exterior derivative. This will simplify our formal-
ism. However, we will drop the star ∗ over the equality sign
in future since (1) is assumed to be valid throughout our
paper.

The essence of the premetric approach can be formulated
as follows. This universal field-theoretic scheme is based on
conservation laws which hold true for the two types of vari-
ables: extensive fields (“how much?”) and intensive (“how
strong?”) ones. These variables satisfy the fundamental equ-
aions which are metric-free, whereas the metric comes in
only via the linking equations which establish consitutive
relations between the extensive and intensive variables.

Premetric electrodynamics [22] is based on the conser-
vation laws of electric charge and magnetic flux which give
rise to the fundamental equations dH = J and dF = 0.
Here H is the electromagnetic excitation 2-form (extensive
variable) and F the electromagnetic field strength 2-form
(intensive variable). By introducing the constitutive relation
H = κ[F], one obtains a predictive physical theory.

The premetric gravity framework [31] can be constructed
along the same lines by replacing the electric charge with
a “gravitational charge” → mass → energy–momentum. In
this introductory section, we provide a short overview of the
premetric teleparallel approach.

1 For the application of teleparallelism in continuum mechanics, see
Delphenich [12].

1.1 Field equations

The field equations of TG will be our starting point. The
inhomogeneous gravitational field equation of TG reads [31,
Table I]

dHα = (ϑ)Σα + (m)Σα (4 × 6 components). (2)

It relates the twisted gravitational excitation 2-form

Hα = 1

2
Hi jαdx

i ∧ dx j = 1

2
Hβγ α ϑβγ = 1

2
Ȟβγ

α εβγ (3)

to its source, the sum of the twisted energy–momentum 3-
forms of gravity (ϑ)Σα and of matter (m)Σα , respectively. Here
ϑβγ := ϑβ ∧ ϑγ and εβγ := 1

2εβγ δε ϑδ ∧ ϑε, see [22, p.
39].

As was already pointed out in [17, p. 52], “...for consis-
tency, we cannot allow spinning matter (other than as test par-
ticles) in such a T4...” that is, in a 4d Weitzenböck spacetime.
In other words, the field equation (2) is valid only for hydro-
dynamic and for electromagnetic matter. A careful proof of
this stipulation was given by Obukhov and Pereira2 [47]. For
matter with spin, the Dirac field, for example, the Lorentz
group should also be gauged, which removes the teleparal-
lelism constraint Rα

β = 0. Then one arrives at a Poincaré
gauge theory operating in a Riemann–Cartan spacetime with
torsion and with Cartan curvature Rα

β �= 0.
The homogeneous field equation of TG reads

dFα = 0 (4 × 6 components), (4)

with the untwisted vector-valued 2-form Fα := dϑα , the
torsion of spacetime, which has the expansion

Fα = 1

2
Fi j

αdxi ∧ dx j = 1

2
Fβγ

αϑβγ . (5)

Note that (4) is the first Bianchi identity of a linearly con-
nected spacetime with vanishing curvature, see [53, Eq.
(5.41)] or [22, Eq. (C.1.67)].

The analogy to the Maxwell equations of electrodynam-
ics should be apparent, see [22]. Equation (2) represents four
inhomogeneous Maxwell type equations and Eq. (4) four
homogeneous Maxwell type equations. Since TG is a trans-
lational gauge theory, it has the four one-form potentials
ϑα = eiα dxi , where four is the number of generators of
the translation group.

2 Within the framework of TG as a translational gauge theory, the cou-
pling to matter is achieved via the minimal coupling procedure, strictly
in the sense of a bona fide gauge theory. Dispensing with the minimal
coupling principle (as Maluf [35] does, e.g.) is against the spirit of gauge
theory.
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1.2 Local and linear constitutive law

In order to complete the two field equations of TG to a pre-
dictive system of equations, one has to adopt a constitutive
law between excitation H and field strength F . The simplest
assumption is that the functional H = κ[F] is local and
linear,

Hα = καβ [Fβ ]. (6)

To deduce the corresponding component representation, we
remember that the functional καβ acts on 2-forms and creates
as response other 2-forms. Since any 2-form can be decom-
posed with respect to the 2-form basis ϑνρ , it is sufficient
to study the behavior of ϑνρ under the application of καβ .
Because of the assumed locality and linearity, we have

καβ [ϑνρ] = 1

2
κλμα

νρ
β ϑλμ. (7)

Let us come back to (6). We decompose Hα and Fβ and, by
using (7), we find:

Hα = 1

2
Hλμαϑλμ = καβ [Fβ ] = καβ

[
1

2
Fνρ

βϑνρ

]

= 1

2
Fνρ

βκαβ [ϑνρ] = 1

4
κλμα

νρ
β Fνρ

βϑλμ. (8)

By renaming some indices, we eventually derive the final
formula

Hβγα = 1

2
κβγα

νρ
μFνρ

μ. (9)

see [31, Eq. (47)].
If we use Schouten’s [53] notation (αβ) := 1

2 {αβ + βα}
and, moreover, [αβ] := 1

2 {αβ − βα}, we have here the anti-
symmetries H(βγ )α = 0 and F(νρ)

μ = 0. Thus, the constitu-
tive tensor obeys the identities

κ(βγ )α
νρ

μ = 0 and κβγα
(νρ)

μ = 0. (10)

Accordingly, κβγα
νρ

μ has (6×4)2 = 576 independent com-
ponents. In the corresponding electrodynamics case, the con-
stitutive law reads Hβγ = 1

2κβγ
νρFνρ . Thus, by contrast, we

have only 62 = 36 independent components. As we will see
further down, if we study only reversible processes, then this
number is appreciably downsized in both cases.

A concise Hamiltonian formulation of teleparallel grav-
ity was given by Ferraro and Guzmán [14]. Recently Hoh-
mann et al. [26] studied teleparallel gravity, but instead of
taking local and linear constitutive equations, they turned
to local and nonlinear ones in order to incorporate f (T )-
theories into the general TG formalism. These investiga-
tions [26] are very helpful since they bring order into the

plethora of f (T )-theories and make them more transparent.
Such nonlinear models provide an interesting development of
gravitational theory based on an analogy with Born–Infeld–
Plebański electrodynamics. We believe, though, that there
is, at the present time, no real need to push nonlinear con-
stitutive laws, since gravity is nonlinear anyway, due to its
self-interaction – and this in spite of a linear constitutive
law, which guarantees the quasi-linearity of the emerging
field equation.

Kostelecký and Mewes [33] investigated Lorentz and dif-
feomorphism violations in linearized gravity. In this context,
they introduced tensors which are of a similar type as our
constitutive tensor χ . Our group-theoretical treatment of χ

in Sect. 3 is reminiscent of their method. However, in our arti-
cle the full nonlinearity of gravity is treated in a premetric
framework.

We would like to stress the following fact about telepar-
allelism theories: We have always a frame eα = eiα∂i and
a coframe ϑβ = e jβdx j with us, that is, we can always
change from holonomic to anholonomic indices by using
eiα and e jβ , respectively – and vice versa. This implies that
all the indices in premetric TG are fundamentally equal, in
particular, all those occurring in κβγα

νρ
μ in (9). The ‘group’

indices α and μ are of the same quality as the ‘form’ indices
β, γ, ν, ρ. Contractions with all indices are always allowed.
Of course, at the premetric stage, raising and lowering of
indices is only possible with the totally antisymmetric Levi-
Civita symbols εαβγ δ = ±1, 0 and εμνρσ = ∓1, 0, since no
metric is available so far in our premetric framework.

If we follow the pattern of electrodynamics as formu-
lated in tensor calculus, see Post [50], then it is obvious
that we should introduce the excitation with the components
Ȟβγ

α = 1
2εβγμνHμνα , as already defined in Eq. (3). Thus,

Ȟβγ
α = 1

2
χβγ

α
νρ

μ Fνρ
μ, (11)

with

χβγ
α

νρ
μ := 1

2
εβγ δε κδεα

νρ
μ. (12)

The constitutive tensor density3 χβγ
α

νρ
μ is equivalent to

κβγα
νρ

μ, in particular,

χ(βγ )
α

νρ
μ = 0 and χβγ

α
(ρν)

μ = 0. (13)

But there is still a third useful version of the consti-
tutive tensor available. For the purpose of the irreducible
decomposition under the GL(4,R), it is optimal to have the
indices of the constitutive tensor all exclusively either in

3 This tensor density emerged already in [21], see also [1,9].
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lower or in upper position. Since so far we have no met-
ric at our disposal, we can only move the antisymmetric sets
of indices. If we have a look at (9), we can rewrite it with
F̌νρμ = 1

2ενρν′ρ′
Fν′ρ′μ as

Hβγα = 1

2
χ̌βγανρμ F̌

νρμ
, (14)

that is,

χ̌βγανρμ := 1

2
ενρν′ρ′ κβγα

ν′ρ′
μ = 1

4
εβγβ ′γ ′ ενρν′ρ′ χβ ′γ ′

α
ν′ρ′

μ.

(15)

We have the symmetries

χ̌ (βγ )ανρμ = 0 and χ̌βγα(νρ)μ = 0. (16)

1.3 Reversibility

A process which can in no way be completely reversed
is termed irreversible, all other processes reversible.
That a process may be irreversible, it is not sufficient
that it cannot be directly reversed. This is the case
with many mechanical processes which are not irre-
versible... ...The full requirement is, that it be impos-
sible, even with the assistance of all agents in nature,
to restore everywhere the exact initial state when the
process has once taken place... the generation of heat
by friction, the expansion of a gas without the perfor-
mance of external work and the absorption of external
heat, the conduction of heat, etc., are irreversible pro-
cesses...
Max Planck [49, p. 84]4

The merit of formulating a field theory only in terms of
its field equations – here Eqs. (2) and (4) – and an associ-
ated constitutive law – here Eq. (6) – is that it covers both
processes, irreversible and reversible ones. At first, like in
the conventional treatment of general relativity [13], we turn
our attention to reversible processes. From their definition it
is clear that, for instance, periodic processes and those the
equations of motion of which are formulated in a time sym-
metric way, are reversible. Time symmetry means that we
can substitute in the field equations t by −t without chang-
ing them.

Thus dissipation is not allowed in reversible processes and
we can define for each such process an energy function and,

4 Similarly, we have: Suppose that when a system under consideration
changes from a state, α, to another state, α′, the environment changes
from β to β ′. If in some way it is possible to return the system from α′
to α and at the same time to return the environment from β ′ to β, the
process (α, β) → (α′, β ′) is said to be reversible. Ryogo Kubo [34, p.
61].

by a Legendre transformation, a Lagrangian. Accordingly,
reversible processes can always be formulated by means of
an action principle. For TG, the twisted Lagrange 4-form
reads

(ϑ)Λ = −1

2
Fα ∧ Hα = −1

2
Fα ∧ καβ [Fβ ]. (17)

We substitute (5) and (8) into (17) and find:

(ϑ)Λ = −1

2

(
1

2
Fηζ

αϑηζ

)
∧
(

1

4
κλμα

νρ
βFνρ

βϑλμ

)

= − 1

16
κλμα

νρ
βFηζ

αFνρ
β ϑηζλμ. (18)

With the definition (12) and the volume 4-form vol, Eq. (18)
can be rewritten as

(ϑ)Λ = −1

8
χβγ

α
νρ

μ Fβγ
αFνρ

μ vol (19)

or, by renaming the indices of the F’s, equivalently as

(ϑ)Λ = −1

8
χνρ

μ
βγ

α Fβγ
αFνρ

μ vol. (20)

Consequently, only those components of the constitutive ten-
sor enter the Lagrangian that satisfy the relations

χβγ
α

νρ
μ = χνρ

μ
βγ

α. (21)

If we assume that the model is completely specified by the
Lagrangian (17), we restrict our considerations to reversible
processes. Then the relations (21) are necessary conditions,
which correspond to the symmetry of a 24 × 24 matrix.
Thus, the set of the 576 independent components of χβγ

α
νρ

μ

reduces to only 300 ones.
It is possible to rewrite the constitutive law in a more

compact way. We introduce the 6-dimensional co-basis ϑαβ

→ ϑ I in the space of 2-forms, with the collective indices
I, J, · · · = (01, 02, 03; 23, 31, 12) = (1, 2, . . . , 6), see [22,
p. 40]. Then excitation and field strength decompose as Hα =
HIαϑ I and Fβ = FJ

βϑ J , respectively, and the constitutive
law reads,

HIα = κIα
J
βFJ

β, Ȟ I
α = 1

2
χ I

α
J
β FJ

β, (22)

with the 300 independent components

χ I
α
J
β = χ J

β
I
α. (23)

Thus, for the Lagrangian we find

(ϑ)Λ = −1

2
χ I

α
J
β FI

αFJ
βvol. (24)
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This closes our short introduction to TG. Like all classi-
cal theories, whose form is established, we can put TG into a
Tonti type diagram [56] in order to clearly display its struc-
ture. This will be done for the first time in Sect. 2. Then
we turn to a closer examination of the constitutive tensor of
TG. In Sect. 3, we decompose it into smaller pieces, in par-
ticular into the irreducible pieces with respect to the linear
group GL(4,R). In Sect. 4, metric dependent constitutive
tensors will be addressed, in particular those which relate
TG to general relativity. In Sect. 5, we will study the prop-
agation of gravitational waves in TG within the geometric
optics approximation. We will follow the procedure that we
developed for electrodynamics [2,22,29]. Since in TG we
have four generators of the gauge group, things become a
bit more complicated than in electrodynamics. In Sect. 6, we
will specialize these considerations on gravitational waves to
metric dependent models.

2 Tonti diagram of the premetric teleparallel theory of
gravity

Over the past decades, Tonti [56] developed a general clas-
sification program for classical and relativistic theories in
physics, such as, e.g., for particle dynamics, electromag-
netism, the mechanics of deformable media, fluid mechan-
ics, thermodynamics, and gravitation. Here we will display in
Fig. 1 for the first time an appropriate and consistent diagram
of the teleparallel theory of gravity (TG).

If a theory is well-understood, its configuration and its
source variables can be clearly identified and their interrela-
tionships displayed in the form of a Tonti diagram. Such a
diagram defines what one may call the skeleton of a theory.
In Tonti’s book [56], for all classical theories, including the
relativistic ones, a corresponding framework was established
– and this step by step, based on an operational definition of
the quantities involved.

Tonti [56, p. 402] has also displayed a diagram for rela-
tivistic gravitation. In Tonti’s own words, it was an “attempt”
of a diagram based on an ansatz for a tetrad theory of gravity
by Kreisel and Treder, see [57, pp. 60–67, pp. 71–91]. Due
to our enhanced knowledge of TG, see [8, Chapters 5 and
6], we can now improve on Tonti’s attempt, see [23] and our
Fig. 1. The notation in Fig. 1 is based on our recent paper
[31] and on the present one.

Let us have a look at our new diagram. The configuration
variables of TG are the coordinates xi of the 4-dimensional
spacetime (four 0-forms) and the coframesϑα (four 1-forms).
By differentiation, we find the torsion Fβ (four 2-forms) and
by further differentiation the homogeneous field equation of
gravity dFβ = 0 (four 3-forms), the right hand side of which
vanishes.

The round boxes on the left column depict geometrical
objects and the square boxes interrelate these geometrical
objects. The formula dFβ = 0, for example, corresponds
to the first Bianchi identity of a teleparallel spacetime. In
a Riemann–Cartan space, we have DFβ = ϑα ∧ Rα

β . In
teleparallelism, the curvature vanishes, Rα

β = 0, and, in the
teleparallel gauge, dFβ = 0.

For global variables, Tonti distinguishes spatial domains,
such as volumes V, surfaces S, lines L, and points P, with
respect to time he introduces instants I and intervals T. Fur-
thermore, for the respective domains, he has inner (interior)

and outer (exterior)˜orientation.
Hence [̃I × S], for example, refers to a time domain Ĩ

with exterior orientation and a space domain S with interior
orientation. And this domain [̃I × S] supports the torsion
two-form. The holonomic coordinates x j , to take another
example, depend on an instant of time I and a spatial point
P. i.e. [I × P]. Then we have to add the orientation. All
exterior forms on the left columns are forms without twist,
see [22], those on the right columns all carry twist. This can
be read off from the corresponding orientations. This comes
about as follows.

For configuration variables the associated space elements
are endowed always with an interior orientation, whereas
in the case of source variables it is the exterior orientation
which plays a role. This behavior is found by phenomenolog-
ically examining the different theories. According to Tonti,
the underlying theoretical reason for this correspondence is
not clear, but phenomenology does not allow any other attri-
butions. The configuration variables are related to the theory
of chains of algebraic topology, whereas the source variables
are associated to co-chains. For more details, we refer to the
exhaustive monograph of Tonti [56].

Since the gravitational field itself carries energy–momen-
tum, it is also the source of a new gravitational field, which
likewise carries energy–momentum, etc. Thus, like general
relativity, TG is an intrinsically nonlinear theory, even it car-
ries a linear constitutive law. Within the field equation of TG,
dHα − (ϑ)Σα = (m)Σα, the gravitational energy-momentum
3-form

(ϑ)Σα := 1

2
[Fβ ∧ (eα	Hβ) − Hβ ∧ (eα	Fβ)] (25)

shows up explicitly and is a manifestation of this nonlinearity.
By differentiation of the field equation, we find

ddHα = 0 = d
(

(ϑ)Σα + (m)Σα

)
. (26)

Thus, d(m)Σα = −d(ϑ)Σα is nonvanishing in general, which
clearly shows up in our Tonti diagram.

The Tonti diagram displayed in Fig. 1 was constructed for
the premetric version of teleparallelism, no metric is involved
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at all. We developed the corresponding formalism in our pre-
vious paper in [31, Sec.II]. Above, in Sect. 1.1, we discussed
already that teleparallel gravity is only equivalent to GR as
long as the matter which is involved does not carry intrinsic
spin. If this is the case, the energy–momentum of matter is
described by the 3-form (m)σα , with ϑ[α ∧ (m)σβ] = 0, i.e.,
the corresponding energy–momentum tensor is symmetric.
Since ϑα := gαγ ϑγ , we need a metric for the specification
of such an energy–momentum (m)σα . And the metric gαβ

induces an associated Levi-Civita connection 1-form Γ̃α
β .

The energy–momentum law, in the teleparallel gauge,
reads d (m)Σα = (eα	Fβ) ∧ (m)Σβ . If we dispense with the
teleparallel gauge for the moment, the derivative d (m)Σα can
be substituted by D (m)Σα , with D as the covariant exterior
derivative operator with respect to the teleparallel connec-
tion Γα

β . Having now a metric available, we can assume
that the teleparallel connection is metric compatible, that is,
Dgαβ = 0. For the symmetric energy–momentum, we have
then the energy–momentum law

D (m)σα = (eα	Fβ) ∧(m)σβ. (27)

Due to a lemma of Meyer [38], the right side of (27) can
be absorbed by the left side. This can be demonstrated by
expanding the covariant derivative:

d (m)σα − (Γα
β + eα	Fβ) ∧(m)σβ = 0. (28)

Let us now introduce a tilde to denote the Riemannian objects
and operators: Γ̃α

β is the Christoffel connection, for example,
and D̃ the Riemannian covariant derivative. Since Γα

β =
Γ̃α

β − Kα
β , with the contortion 1-form Kα

β , we can rewrite
(28) as

D̃ (m)σα − (−Kα
β + eα	Fβ) ∧(m)σβ = 0. (29)

The contortion, is related to the torsion via Fβ = K β
γ ∧ϑγ .

If we substitute this into (29), it can be recast into

D̃ (m)σα + [
Kα

β − (eα	K β
γ )ϑγ + K β

γ δγ
α

] ∧(m)σβ = 0.

(30)

Because of the antisymmetry of the contortion, K(αβ) = 0,
Eq. (30) simplifies to

D̃ (m)σα − (eα	K βγ )ϑ[γ ∧(m)σβ] = 0. (31)

Now we recall that (m)σα is symmetric, ϑ[γ ∧ (m)σβ] = 0.
Consequently,

D̃ (m)σα = 0. (32)

Fig. 1 Patterned after E. Tonti: The Mathematical Structure of
Classical and Relativistic Physics, A general classification diagram
(Birkhäuser-Springer, New York, 2013) pages 402 and 315. Notation:
Y. Itin, F. W. Hehl, Yu. N. Obukhov, Phys. Rev. D 95, 084020 (2017),
arXiv:1611.05759. We denoted here the torsion 2-form with Fβ in order
to underline its function as a field strength. Usually, however, we use for
torsion T β .—we chose everywhere the ‘teleparallel gauge’ such that the
connection 1-form vanishes globally: Γ αβ(x)

∗= 0. For the reversible
case, we have the gravitational Lagrangian as (ϑ)Λ = − 1

2 F
α ∧ Hα and

Λ = (ϑ)Λ + (m)Λ. The gravitational constant is denoted by �. �Also
known as translation gauge theory of gravity

This is the energy–momentum law of GR. Accordingly, our
entry d (m)Σα = (eα	Fβ) ∧ (m)Σβ in the Tonti diagram
becomes, provided a symmetric energy–momentum tensor
is prescribed, D̃ (m)σα = 0, well in accordance with the van-
ishing divergences in analogous Tonti diagrams.

3 Decompositions of the constitutive tensor

In this section we characterize the constitutive tensor due to
its symmetry transformations relative to the general linear
group GL(4,R) and the permutation (symmetry) group. We
refer to Hamermesh [15] and to Barut and Raczka [5] as
background information for group theory.

3.1 Two forms of the constitutive tensor

According to (11), the constitutive tensor density χαβ
μ

γ δ
ν

is a order-
(

4
2

)
tensor density that is skew-symmetric in the

two pairs of upper indices, see (13):
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χ(αβ)
μ

γ δ
ν = 0, χαβ

μ
(γ δ)

ν = 0. (33)

In n dimensions, we have n
(
n
2

)
n
(
n
2

)
= 1

4n
4(n − 1)2

independent components. For n = 4, it gives 576 rele-
vant components. Due to this large number, it is instruc-
tive to consider decomposition of the constitutive tensor
into smaller pieces. We apply Young’s decomposition tech-
nique that yields irreducible decomposition under the group
GL(4,R). For our conventions and the details of the Young
decomposition, see “Appendix”. For the tensor χαβ

μ
γ δ

ν ,
separate S4-permutations of four upper indices and S2-
permutations of two lower indices are available, where Sn
denotes the n-dimensional permutation group. Correspond-
ingly, we are dealing with the Cartesian product group
S4 × S2.

Although the metric tensor is not available in our con-
struction, we can, as we have shown in (15), lower two pairs
of skew-symmetric indices by the Levi-Civita symbol. Thus,

we have a order-
(

0
6

)
tensor

χ̌αβμγ δν := 1

4
εαβωλεγ δρσ χωλ

μ
ρσ

ν, (34)

with the identities

χ̌ (αβ)μγ δν = 0, χ̌αβμ(γ δ)ν = 0. (35)

This tensor is naturally decomposed under the permuta-
tion group S6. Both types of decompositions are invari-
ant under the action of the basis transformation group
GL(4,R).

3.2 S4 × S2 decomposition of χαβ
μ

γ δ
ν

Treating the covariant and contravariant indices as belonging
to two separate tensor spaces, the irreducible decomposition
of χαβ

μ
γ δ

ν is defined as a product of the irreducible decom-
positions. The corresponding Young diagrams are expanded
as

⊗ ⊗ ⊗ =
(

⊗
)

⊗ ⊗

=
⎛
⎜⎝ ⊕ ⊕

⎞
⎟⎠ ⊗

(
⊕

)
. (36)

Here, the three first diagrams relate to the upper indices. This
decomposition repeats the known irreducible decomposition
of the electromagnetic constitutive tensor. The remaining two
diagrams represent the symmetric and antisymmetric parts of
the second order tensor. Collecting all possible combinations,
we obtain the decomposition of the tensor χαβ

μ
γ δ

ν into 6
independent pieces:

(
⊗

)
⊕

(
⊗

)
⊕

(
⊗

)

⊕
(

⊗
)

⊕
⎛
⎜⎝ ⊗

⎞
⎟⎠ ⊕

⎛
⎜⎝ ⊗

⎞
⎟⎠. (37)

In tensor notation, the above decomposition reads

χαβ
μ

γ δ
ν =

6∑
I=1

[I ]
P

αβ
ωλ

κ
μ

γ δ
ρσ

ε
ν χωλ

κ
ρσ

ε =
6∑

I=1

[I ]χαβ
μ

γ δ
ν.

(38)

Here we used the set of six projection operators [I ]
P. We

chose the labeling of I = 1, . . . , 6 such that it corresponds
to the same sequence of Young diagrams as depicted in the
second equality of Eq. (38). Explicitly, the S4×S2-irreducible
pieces of the constitutive tensor are expressed as

[1]χαβ
μ

γ δ
ν := χαβ

(μ
γ δ

ν) − [3]χαβ
μ

γ δ
ν − [5]χαβ

μ
γ δ

ν,

(39)
[2]χαβ

μ
γ δ

ν := χαβ [μγ δ
ν] − [4]χαβ

μ
γ δ

ν − [6]χαβ
μ

γ δ
ν,

(40)

[3]χαβ
μ

γ δ
ν := 1

2

(
χαβ

(μ
γ δ

ν) − χγδ
(μ

αβ
ν)

)
, (41)

[4]χαβ
μ

γ δ
ν := 1

2

(
χαβ [μγ δ

ν] − χγδ [μαβ
ν]
)
, (42)

[5]χαβ
μ

γ δ
ν := χ [αβ

(μ
γ δ]

ν), (43)
[6]χαβ

μ
γ δ

ν := χ [αβ [μγ δ]
ν]. (44)

In terms of independent components in n = 4 dimensions,
this decomposition corresponds to

576 = 200 ⊕ 120 ⊕ 150 ⊕ 90 ⊕ 10 ⊕ 6. (45)

It is straightforward to show that the above operators
[I ]
P = [I ]

P
αβκγ δε
ωλμρσν are orthogonal projectors:

[I ]
P ◦ [J ]

P = [I ]
Pδ I J , δ I J =

{
1 for I = J

0 for I �= J
. (46)

In (39)–(44), we first decompose the gravitational consti-
tutive tensor into three independent pieces relative to its four
upper indices. This S4 decomposition is done completely
similar to electrodynamics. Then we extract relative to the
pair of the lower indices the symmetric and antisymmet-
ric parts. Since the principal and axion part of the electro-
magnetic constitutive tensor are reversible, the correspond-
ing parts of the gravitational constitutive tensor are reversible
when symmetrized in the lower indices. The electrodynamics
the skewon part is irreversible. Thus its gravitational analog
is reversible when antisymmetrized in the lower indices. The
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remaining three parts are irreversible (change their sign under
permutation of triads of indices).

In order to demonstrate this behavior explicitly, we
decompose the constitutive tensor into its reversible and irre-
versible parts,

χαβ
μ

γ δ
ν = +

χαβ
μ

γ δ
ν + −

χαβ
μ

γ δ
ν, (47)

with

+
χαβ

μ
γ δ

ν := 1

2
(χαβ

μ
γ δ

ν + χγδ
ν
αβ

μ) = +
χγδ

ν
αβ

μ, (48)

−
χαβ

μ
γ δ

ν := 1

2
(χαβ

μ
γ δ

ν − χγδ
ν
αβ

μ) = −−
χγδ

ν
αβ

μ. (49)

The first part
+
χαβ

μ
γ δ

ν describes reversible processes, it can
be derived from a Lagrangian. In contrast, the second part
−
χαβ

μ
γ δ

ν corresponds to irreversibility, and it does not enter
the Lagrangian. Following the nomenclature in electrody-

namics, we will call
−
χαβ

μ
γ δ

ν the skewon part.
In the next step, we can decompose each of these parts

into the symmetric/antisymmetric piece in the lower indices:

±
χαβ

μ
γ δ

ν = ±
χαβ

(μ
γ δ

ν) + ±
χαβ [μγ δ

ν]. (50)

Two immediate consequences are

+
χ [αβ [μγ δ]

ν] ≡ 0,
−
χ [αβ

(μ
γ δ]

ν) ≡ 0. (51)

Thus, axion pieces can be extracted only from
+
χαβ

(μ
γ δ

ν) and

from
−
χαβ [μγ δ

ν].
After these preliminaries, we can recast the irreducible

decompositions (39)–(44) into a more transparent form,

[1]χαβ
μ

γ δ
ν := +

χαβ
(μ

γ δ
ν) − +

χ [αβ
(μ

γ δ]
ν), (52)

[2]χαβ
μ

γ δ
ν := −

χαβ [μγ δ
ν] − −

χ [αβ [μγ δ]
ν], (53)

[3]χαβ
μ

γ δ
ν := −

χαβ
(μ

γ δ
ν), (54)

[4]χαβ
μ

γ δ
ν := +

χαβ [μγ δ
ν], (55)

[5]χαβ
μ

γ δ
ν := +

χ [αβ
(μ

γ δ]
ν), (56)

[6]χαβ
μ

γ δ
ν := −

χ [αβ [μγ δ]
ν]. (57)

In other words, we have a decomposition of the reversible
and skewon parts into, respectively,

Table 1 Physical identifications of the irreducible parts of the consti-
tutive tensor χαβ

γ
μν

ρ

Irr. parts Nomenclature Lagr. En-mom. Disp.

[1]χαβ
γ

μν
ρ Principal-1 Yes Yes Yes

[2]χαβ
γ

μν
ρ Skewon-1 No Yes Yes

[3]χαβ
γ

μν
ρ Skewon-2 No Yes Yes

[4]χαβ
γ

μν
ρ Principal-2 Yes Yes Yes

[5]χαβ
γ

μν
ρ Axion-1 Yes No No

[6]χαβ
γ

μν
ρ Axion-2 No Yes No

+
χαβ

μ
γ δ

ν = [1]χαβ
μ

γ δ
ν + [4]χαβ

μ
γ δ

ν + [5]χαβ
μ

γ δ
ν, (58)

−
χαβ

μ
γ δ

ν = [2]χαβ
μ

γ δ
ν + [3]χαβ

μ
γ δ

ν + [6]χαβ
μ

γ δ
ν. (59)

We may call [1]χ a reversible symmetric principal part (prin-
cipal-1), [4]χ a reversible antisymmetric principal part (prin-
cipal-2), [5]χ a reversible axion (axion-1); likewise we may
call [2]χ a skewon antisymmetric principal part (skewon-1),
[3]χ a skewon symmetric principal part (skewon-2), and [6]χ
a skewon axion (axion-2). This is summarized in Table 1.

For completeness, we present here the results about the
contributions of the irreducible pieces into the dispersion
relation for the gravitational waves. These facts will be
derived in Sect. 6.

3.3 S6 decomposition of χ̌αβμγ δν

Now we consider the decomposition of the constitutive ten-
sor under the permutation of its six lower indices. We follow
Hamermesh’s [15] Eqs. (7-159) to (7-162). Then, for n = 4
dimensions, the symmetries (35) imply the Young decompo-
sition of χ̌αβμγ δν :

⊗ ⊗ ⊗ = ⊕ ⊕

⊕ 4 ⊕ 2 ⊕ 3 ⊕ 4 . (60)

Here we omitted vanishing diagrams in n = 4 (i.e. diagrams
that contain antisymmetrization with respect to more than
four indices). In terms of independent components, we have

576 = 126 ⊕ 70 ⊕ 50 ⊕ 4 × 64 ⊕ 2 × 10

⊕ 3 × 10 ⊕ 4 × 6. (61)

In tensorial language, this corresponds to

χ̌αβμγ δν =
7∑

I=1

(I )
P

ωλκρσε
αβμγ δν χ̌ωλκρσε =

7∑
I=1

(I )χ̌αβμγ δν, (62)
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where again the expressions (I )
P

ωλκρσε
αβμγ δν denote orthogonal

projectors,

(I )
P ◦ (J )

P = (I )
Pδ I J , δ I J =

{
1 for I = J

0 for I �= J
. (63)

The explicit expressions of the seven terms (I )χ̌αβμγ δν are
quite involved and we do not display them here; they can be
found in “Appendix”.

3.4 Relation between the decompositions

In order to relate the two inequivalent decompositions dis-
cussed above, it is useful to define

{I }χαβ
μ

γ δ
ν := 1

4
εαβωλεγ δρσ (I )χ̌ωλμρσν. (64)

By using Eqs. (241)–(247), one may verify that the tensors
{I }χαβ

μ
γ δ

ν satisfy the relations

{I }χ [αβ
μ

γ δ]
ν = 0 for I = 1, 2, 3, 4, 5, (65)

{I }χαβ [μγ δ
ν] = 0 for I = 1, 2, (66)

{I }χαβ
(μ

γ δ
ν) = 0 for I = 3, (67)

as well as

{I }χαβ
μ

γ δ
ν = + {I }χγδ

μ
αβ

ν for I = 1, 3, (68)
{I }χαβ

μ
γ δ

ν = − {I }χγδ
μ

αβ
ν for I = 2, (69)

{I }χαβ
μ

γ δ
ν = + {I }χγδ

ν
αβ

μ for I = 1, 5, (70)
{I }χαβ

μ
γ δ

ν = − {I }χγδ
ν
αβ

μ for I = 2, 3. (71)

Eventually, we find

{6}χαβ [μγ δ
ν] + {6}χγδ [μαβ

ν] = 0, (72)
{6}χαβ

(μ
γ δ

ν) + {6}χγδ
(μ

αβ
ν) = {6}χ [αβ

(μ
γ δ]

ν), (73)
{7}χαβ

(μ
γ δ

ν) + {7}χγδ
(μ

αβ
ν) = 0. (74)

We can apply directly the S4 × S2 decomposition to these

order-
(

4
2

)
tensors and compare the results to the tensors

[I ]χαβ
μ

γ δ
ν . By extensive use of computer algebra, we find

the following relations:

[1]χαβ
μ

γ δ
ν = {1}χαβ

(μ
γ δ

ν) + {5}χαβ
(μ

γ δ
ν)

+ 1

2

[{4}χαβ
(μ

γ δ
ν) + {4}χγδ

(μ
αβ

ν)

]
, (75)

[2]χαβ
μ

γ δ
ν = {3}χαβ [μγ δ

ν] − {7}χ [αβ [μγ δ]
ν]

+ 1

2

∑
I=4,7

[{I }χαβ [μγ δ
ν] + {I }χγδ [μαβ

ν]
]
,

(76)

[3]χαβ
μ

γ δ
ν = {2}χαβ

(μ
γ δ

ν)

+ 1

2

∑
I=4,6,7

[{I }χαβ
(μ

γ δ
ν) − {I }χγδ

(μ
αβ

ν)

]
,

(77)
[4]χαβ

μ
γ δ

ν = {5}χαβ [μγ δ
ν]

+ 1

2

∑
I=4,6,7

[{I }χαβ [μγ δ
ν] − {I }χγδ [μαβ

ν]
]
,

(78)
[5]χαβ

μ
γ δ

ν = {6}χ [αβ
(μ

γ δ]
ν), (79)

[6]χαβ
μ

γ δ
ν = {7}χ [αβ [μγ δ]

ν]. (80)

3.5 Reversibility

For reversible processes, as shown in (21), the constitutive
tensor satisfies

χαβ
μ

γ δ
ν = χγδ

ν
αβ

μ . (81)

As we demonstrated above, the reversible and irreversible
parts of the constitutive tensor are presented, respectively, as

+
χαβ

μ
γ δ

ν = 1

2

(
χαβ

μ
γ δ

ν + χγδ
ν
αβ

μ

)
= [1]χαβ

μ
γ δ

ν + [4]χαβ
μ

γ δ
ν + [5]χαβ

μ
γ δ

ν, (82)

−
χαβ

μ
γ δ

ν = 1

2

(
χαβ

μ
γ δ

ν − χγδ
ν
αβ

μ

)
= [2]χαβ

μ
γ δ

ν + [3]χαβ
μ

γ δ
ν + [6]χαβ

μ
γ δ

ν. (83)

This corresponds to 576 = 300 ⊕ 276, that is, the reversible
constitutive tensor comprises 300 independent components.
Employing relations Eqs. (75)–(80), one finds

+
χαβ

μ
γ δ

ν = {1}χαβ
(μ

γ δ
ν) + {5}χαβ

μ
γ δ

ν

+ 1

2

∑
I=4,6,7

[{I }χαβ
μ

γ δ
ν + {I }χγδ

ν
αβ

μ

]
, (84)

−
χαβ

μ
γ δ

ν = {2}χαβ
(μ

γ δ
ν) + {3}χαβ [μγ δ

ν]

+ 1

2

∑
I=4,6,7

[{I }χαβ
μ

γ δ
ν − {I }χγδ

ν
αβ

μ

]
. (85)

Let us emphasize that Eqs. (66) and (67) imply

{1}χαβ [μγ δ
ν] = 0, {2}χαβ [μγ δ

ν] = 0, {3}χαβ
(μ

γ δ
ν) = 0 .

(86)

In summary, we see that the reversible piece of the consti-

tutive tensor χαβ
μ

γ δ
ν is comprised of the order-

(
0
6

)
irre-

ducible pieces I = 1, 5 as well as the appropriately (anti-)
symmetrized parts of I = 4, 6, 7.
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3.6 Lagrangian

Let us first consider how these independent pieces contribute
to the gravitational Lagrangian (ϑ)Λ = − 1

2 F
α ∧ Hα . In

components, we have

(ϑ)Λ = − 1

4
Fβγ

α Ȟβγ
αvol. (87)

Substitution of the constitutive law (11) yields

(ϑ)Λ = − 1

8
χβγ

α
νρ

μ Fβγ
αFνρ

μ vol. (88)

Consequently only those parts of the constitutive tensor con-
tribute to the Lagrangian that satisfy the “pair commutation”
symmetries

χβγ
α

νρ
μ = χνρ

μ
βγ

α. (89)

Accordingly, only the following terms are left over in the
Lagrangian:

(ϑ)Λ = − 1

8

∑
I=1,4,5

[I ]χβγ
α

νρ
μFβγ

α Fνρ
μ vol. (90)

3.7 Parametrization of irreducible parts

In premetric electrodynamics, there exists a convenient para-
metrization of the axion and skewon parts by a pseudo-scalar
and a traceless second order tensor, see Sects. D.1.4 and D.1.5
of the book [22].

One may wish to develop a similar formalism for the grav-
itational case under consideration. By analogy with electro-
dynamics, let us introduce the following new objects:

� Sγρσ
ν := 1

4
εαβμσ

[3]χαβ
γ

μν
ρ, (91)

� Qγρσ
ν := 1

4
εαβμσ

[4]χαβ
γ

μν
ρ. (92)

By construction (hint: use the definitions of [3]χ and [4]χ ),
these tensors obey

� S[αβ]μν = 0, � Sαβν
ν = 0 ; (93)

� Q(αβ)μ
ν = 0, � Qαβν

ν = 0. (94)

Accordingly, the number of independent components for
� Sαβμ

ν is 10×4×4−10 = 150 and for � Qαβμ
ν 6×4×4−6 =

90, respectively. It is straightforward to see that

[3]χαβ
γ

μν
ρ = εαβλ[μ � Sγρλ

ν] − εμνλ[α � Sγρλ
β], (95)

[4]χαβ
γ

μν
ρ = εαβλ[μ � Qγρλ

ν] − εμνλ[α � Qγρλ
β]. (96)

Thereby, we found a complete parametrization of [3]χ and
[4]χ . This construction obviously generalizes the representa-
tion of a skewon in electrodynamics in terms of the traceless

second order tensor [22]. In the context of the gravitational
theory, however, only (95) refers to the skewon, whereas (96)
parametrizes the reversible irreducible part.

Now, let us turn to the irreducible parts [3]χ and [4]χ for
which we introduce

[5]Aγρ := 1

4!εαβμν
[5]χαβ

γ
μν

ρ = [5]Aργ , (97)

[6]Aγρ := 1

4!εαβμν
[6]χαβ

γ
μν

ρ = −[6]Aργ . (98)

The reciprocal relations read

[5]χαβ
γ

μν
ρ = [5]Aγρ εαβμν, (99)

[6]χαβ
γ

μν
ρ = [6]Aγρ εαβμν. (100)

As a result, we find for the axion type part of the constitutive
tensor

(ax)χαβ
γ

μν
ρ =Aγρ εαβμν, Aαβ :=[5]Aαβ+[6]Aαβ . (101)

Summarizing, we demonstrated that the four irreducible
parts [3]χ , [4]χ , [5]χ , and [6]χ of the constitutive tensor can
be conveniently parametrized, see Eqs. (95), (96), (99), and
(100). They are expressed in terms of the tensors (91), (92),
(97), and (98) with the correct number of independent com-
ponents: for � Sαβμ

ν 150, for � Qαβμ
ν 90, for [5]Aαβ 10, and

for [6]Aαβ 6. The two remaining pieces [1]χ and [2]χ do not
admit simple parametrizations, though.

3.8 Energy–momentum current

The energy–momentum current of the coframe field is
defined as [31]

(ϑ)Σα = 1

2

[
Fβ ∧ (eα	Hβ) − Hβ ∧ (eα	Fβ)

]
. (102)

The constitutive law for the pure axion piece (101) is
expressed as

(ax)Hα = AαβF
β. (103)

In this case, the energy–momentum current takes the form

(ax)Σα = A[βγ ]Fβ ∧ (eα	Fγ ). (104)

Consequently, the symmetric combination of the axionic part
[5]χβγ

α
νρ

μ does not contribute to the energy–momentum
current.

3.9 Contracting χαβ
γ

μν
ρ twice: four second order tensors

In electrodynamics, we can extract from the constitutive ten-
sor χαβγ δ a pseudo-scalar density, the axion field, by con-
tracting it with the Levi-Civita symbol: (ax)α := 1

4!εαβγ δ
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χαβγ δ. In gravity, we can only reduce the constitutive tensor

χαβ
γ

μν
ρ of type

(
4
2

)
to four different 2nd order tensors:

mαβ := χαμ
μ

βν
ν, (105)

nαβ := χαμ
ν
βν

μ, (106)

kαβ := χμν
μ

αβ
ν, (107)

lαβ := χαβ
μ

μν
ν. (108)

The construction of scalars is impossible at this premetric
stage.

The tensors kαβ = −kβα and lαβ = −lβα are antisym-
metric, that is, k(αβ) = 0, l(αβ) = 0 , whereas mαβ and nαβ

are asymmetric. However, in the reversible case, mαβ and
nαβ turn out to be symmetric, whereas the two other anti-
symmetric tensors turn out to be transposed to each other,
kαβ = lβα . This can be recognized more clearly by collect-
ing all the traces into the specific constitutive tensor

χαβ
γ

μν
ρ = Lαβ δ[μ

γ δν]
ρ + Kμν δ[α

ρ δβ]
γ

+ δ[α
γ Mβ][μδν]

ρ + δ[α
ρN β][μδν]

γ . (109)

This tensor is determined by four tensors of 2nd order: two of
them are antisymmetric, Lαβ = −Lβα and Kαβ = −Kβα ,
that is, L(αβ) = 0, K(αβ) = 0, and the two other ones are
general 2nd order tensors Mαβ and N αβ .

It is straightforward to establish one-to-one correspon-
dences between these objects and the traces (105)–(108):

mαβ = 3

2

(Lαβ − Kαβ
)

− 1

4

(
9Mαβ + 2N αβ + N βα

)
, (110)

nαβ = 3

2

(Kαβ − Lαβ
)

− 1

4

(
9N αβ + 2Mαβ + Mβα

)
, (111)

kαβ = Lαβ − 6Kαβ − 3

2
M[αβ] + 3

2
N [αβ], (112)

lαβ = 6Lαβ − Kαβ − 3

2
M[αβ] + 3

2
N [αβ]. (113)

The inverse relations read

Lαβ = 1

10

(
3lαβ + kαβ − 3m[αβ] + 3n[αβ]) , (114)

Kαβ = 1

10

(
−lαβ − 3kαβ + 3m[αβ] − 3n[αβ]) , (115)

Mαβ = 1

10

(
3lαβ + 3kαβ − 9m[αβ] + 5n[αβ])

− 1

6

(
3m(αβ) − n(αβ)

)
, (116)

N αβ = 1

10

(
−3lαβ − 3kαβ + 5m[αβ] − 9n[αβ])

+ 1

6

(
m(αβ) − 3n(αβ)

)
. (117)

Decomposing the specific constitutive tensor (109) into
reversible and irreversible (skewon) parts yields

±
χαβ

γ
μν

ρ = ±
Lαβ δ[μ

γ δν]
ρ ± ±

Lμν δ[α
ρ δβ]

γ

+ δ[α
γ

±
Mβ][μδν]

ρ + δ[α
ρ

±
N β][μδν]

γ . (118)

Here we introduced

±
Lαβ = 1

2

(Lαβ ± Kαβ
)
, (119)

+
Mαβ = M(αβ),

−
Mαβ = M[αβ], (120)

+
N αβ = N (αβ),

−
N αβ = N [αβ]. (121)

This confirms that the irreversible, the skewon part vanishes,
−
χαβ

γ
μν

ρ = 0, provided
−
Lαβ = 0,

−
Mαβ = 0, and

−
N αβ = 0,

i.e., when mαβ and nαβ are symmetric and kαβ = lβα .
In the general case, the specific constitutive trace tensor

(109) is characterized by 5 nontrivial irreducible parts:

[1]χαβ
γ

μν
ρ = δ

[α
(γ

s
Rβ][μδ

ν]
ρ), (122)

[2]χαβ
γ

μν
ρ = −

Lαβ δ[μ
γ δν]

ρ − −
Lμν δ[α

ρ δβ]
γ

+ δ
[α
[γ

a
Sβ][μδ

ν]
ρ] − A[αβδμ

γ δν]
ρ , (123)

[3]χαβ
γ

μν
ρ = δ

[α
(γ

s
Sβ][μδ

ν]
ρ), (124)

[4]χαβ
γ

μν
ρ = +

Lαβ δ[μ
γ δν]

ρ + +
Lμν δ[α

ρ δβ]
γ

+ δ
[α
[γ

a
Rβ][μδ

ν]
ρ], (125)

[5]χαβ
γ

μν
ρ = 0, (126)

[6]χαβ
γ

μν
ρ =A[αβδμ

γ δν]
ρ . (127)

Here we denoted

Aαβ := 2
−
Lαβ + −

Mαβ − −
N αβ, (128)

s
Rαβ := +

Mαβ + +
N αβ, (129)

a
Rαβ := +

Mαβ − +
N αβ, (130)

s
Sαβ := −

Mαβ + −
N αβ, (131)

a
Sαβ := −

Mαβ − −
N αβ. (132)

The first object (128) represents a skewonic axion, whereas
the four other objects (129)–(132) describe contributions to
the principal reversible and irreversible (skewon) parts. In the
reversible case, only the first irreducible piece of Eq. (122)
survives and the fourth one of Eq. (125).
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4 Metric-dependent constitutive tensor

In general relativity as well as in teleparallelism, the existence
of a metric tensor g is conventionally assumed. We choose
the metric signature (+,−,−,−). The question is then how
the constitutive tensor density χαβ

μ
γ δ

ν can be expressed in
terms of the metric, namely in terms of its covariant and/or
contravariant components gαβ and gγ δ , respectively. Since χ

is a 6th order tensor of type
(

4
2

)
, it seems reasonable to start

with an ansatz of a purely contravariant dimensionless 6th
order tensor K αβμγ δν . Then the contravariant metric com-
ponents gγ δ are the only metric components that have to be
taken into account. In general, one can come up with a poly-
nomial ansatz of arbitrary order in the metric tensor. How-
ever, since the resulting constitutive tensor is of 6th order, all
indices of the metric factors except six should be necessar-
ily contracted. Recalling that a contraction of the covariant
and contravariant metric yields a Kronecker delta, we then
find that a polynomial of an arbitrary order is automatically
reduced to a general polynomial expression in the metric
which is just cubic in gαβ .

4.1 A metric-dependent ansatz with parity conserving
terms

If we look only for parity conserving (even) pieces in χ , the
totally antisymmetric unit tensor is not allowed in the polyno-
mial expression. Thus, for the 6th order tensor K αβμγ δν , the
most general cubic expression in the metric, omitting terms
explicitly symmetric in the index pairs αβ and γ δ, reads

Kαβμγ δν = α1g
αμgβγ gδν + α2g

αμgβδgγ ν + α3g
αγ gβμgδν

+ α4g
αγ gβδgμν + α5g

αγ gβνgμδ + α6g
αδgβμgγ ν

+ α7g
αδgβγ gμν + α8g

αδgβνgγμ + α9g
ανgβγ gμδ

+ α10g
ανgβδgμγ , (133)

where α1, . . . , α10 are constants.
In order to tailor the ansatz (133) for our constitutive tensor

χαβ
μ

γ δ
ν , we lower the indices μ and ν and, at the same

time, we reorder terms with only one metric tensor such that
the metric tensor is sandwiched in between two Kronecker
deltas:

K αβ
μ

γ δ
ν = α1δ

α
μg

βγ δδ
ν + α2δ

α
μg

βδδγ
ν + α3δ

β
μg

αγ δδ
ν

+α4g
αγ gβδgμν + α5δ

β
ν g

αγ δδ
μ + α6δ

β
μg

αδδγ
ν

+α7g
αδgβγ gμν + α8δ

β
ν g

αδδγ
μ + α9δ

α
ν g

βγ δδ
μ

+α10δ
α
ν g

βδδγ
μ. (134)

Since χαβ
μ

γ δ
ν is antisymmetric in the index pairs αβ

and γ δ, we have to antisymmetrize K correspondingly by
subsequently putting brackets around the indices αβ and γ δ,

respectively. Also recall that the metric is symmetric, hence
its index ordering is optional:

K [αβ]
μ

[γ δ]
ν

= α1δ
[α
μg

β][γ δδ]
ν + α2δ

[α
μg

β][δδγ ]
ν + α3δ

[β
μg

α][γ δδ]
ν

+ α4g
γ [αgβ]δgμν + α5δ

[β
ν g

α][γ δδ]
μ + α6δ

[β
μg

α][δδγ ]
ν

+ α7g
δ[αgβ]γ gμν + α8δ

[β
ν g

α][δδγ ]
μ + α9δ

[α
ν g

β][γ δδ]
μ

+ α10δ
[α
ν g

β][δδγ ]
μ . (135)

Note that the α4 and the α7 terms are already antisymmetric
in γ δ. Thus, there is no need to put brackets [ ] around γ δ or
δγ , respectively. We can now collect all terms by recalling
the antisymmetry in both index pairs αβ and γ δ. We find,
without any further intermediary step, the compact equation

K [αβ]
μ

[γ δ]
ν = (α4 − α7) g

γ [αgβ]δgμν

+ (α1 − α2 − α3 + α6) δ[α
μg

β][γ δδ]
ν

+ (−α5 + α8 + α9 − α10) δ[α
ν g

β][γ δδ]
μ. (136)

We know that χ is a density, like
√−g, with g := det gμν .

Accordingly, we can identify the parity even part of the con-
stitutive tensor density as follows,

evenχαβ
μ

γ δ
ν(g) =

√−g

�
K [αβ]

μ
[γ δ]

ν, (137)

with � as the gravitational constant. In our formalism up to
now, including the Tonti diagram, � was put to 1 for simplic-
ity. Here we do display it for clarity. Thus, we find, with the
three constants,

β1 := α4 − α7

β2 := α1 − α2 − α3 + α6

β3 := −α5 + α8 + α9 − α10,

⎫⎪⎬
⎪⎭ (138)

the expression

evenχαβ
μ

γ δ
ν(g) =

√−g

�

(
β1 g

γ [αgβ]δgμν

+β2 δ[α
μg

β][γ δδ]
ν + β3 δ[α

ν g
β][γ δδ]

μ

)
. (139)

This proves our ansatz with three independent constants in
[31, Eq. (80)].5 It is, indeed, the most general expression
which, up to a factor of

√−g, turns out to be a cubic poly-
nomial in the metric.

5 In [31], there was a typo in Eq. (80): the last plus sign + in this formula
should have been a minus sign −. Moreover, for simplification, we
changed now our conventions with respect to the β’s slightly: 4βold

1 =
β1, 8βold

2 = −β2, 8βold
3 = −β3.
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4.2 Parity violating terms

Already for quite some time, see Pellegrini and Plebanski
[48] and Müller-Hoissen and Nitsch [40], also parity violat-
ing (odd) constitutive tensors for torsion square Lagrangians
have been considered in the literature; for recent reviews,
see [3,7,32,45]. There it has been shown that two parity odd
terms occur, which are both linear in the totally antisymmet-
ric Levi-Civita symbol εαβγ δ , which is, as we may recall, a
tensor density:

oddχαβ
μ

γ δ
ν (g) = 1

�

{
β4 εαβγ δ gμν + β5 εαβ[γ [μ δ

δ]
ν]
}

.

(140)

One can also take into account such additional parity vio-
lating terms in the framework of the Poincaré gauge theory
of gravity. In that more general theory, it leads to interesting
new cosmological models [4,25] and to new gravitational
wave solutions [6,43].

We would like to understand the generality of the result in
(140) in a similar way as we did it for the parity even case. For
parity reasons, the Levi-Civita symbol has to be linearly or in
odd powers in the corresponding ansatz. Since again, as in the
even part of χαβ

μ
γ δ

ν , we start with an tensor expression of

type
(

6
0

)
, we need additionally a tensor of type

(
2
0

)
. Clearly

the contravariant components of the metric gαβ qualify for
such a purpose. Thus, the simplest possible ansatz, see also
(140), is to start with a 6th order tensor density as follows:

Mαβμγ δν = μ1g
αμεβγ δν + μ2g

αγ εβμδν + μ3g
αδεβμγ ν

+ μ4g
ανεβμγ δ + μ5g

βμεαγ δν + μ6g
βγ εαμδν

+ μ7g
βδεαμγ ν + μ8g

βνεαμγ δ + μ9g
μγ εαβδν

+ μ10g
μδεαβγ ν + μ11g

μνεαβγ δ + μ12g
γ νεαβμδ

+ μ13g
δνεαβμγ . (141)

The μ1, μ2, . . . , μ13 are arbitrary constants. We now lower
again the indices μ and ν and antisymmetrize at the same
time with respect to the index pairs αβ and γ δ, respectively:

M [αβ]
μ

[γ δ]
ν = μ11gμνε

αβγ δ

+ (μ1 − μ5) δ[α
μ εβ]γ δ

ν + (μ4 − μ8) δ[α
ν εβ]γ δ

μ

+ (μ9 − μ10) δ[γ
μ εδ]αβ

ν − (μ12 − μ13) δ[γ
ν εδ]αβ

μ

+1

2
(−μ2+μ3+μ6 − μ7)

(
gγ [αεβ]δ

μν − gδ[αεβ]γ
μν

)
.

(142)

Having established the required antisymmetries, we can
now identify the odd piece of the constitutive tensor as

oddχαβ
μ

γ δ
ν (g) = 1

�
M [αβ]

μ
[γ δ]

ν. (143)

Here we have to recall an algebraic trick that we had
already applied in discussing the electromagnetic 4th order
constitutive tensor, see [22, Eq. (D.1.65)]. Since in four
dimensions the indices have always four values, any expres-
sion antisymmetrized over five indices vanishes identically.
Thus, for an arbitrary tensor T αβγ δε······ , we have T [αβγ δε]······ ≡
0. Accordingly, we have, for example, T [ρεαβγ δ] = 0 or, if
we evaluate the brackets,

T ρεαβγ δ ≡ T αερβγ δ + T βεαργ δ + T γ εαβρδ + T δεαβγρ.

(144)

Looking now at (142), we have typically δ
[α
μεβ]γ δν . With

T α
μ = δα

μ, we find

δ[α
μεβ]γ δν ≡ δ[β

μεα]γ δν + δγ
μεβαδν + δδ

μεβγαν + δν
μεβγ δα.

(145)

By such methods, we can derive several identities for the
Levi-Civita symbol in 4 dimensions:

εαβ[γ
(μ δ

δ]
ν) + εγ δ[α

(μ δ
β]
ν) ≡ 1

2
εαβγ δ gμν, (146)

εαβ[γ [μ δ
δ]
ν] + εγ δ[α [μ δ

β]
ν] ≡ 0, (147)

gγ [αεβ]δ
μν − gδ[αεβ]γ

μν ≡ 2 εαβ[γ [μ δ
δ]
ν]. (148)

Let us come back to (143) with (142). We decompose the
δε-terms in symmetric and antisymmetric pieces with respect
to the lower indices:

δ[α
μεβ]γ δ

ν = δ
[α
(μεβ]γ δ

ν) + δ
[α
[μεβ]γ δ

ν], (149)

δ[γ
μεδ]αβ

ν = δ
[γ
(μεδ]αβ

ν) + δ
[γ
[μεδ]αβ

ν]. (150)

As a result, the δε-terms in the second and third lines of (142)
can be rearranged as follows:

(μ1 − μ5 + μ4 − μ8) δ
[α
(μεβ]γ δ

ν)

+ (μ9 − μ10 − μ12 + μ13) δ
[γ
(μεδ]αβ

ν)

+ (μ1 − μ5 − μ4 + μ8) δ
[α
[μεβ]γ δ

ν]
+ (μ9 − μ10 + μ12 − μ13) δ

[γ
[μεδ]αβ

ν]. (151)

Next, we write

δ
[α
(μεβ]γ δ

ν) = 1

2

(
δ
[α
(μεβ]γ δ

ν) + δ
[γ
(μεδ]αβ

ν)

)

+1

2

(
δ
[α
(μεβ]γ δ

ν) − δ
[γ
(μεδ]αβ

ν)

)
, (152)

δ
[γ
(μεδ]αβ

ν) = 1

2

(
δ
[γ
(μεδ]αβ

ν) + δ
[α
(μεβ]γ δ

ν)

)

+1

2

(
δ
[γ
(μεδ]αβ

ν) − δ
[α
(μεβ]γ δ

ν)

)
. (153)
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Consequently, the expression (151) transforms into

(μ1 − μ5 − μ4 + μ8 − μ9 +μ10 − μ12 + μ13) δ
[α
[μεβ]γ δ

ν]

+1

2
(μ1 − μ5 + μ4 − μ8 − μ9 + μ10 + μ12 − μ13)

×
(
δ
[α
(μεβ]γ δ

ν) − δ
[γ
(μεδ]αβ

ν)

)

+1

2
(μ1−μ5+μ4−μ8+μ9−μ10 − μ12 + μ13)

×
(
δ
[α
(μεβ]γ δ

ν)+δ
[γ
(μεδ]αβ

ν)

)
. (154)

where we used the identity (147). We recall that (154) belongs
to the second and third line of (142).

In the last step, it remains to use (146) in the last line of
(154) and to substitute (148) into the last line of (142). Then,
with the constants

β4 := 1

4
(μ1−μ5+μ4−μ8+μ9−μ10−μ12+μ13+4μ11) ,

β5 := μ1 − μ5 − μ4 + μ8 − μ9 + μ10

+μ12 − μ13 + μ2 − μ6 − μ3 + μ7,

β6 := 1

2
(μ1 − μ5 + μ4 − μ8 − μ9 + μ10 + μ12 − μ13) ,

the result eventually reads

oddχαβ
μ

γ δ
ν(g) =α

�

[
β4 εαβγ δ gμν + β5 εαβ[γ [μ δ

δ]
ν]

+β6

(
δ
[α
(μεβ]γ δ

ν) − δ
[γ
(μεδ]αβ

ν)

)]
. (155)

Here α is dimensionless pseudoscalar. It is necessary in order
to take into account the transformation law of this part under
improper reflections.

Therefore, the most general parity-odd part of the consti-
tutive tensor in the end boils down to just the three indepen-
dent terms with β4, β5, and β6. The β4-term, being totally
antisymmetric in αβγ δ, represents an β4-axion, whereas the
β5-term describes a β5-axion. They both represent reversible
processes. In contrast, the β6-term corresponds to irreversi-
bility.When contracted by Fαβ

μ and Fγ δ
ν , this term drops out

from the general teleparallel Lagrangian. Moreover, one can
reduce the number of independent terms in the Lagrangian by
making use of the Nieh-Yan topological invariant [41,42,46].

4.3 The general case and its irreducible decomposition

The general constitutive tensor

χαβ
μ

γ δ
ν(g) = evenχαβ

μ
γ δ

ν(g) + oddχαβ
μ

γ δ
ν(g) (156)

encompasses the parity-even piece of Eq. (139) and the
parity-odd piece of Eq. (155),

Computing the irreducible parts, we find

[2]χαβ
μ

γ δ
ν(g) = [6]χαβ

μ
γ δ

ν(g) = 0, (157)

whereas the nontrivial pieces read

[1]χαβ
μ

γ δ
ν(g) =√−g

�

[
β1 g

γ [αgβ]δgμν + (β2 + β3) δ
[α
(μg

β][γ δ
δ]
ν)

]
, (158)

[3]χαβ
μ

γ δ
ν(g) = β6

�

(
δ
[α
(μεβ]γ δ

ν) − δ
[γ
(μεδ]αβ

ν)

)
, (159)

[4]χαβ
μ

γ δ
ν(g) =

1

�

[
(β2 − β3)

√−gδ[α
[μg

β][γ δ
δ]
ν] + β5 εαβ[γ [μ δ

δ]
ν]
]
, (160)

[5]χαβ
μ

γ δ
ν(g) = β4

�
εαβγ δ gμν. (161)

Summarizing, a general metric-dependent constitutive tensor
encompasses two principal [1]χ and [4]χ parts, one axion [5]χ
part, and one skewon [3]χ part.

Calculating the traces (105)–(108) of the constitutive ten-
sor (156), we obtain

mαβ = 3
√−g

4�
(2β1 − 3β2 − β3)g

αβ, (162)

and

nαβ = 3
√−g

4�
(2β1 − β2 − 3β3)g

αβ. (163)

The antisymmetric tensors vanish, kαβ = lαβ = 0. The parity
odd terms drops out altogether in the trace building.

4.4 Specific Lagrangians.

4.4.1 GR||: the teleparallel equivalent of GR

We found in the framework of the teleparallel equivalent
GR|| of general relativity (GR) for the β’s in [31, Eq. (88)]6,

β1 = − 1, β2 = − 4, β3 = 2

β4 = 0, β5 = 0, β6 = 0

}
GR||. (164)

Accordingly, the three β’s are related to GR in a quite definite
way, and we get a feeling for their interpretation.

The GR|| Lagrangian is distinguished from the other tele-
parallelism Lagrangians as being locally Lorentz invariant,
see, e.g., Cho [11] and Müller-Hoissen and Nitsch [40].
Any other additional term of even parity in the gravitational
Lagrangian removes this local invariance.

Ferrarro and Guzmán [14] called the constitutive tensor
χαβ

μ
γ δ

ν(g) of (156) together with the parameters of (164)

6 There occurred an computing error. The correct values in the old
conventions are βold

1 = − 1
4 , βold

2 = 1
2 , βold

3 = − 1
4 .
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the supermetric. In fact, up to a conventional factor of −2,
our result agrees with their Eq. (17) in [14].

4.4.2 Von der Heyde Lagrangian

Earlier, different parity even pieces of torsion square Lagra-
ngians were compared by Muench et al. [39], see also the
literature cited therein. A particular role played in these con-
siderations the torsion square piece of a Lagrangian of von
der Heyde [24]. Its constitutive tensor [17] reads

vdHχαβ
μ

γ δ
ν = − 2

√−g

�

(
gγ [αgβ]δgμν + 2δ[α

μg
β][γ δδ]

ν

)
.

(165)

For the corresponding constitutive law, we have

Ȟαβ
μ = 1

2
vdHχαβ

μ
γ δ

ν Fγ δ
ν

= −
√−g

�

(
Fαβ

μ + 2δ[α
μF

β]
γ

γ
)

. (166)

This law, in the teleparallel case, leads already to the correct
Newtonian approximation. The constitutive tensor (165) car-
ries the following β-values:

β1 = − 2, β2 = − 4, β3 = 0

β4 = 0, β5 = 0, β6 = 0

}
vdH (167)

As we saw, the teleparallel equivalent GR|| has a slightly
different constitutive law (164).

4.4.3 Torsion-square Lagrangian in nonlocal gravity
(NLG)

In a nonlocal extension of GR – Nonlocal Gravity (NLG)
– the starting point [19,20] was the parameter set of GR||,
namely (164). Later, Mashhoon found it necessary, to enlarge
it by adding a supplementary piece proportional to the axial7

torsion (3)Fαβ
μ, see [37, Eq. (6.109)]. This yields, with an

unknown dimensionless parameter p̌,

β1 = − 1, β2 = − 4, β3 = 2,

β4 = − p̌

6
, β5 = − 4

p̌

6
, β6 = 2

p̌

6
.

⎫⎬
⎭ Mashh. (168)

It is amazing that (β4, β5, β6) = p̌
6 (β1, β2, β3). Probably

this means that Mashhoon’s additional parity odd term is
locally Lorentz invariant. Incidentally, there is a conventional
factor between Mashhoon’s p̌ and ours.

7 In exterior calculus, we have (3)Fα = 1
3 e

α	(Fβ ∧ ϑβ).

According to Mashhoon,8 “...the mere fact of postulating
a nonlocal constitutive relation violates local Lorentz invari-
ance.” Still, the version of NLG of 2009 is based on the
reversible and locally Lorentz invariant parameter set (164)
and Mashhoon’s version corresponds to an irreversible and
possibly also locally Lorentz invariant parameter set, see the
2nd line of (168).

5 Propagation of gravitational waves

In this section, we discuss the wave propagation in our pre-
metric teleparallel theory (TG) in linear approximation.

5.1 Geometric optics approximation

We start with the source-free field equations

dHα = 0 and dFα = 0. (169)

Notice that the source term Σ in (2) contains two independent
expressions: the matter energy–momentum current (m)Σ and
the gravitational energy–momentum current (ϑ)Σ . In matter-
free regions, we have (m)Σ = 0. Similar to standard GR,
we will assume, in addition, (ϑ)Σ = 0. This requirement is
applicable for small waves and means linearization of the
field equations.

In the geometric optics approximation (and, equivalently,
in Hadamard’s approach, see [22]), one derives the linear
system

Ȟμν
α qν = 0 and εμνρσ Fρσ

α qν = 0. (170)

Here the components qν of the wave covector are determined
by the differential of the phase ϕ function of the wave: dϕ =
qνϑ

ν .
The second equation of (170) has the solution

Fρσ
α = Aρ

α qσ − Aσ
α qρ, (171)

with an arbitrary tensor Aβ
α . It is a gravitational analog of

the electromagnetic potential. We observe the gauge invari-
ance of this gravitational potential. An expression of the form
Aβ

α = qβCα does not contribute to the field strength Fρσ
α .

In other words, the model is invariant under the transforma-
tions

Aβ
α → Aβ

α + qβC
α, (172)

with an arbitrary vector Cα .

8 Private communication, August 2018.
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We substitute (171) into (170) and use the constitutive
relation

Ȟμν
α = 1

2
χμν

α
ρσ

β Fρσ
β. (173)

This yields the characteristic equation

Mμ
α

ν
β Aν

β = 0, (174)

with fourth order characteristic tensor

Mμ
α

ν
β := χμρ

α
νσ

β qρ qσ . (175)

Inserting here the decomposition (38) of the constitutive ten-
sor, we observe that the axion-type parts [5]χμρ

α
νσ

β and
[6]χμρ

α
νσ

β do not enter the tensor Mμ
α

ν
β . Consequently,

these parts do not contribute to the wave propagation as it
was already outlined in Table 1.

In the reversible case, the characteristic tensor Mμ
α

ν
β

satisfies the symmetry relations

Mμ
α

ν
β = Mν

β
μ

α. (176)

A generalized Fresnel equation can be derived as the con-
dition for the solvability of the Eq. (174) along the lines of
the algebraic computations of Itin [30].

5.2 Dispersion relation: general facts

Observe that the characteristic equation

Eμ
α = 0, with Eμ

α := Mμ
α

ν
β Aν

β, (177)

represents 16 equations for the 16 variables Aν
β .

For a compact representation of this system, we denote a
pair of upper and lower indices by a multi-index

{μα} = I I = 1, . . . 16. (178)

In this notation, the system (177) reads

E I = MI J AJ = 0. (179)

The gauge transformation (172) can be rewritten as

AJ → AJ + QJ , where QJ = qβC
α. (180)

The 4 linearly independent vectors Cα imply that there are
likewise 4 linearly independent vectors QJ . The identities

Mμ
α

ν
β qμ = Mν

α
μ

β qμ = 0 (181)

translate into

MI J QJ = MJ I QJ = 0. (182)

These equations can be understood as 4 linear relations
between the rows (and the columns) of the matrix MI J . Con-
sequently, the matrix MI J has rank 12 = 16 − 4. The con-
dition for the existence of non-trivial solutions of Eq. (179)
reads now as

(4)Adj(M) = 0. (183)

We used here the fourth order adjoint of the matrix MI J .
It can be constructed by evaluating the determinants of the
matrices that are left in the 16×16 matrix MI J by removing
four rows and four columns. Consequently (4)Adj(M) is a set
of 12th order polynomials of the entries MI J . Accordingly,
it is a set of 12th order polynomials of the variables qα . The
4th order adjoint can be written as a tensor with eight free
indices:

(4)Adj(M)I1···I4 J1···J4 = 0. (184)

In electromagnetism with only one gauge invariance con-
straint, there appears the 1st order adjoint matrix Adj(M)αβ .
This matrix is expressed as a scalar function multiplied by
a tensor product of qα , namely Adj(M)αβ = λ(q)qαqβ .
Thus, the electromagnetic dispersion relation takes the form
λ(q) = 0.

Similarly, in the case of the gravitational equation (184),
we have

(4)Adj(M)I1···I4 J1···J4 = Λ(Q)QI1 · · · QI4 QJ1 · · · QJ4 = 0.

(185)

Thus, the gravitational dispersion relation takes the form

Λ(q) = 0. (186)

Here Λ(q) is a homogeneous polynomial of the order 16 =
24−8 in the variable qα . We recall that in the electromagnetic
case, the corresponding form is of 4th order. This fact yields
birefringence in the wave propagation. In 3-dimensional elas-
ticity theory, the dispersion relation is of 6th order, with 3
different waves in general. In our generalized gravitational
model, there are 8 different waves in general.

In the simplest case, Eq. (186) reads
(
gαβqαqβ

)
8 = 0. We

discuss the metrical case in Sect. 6.

5.3 Dispersion relation decomposed

In order to clarify the nature of the Eq. (177), we decompose
the solution under the GL(4,R) irreducibly into the scalar
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Aδ
β
α and the traceless part ↗Aα

β ,

Aα
β =↗Aα

β + Aδβ
α , with A := 1

4
Aγ

γ and ↗Aα
α = 0.

(187)

Consequently, Eq. (177) decomposes into

Eμ
α = Mμ

α
ν
β ↗Aν

β + Mμ
α

β
β A = 0. (188)

A similar decomposition can be performed with Eμ
α .

Thus, we find the 1 + 15 equations

Eα
α = 0 and Eμ

α − 1

4
Eγ

γ δμ
α = 0 (189)

or, explicitly, one equation

Mα
α

ν
β ↗Aν

β + Mα
α

β
β A = 0 (190)

and 15 equations

(
Mμ

α
ν
β − 1

4
δμ
α M

γ
γ

ν
β

)
↗Aν

β

+
(
Mμ

α
β

β − 1

4
δμ
α M

γ
γ

β
β

)
A = 0. (191)

Substituting (190) into (191), we derive the algebraic system
for the traceless variable:

Nμ
α

ν
β ↗Aν

β = 0, (192)

where we introduced

Nμ
α

ν
β := Mμ

α
ν
βM

ρ
ρ

σ
σ − Mμ

α
ρ

ρM
σ

σ
ν
β . (193)

The latter tensor is apparently traceless for both pairs of
indices:

Nμ
α

ρ
ρ = 0, Nσ

σ
ν
β = 0. (194)

Accordingly, we find a system of 15 algebraic equations for
15 variables ↗Aν

μ. After one solves the homogeneous equa-
tion (192), one immediately finds the scalar A from (190).

5.4 Scalar waves as a special case

We consider now a special case of pure scalar waves. Let the
field ↗Aν

β be identically zero: ↗Aν
β = 0. Hence, we are left

with a system of two scalar equations

(
Mμ

α
β

β − 1

4
δμ
α M

γ
γ

β
β

)
A = 0, Mα

α
β

β A = 0. (195)

The second equation has a non-trivial solution only if Mα
α

β
β

= 0. Consequently we have a dispersion relation

χαρ
α

βσ
β qρ qσ = 0. (196)

Using the double-trace tensor (105), we can write it as

mαβqα qβ = 0. (197)

In the metric-dependent case (162), the tensor mαβ , up to a
factor, coincides with the Lorentz metric tensor gαβ . Thus
we recover the standard light cone of general relativity,

gαβqα qβ = 0. (198)

5.5 A separable case

We assume now that two terms in the left-hand side of
Eqs. (190) and (191) vanish independently. In other words,
we assume that the system separates into two independent
subsystems. In [28], a similar type of consideration allowed
to extract the teleparallel equivalent of GR from a set of met-
ric based models. Thus we have 15 equations for 15 variables

(
Mμ

α
ν
β − 1

4
δμ
α M

γ
γ

ν
β

)
↗Aν

β = 0. (199)

and 1 equation for 1 variable

Mα
α

β
β A = 0. (200)

5.6 Gauge conditions

In electromagnetism, gauge invariance can be restricted by
applying a gauge fixing condition. The Lorenz gauge condi-
tion is the unique diffeomorphism invariant expression. For
wave solutions, it takes the form Aαqα = 0. Note that this
condition can be formulated only on a metric manifold.

In teleparallel theory, we are able to formulate a similar
condition in a premetric form:

Aν
βqβ = 0. (201)

A more general gauge condition can be proposed in the form
of

K1Aα
βqβ + K2Aβ

βqα = 0. (202)

Here K1 and K2 are arbitrary constants. The exceptional case
for K1 = 1 and K2 = −1, namely

Aα
βqβ − Aβ

βqα = 0, (203)

is invariant under the gauge transformation Aα
β → Aα

β +
qαCβ and, accordingly, does not represent a gauge condition.
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6 Gravitational waves in a metric model

Let us now specialize to the metric-dependent constitutive
tensor (156). The analysis of the wave propagation in the geo-
metric optics approximation is straightforward. Here we will
confine our attention to the parity-even case (139). Recently
a related paper was published by Hohmann et al. [27].

6.1 Characteristic system

We substitute the constitutive tensor (139) with its parity even
pieces into (175). As a result, Mβ

α
ν
μ(g) = χβγ

α
νρ

μ(g) ×
qγ qρ takes the form

Mβ
α

ν
μ(g) =

√−g

4�

{
2β1gαμ

(
gβνq2 − qνqβ

)

− β2

[(
q2δβ

α − qβqα

)
δν
μ − (

qνδβ
α − gβνqα

)
qμ

]

− β3

[(
q2δβ

μ − qβqμ

)
δν
α − (

qνδβ
μ − gβνqμ

)
qα

] }
.

(204)

We can immediately derive the contractions

Mβ
α

ν
ν =Mν

ν
β

α =
√−g

4�
(2β1−3β2−β3)

(
q2δβ

α − qβqα

)
,

(205)

where q2 := gαβqαqβ . Consequently,

Mα
α

ν
ν = 3

√−g

4�
(2β1 − 3β2 − β3) q

2. (206)

Furthermore, we verify that the tensor (204) has the following
properties:

Mβ
α

ν
μ qν = 0, Mβ

α
ν
μ qβ = 0, (207)

Mβ
α

ν
μ qμ =

√−g

4�
(2β1 − β2 − β3)

(
q2gβν − qβqν

)
qα,

(208)

Mβ
α

ν
μ qα =

√−g

4�
(2β1 − β2 − β3)

(
q2gβν − qβqν

)
qμ.

(209)

Interestingly, for the GR|| case of (164), the right-hand sides
of (208) and (209) vanish, i.e., the tensor Mβ

α
ν
μ turns out

to be transversal to the wave covector qμ in all four indices.
Taking into account these properties, the wave propagation

system (177) yields

(2β1 − β2 − β3)
(
q2gβν − qβqν

)
qμAν

μ = 0. (210)

In the generic case, when 2β1 − β2 − β3 �= 0, we find the
relation

q2 Aβ
μqμ = qβ Aν

μqμq
ν, (211)

which implies

q2 ↗Aβ
μqμ = qβ ↗Aν

μqμq
ν . (212)

We will use this in subsequent derivations.
Let us now turn to the decomposed equations (191) and

(192), Using (205), (206), and ↗Aν
ν = 0, we can recast (191)

into

3q2A =↗Aν
μqμq

ν . (213)

This is derived for the generic case by assuming 2β1 −3β2 −
β3 �= 0, otherwise (191) is trivial.

Finally, we turn to the traceless part (192) of the wave
propagation equation. Substituting (204)–(206) into (193),
and then making use of (212), we can rewrite (192) in the
equivalent form

6β1q
2
(
q2↗A β

α − qβqγ↗A γ
α

)

− 3β3q
2
(
q2↗Aα

β − qαq
γ↗Aγ

β
)

+ (2β1 − β3)
(
q2δβ

α − qβqα

)
↗Aν

μqμq
ν = 0. (214)

Quite remarkably, the coupling constant β2 does not con-
tribute.

Decomposing (214) into symmetric and antisymmetric
parts, we obtain the two equations

(2β1 − β3)
{

3
(
q2δμ

α − qμqα

)
(q2δν

β − qνqβ)

−
(
q2gαβ − qαqβ

)
qμqν

}
↗A(μν) = 0, (215)

(2β1 + β3)
(
q2δμ

α − qμqα

) (
q2δν

β − qνqβ

)
↗A[μν] = 0.

(216)

Two important observations are in order. Firstly, we see that
the symmetric ↗A(μν) and skew-symmetric ↗A[μν] variables
decouple from each other and are governed by two separate
dynamical equations. Secondly, the symmetric ↗A(μν) mode
remains the only one when coupling constants satisfy 2β1 =
−β3 and, similarly, the antisymmetric ↗A[μν] mode remains
the only one when the coupling constants satisfy 2β1 = β3.

In the generic case (when 2β1 �= −β3 and 2β1 �= β3),
both modes are dynamical. In principle, one can proceed by
deriving the Fresnel equations for each mode in a way sim-
ilar to classical electrodynamics. However, one can choose
an alternative way and analyze the propagation equations by
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using the method of spin-projection operators. The corre-
sponding tools were earlier developed in metric gravity [52]
and in its teleparallel formulation [40]. Their application is
straightforward. Ultimately we conclude that the wave equa-
tions describe the massless spin-0, spin-2 and spin-1 modes
propagating along the light cones q2 = 0.

6.2 Waves in GR||, the teleparallel equivalent of GR

In order to understand more clearly what happens in GR||, it
is instructive to analyze the wave propagation equation from
scratch. Plugging (204) into (175), we find for (174), after
some straightforward algebra and lowering the index μ,

(2β1 − β2 − β3)

×
{

4A(q2gαβ − qαqβ) − gαβq
μqν Aμν + qαAβγ q

γ
}

− (2β1 + β3)
{
q2A[αβ] − qαq

γ A[γβ] − qβq
γ A[αγ ]

}

+ (2β1 − β3)
{
q2A(αβ) − qαq

γ A(γβ) − qβq
γ A(αγ )

− 4A(q2gαβ − qαqβ) + gαβq
μqν Aμν

} = 0. (217)

Contracting with gαβ , we find

(2β1 − 3β2 − β3)
(

4Aq2 − qμqν Aμν

)
= 0, (218)

whereas contraction with qα yields

(2β1 − β2 − β3)
(
−qβq

μqν Aμν + q2Aβγ q
γ
)

= 0. (219)

In the generic case, we recover the earlier findings (211)
and (210). Making use of this, we see that the first line in
(217) vanishes, whereas the remaining equation reduces to
the system (215) and (216).

However, GR|| represents a very special case when the
coupling constants (164) are such that both 2β1−β2−β3 = 0
and 2β1 + β3 = 0. As a result, the first two lines of (217)
disappear, and the propagation equation has only a symmet-
ric traceless part. The bottom line is that in GR|| Eq. (217)
reduces to

q2hαβ − qαq
γ hγβ − qβq

γ hαγ = 0, (220)

after we introduce the familiar variable

hαβ := A(αβ) − 2Agαβ = A(αβ) − 1

2
gαβ Aγ

γ . (221)

Accordingly, we indeed recover the result of GR with the
massless spin-2 graviton propagating along the light cone.
In other words, GR|| is completely consistent with Einstein’s
theory with respect to the propagation of gravitational waves.

7 Conclusions and outlook

Recently, in Ref. [29], we developed a novel framework for
a premetric teleparallel theory of gravity (TG). Here we con-
tinue this study on TG by paying attention specifically to TG
models with a general local and linear constitutive law.

In Sect. 2, we constructed the Tonti diagram of TG which
explicitly displays the generic structure of the theory.

Our main new results are presented in Sect. 3 where the
irreducible decomposition of the premetric constitutive ten-
sor is established in full detail. This issue was not analysed
in the earlier literature. Here we considered two types of
such decompositions with respect to the permutation group,
namely one related to S4 × S2 and the other one with respect
to S6. The relations between these two decompositions are
explicitly derived and the physical meaning of the different
irreducible pieces clarified.

After establishing for the constitutive tensor these pre-
metric results, we turned in Sect. 4 to a special case: The
spacetime continuum is supposed to carry a metric tensor.
We constructed the most general metric dependent constitu-
tive tensor that is cubic in the metric tensor. It includes both,
parity even and parity odd parts. Thereby extending earlier
results, we for the first time obtained the most general family
of teleparallel consitutive tensors. In particular, a parity odd
Lagrangian was newly found, and its physical interpretation
fixed.

In Sect. 5, the propagation of gravitational waves are
derived for the premetric case in the geometrical optics
approximation. Additional propagating modes of spin 1 and
0 are extracted. Our results are generally consistent with the
recent findings reported in [27].

Subsequently, in Sect. 6, the metric case is addressed. The
GR limit is naturally embedded in our formalism.

The results presented here can serve as a basis for the
study of expanded gravitational models including axion and
skewon effects. In particular, violation of Lorentz invariance
can be meaningfully addressed in our premetric set-ups.
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Appendix: Young decomposition

Here we briefly explain how to determine the GL(4,R)

decomposition of the order-
(

0
6

)
constitutive tensor χ̌αβμγ δν .

The decomposition rules for tensors of other valence, say
order-2 or order-4, can easily be derived. In four dimensions,
the decomposition of χ̌αβμγ δν with the symmetry properties

χ̌ (αβ)μγ δν = 0, χ̌αβμ(γ δ)ν = 0, (35)

consists of the following seven pieces:

, , , ,

, , . (222)

Let us label them from λ1 to λ7, respectively. Each diagram
λi (i = 1 . . . 7) has corresponding dimensions according to

dim V λ =
∏

(α,β)∈λ

n + β − α

hook(α, β)
,

dim Sλ
6 = f λ = 6!∏

x∈λ

hook(x)
. (223)

We find

dim V λ1 = 126, dim V λ2 = 70, dim V λ3 = 50,

dim V λ4 = 64, dim V λ5 = 10, dim V λ6 = 10,

dim V λ7 = 6, (224)

as well as

dim Sλ1
6 = 9, dim Sλ2

6 = 10, dim Sλ3
6 = 5,

dim Sλ4
6 = 16, dim Sλ5

6 = 5, dim Sλ6
6 = 10,

dim Sλ7
6 = 9. (225)

With the relevant Young diagrams now given, we can extract
the projection operators in the standard fashion and arrive at
the irreducible decomposition of χαβγμνρ .

For each λi we may extract projection operators in the
standard way: we can fill f λi copies of the λi Young dia-
gram with numbers to create all allowed Young tableaux, and
then create the corresponding projection operator onto that
subspace by summing over the induced Young symmetrizers:

Pλi
p := f λi

p!
f λi∑
j=1

P
(
Y λi
j

)
, (226)

(I )χ̌αβμγ δν := PλI
p

(
χ̌αβμγ δν

)
, (227)

where P
(
Y λi
j

)
is the Young symmetrizer corresponding to

the j-th Young tableaux of λi , and (I )χ̌αβμγ δν denotes the
I -th irreducible piece of the constitutive tensor. The Young
tableaux with non-trivial symmetrizers are as follows:

λ1 : 1 3 5 6
2 4

,
1 3 4 6
2 5

, (228)

λ2 :
1 3 5 6
2
4

,
1 3 4 6
2
5

, (229)

λ3 : 1 3 5
2 4 6

,
1 3 4
2 5 6

, (230)

λ4 :
1 3 4
2 6
5

,
1 3 5
2 4
6

,
1 3 5
2 6
4

,
1 3 4
2 5
6

, (231)

1 4 6
2 5
3

,
1 3 6
2 4
5

,
1 3 6
2 5
4

, (232)

λ5 :
1 4
2 5
3 6

,
1 3
2 4
5 6

,
1 3
2 5
4 6

, (233)

λ6 :
1 5 6
2
3
4

,

1 3 4
2
5
6

,

1 3 5
2
4
6

,

1 4 6
2
3
5

,

1 3 6
2
4
5

,

(234)

λ7 :
1 5
2 6
3
4

,

1 3
2 4
5
6

,

1 4
2 6
3
5

,

1 3
2 6
4
5

,

1 4
2 5
3
6

,

1 3
2 5
4
6

.

(235)

For example, P
(
Y λ4

6

)
can be computed as follows:

P
(
Y λ4

6

)
= P

(
1 3 6
2 4
5

)
= S136 ◦ S24 ◦ A125 ◦ A34

= [1 + (12) + (13) + (23) + (123) + (321)]

◦ [1 + (24)]

◦ [1 − (12) − (13) − (23) + (123) + (321)]

◦ [1 − (34)] (236)

where S136 denotes symmetrization between the 1st, 3rd, 6th
index; similarly, A34 denotes antisymmetrization between
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Fig. 2 The resolution of the identity on the 576-dimensional vector
space Tχ̌ has a block-diagonal structure in terms of the canonical Young
projection operators {I }P : Tχ̌ → T I

χ̌
with I = 1, . . . , 7. We depict

these operators by 1×1 blocks, with the relative width of f λI ×dI /576.
Provided f λI > 1, these operators can be further decomposed into non-
canonical operators (I, j)P : T I

χ̌
→ T I

χ̌
with j = 1, . . . , f λI . We depict

this internal ambiguity by inserting f λI × f λI smaller blocks

the 3rd and 4th index, and so on. In the last lines we switched
to the more convenient cycle notation. Note that in our con-
ventions the Young symmetrizers are not normalized.

The exact expressions are lengthy, so we make some com-
ments:

(i) Using the Young decomposition technique, the 576-
dimensional tensor space of χ̌αβγμνρ , call it T χ̌ , can be
decomposed into the direct sum of lower-dimensional
vector spaces T I

χ̌
with I = 1, . . . , 7. Denoting the

projection operators onto these lower-dimensional sub-
spaces via (I )P : Tχ̌ → T I

χ̌
, the identity element on T χ̌

can be written as

1Tχ̌
=

7⊕
I=1

(I )P ⇒ (I )χ̌ := (I )P(χ̌). (237)

(ii) In a suitable matrix representation of Tχ̌ , call it ρ (Tχ̌ ) =
R576, the operators (I )P can be thought of as ( f λI dI )×
( f λI dI ) matrices, where f λI denotes the degeneracy of
T I

χ̌
.

(iii) On T I
χ̌

, various auxiliary projection operators (I, j)P can
be defined such that

(I )P =
f λI⊕
j=1

(I, j)P. (238)

We emphasize that the operators (I, j)P arenot canonical, that
is, they are only determined up to arbitrary linear transforma-
tions G : ρ(T I

χ̌
) → ρ(T I

χ̌
). For a graphical representation of

statements (i)–(iii), see Fig. 2.

We now use computer algebra [10,16] to obtain explicit
expressions which are a bit lengthy. To compress our results,
we define a projector C (its index representation Cρσωλ

αβγ δ ) by

C := 1

4
[1 − (12) − (45) + (12)(45)] ,

Cρσωλ
αβγ δ := 1

4
δ
ρσ
αβ δωλ

γ δ , δ
ρσ
αβ := δρ

αδσ
β − δσ

αδ
ρ
β . (239)

Observe that C2 = C, indeed. This projector antisym-
metrizes in the two index pairs αβ and γ δ such that any con-
stitutive tensor satisfying the relation χ̌αβμγ δν = χ̌[αβ]μ[γ δ]ν
has eigenvalue 1 with respect to this operator:

Cρσωλ
αβγ δ χ̌ρσμωλν = χ̌αβμγ δν . (240)

In general, Cρσωλ
αβγ δ projects a general order-6 tensor without

any symmetries, call it T αβμγ δν , onto a tensor that has the
symmetries of the constitutive tensor. In that sense we make
use of this projector to shorten our exact expressions for the
irreducible decomposition of the constitutive tensor by a fac-
tor of 4. We obtain:

(1)χ̌αβμγ δν

= 1

20
Cρσωλ

αβγ δ

(
− χ̌ρσωλμν − χ̌ρσωλνμ + χ̌ρσμωλν

+χ̌ρσμωνλ + χ̌ρσνωλμ + χ̌ρσνωμλ − χ̌ρωσλμν − χ̌ρωσλνμ

−χ̌ρωλσμν − χ̌ρωλσνμ − χ̌ρωμσνλ − χ̌ρωμλνσ

−χ̌ρωνσμλ − χ̌ρωνλμσ + χ̌ρμσωλν + χ̌ρμσωνλ

+χ̌ρμωσλν − χ̌ρμωλνσ − χ̌ρμνσωλ + χ̌ρμνωλσ + χ̌ρνσωλμ

+χ̌ρνσωμλ + χ̌ρνωσλμ − χ̌ρνωλμσ − χ̌ρνμσωλ + χ̌ρνμωλσ

+χ̌ωλρσμν + χ̌ωλρσνμ − χ̌ωλμρσν − χ̌ωλμρνσ − χ̌ωλνρσμ

−χ̌ωλνρμσ + χ̌ωμρσλν + χ̌ωμρσνλ − χ̌ωμλρσν − χ̌ωμλρνσ

−χ̌ωνμρσλ − χ̌ωμνρσλ − χ̌ωμνρλσ + χ̌ωνρσλμ + χ̌ωνρσμλ

−χ̌ωνλρσμ − χ̌ωνλρμσ − χ̌ωνμρλσ

)
, (241)

(2)χ̌αβμγ δν

= 1

18
Cρσωλ

αβγ δ

(
− χ̌ρσωλμν − χ̌ρσωλνμ + χ̌ρσμωλν

+χ̌ρσμωνλ + χ̌ρσνωλμ + χ̌ρσνωμλ − χ̌ρωσλμν

−χ̌ρωσλνμ − χ̌ρωλσμν − χ̌ρωλσνμ − χ̌ρωμσνλ

−χ̌ρωμλνσ − χ̌ρωνσμλ − χ̌ρωνλμσ + χ̌ρμσωλν

+χ̌ρμσωνλ + χ̌ρμωσλν − χ̌ρμωλνσ − χ̌ρμνσωλ + χ̌ρμνωλσ

+χ̌ρνσωλμ + χ̌ρνσωμλ + χ̌ρνωσλμ − χ̌ρνωλμσ − χ̌ρνμσωλ

+χ̌ρνμωλσ + χ̌ωλρσμν + χ̌ωλρσνμ − χ̌ωλμρσν

−χ̌ωλμρνσ − χ̌ωλνρσμ − χ̌ωλνρμσ + χ̌ωμρσλν

+χ̌ωμρσνλ − χ̌ωμλρσν − χ̌ωμλρνσ − χ̌ωνμρσλ − χ̌ωμνρσλ

−χ̌ωμνρλσ + χ̌ωνρσλμ + χ̌ωνρσμλ

−χ̌ωνλρσμ − χ̌ωνλρμσ − χ̌ωνμρλσ

)
, (242)

(3)χ̌αβμγ δν

= 1

36
Cρσωλ

αβγ δ

(
− χ̌ρσωλμν + χ̌ρσωλνμ + 2χ̌ρσωμνλ
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+χ̌ρσμωλν + χ̌ρσμωνλ − χ̌ρσνωλμ − χ̌ρσνωμλ

−χ̌ρωσλμν + χ̌ρωσλνμ + 2χ̌ρωσμνλ + χ̌ρωλσμν

−χ̌ρωλσνμ − 2χ̌ρωλμνσ + 2χ̌ρωμσλν + χ̌ρωμσνλ

−χ̌ρωμλνσ − 2χ̌ρωνσλμ − χ̌ρωνσμλ + χ̌ρωνλμσ

+χ̌ρμσωλν + χ̌ρμσωνλ + χ̌ρμωσλν + 2χ̌ρμωσνλ

+χ̌ρμωλνσ + χ̌ρμνσωλ − χ̌ρμνωλσ − χ̌ρνσωλμ

−χ̌ρνσωμλ − χ̌ρνωσλμ − 2χ̌ρνωσμλ − χ̌ρνωλμσ

−χ̌ρνμσωλ + χ̌ρνμωλσ − χ̌ωλρσμν + χ̌ωλρσνμ

+2χ̌ωλρμνσ + χ̌ωλμρσν + χ̌ωλμρνσ − χ̌ωλνρσμ

−χ̌ωλνρμσ − χ̌ωμρσλν + χ̌ωμρσνλ + 2χ̌ωμρλνσ

+χ̌ωμλρσν + χ̌ωμλρνσ − χ̌ωμνρσλ − χ̌ωμνρλσ

+χ̌ωνρσλμ − χ̌ωνρσμλ − 2χ̌ωνρλμσ − χ̌ωνλρσμ

−χ̌ωνλρμσ + χ̌ωνμρσλ + χ̌ωνμρλσ

−2χ̌μνρσωλ + 2χ̌μνρωλσ + 2χ̌μνωρσλ + 2χ̌μνωρλσ

)
, (243)

(4)χ̌αβμγ δν

= 4

45
Cρσωλ

αβγ δ

(
− χ̌ρσωλμν + χ̌ρσωλνμ + 4χ̌ρσμωλν

+χ̌ρσμωνλ − χ̌ρσνωμλ + χ̌ρωσλμν + 2χ̌ρωσλνμ

−χ̌ρωσμνλ + χ̌ρωλσμν + χ̌ρωλσνμ + χ̌ρωλμνσ

+4χ̌ρωμσλν + χ̌ρωμσνλ + χ̌ρωμλνσ + χ̌ρωνσμλ

+2χ̌ρωνλμσ + χ̌ρμσωλν − 2χ̌ρμσωνλ − χ̌ρμωσλν

−χ̌ρμωσνλ + 2χ̌ρμωλνσ + 2χ̌ρμνσωλ − χ̌ρμνωλσ

−χ̌ρνσωλμ − 2χ̌ρνσωμλ − 2χ̌ρνωσλμ + χ̌ρνωσμλ

+2χ̌ρνωλμσ + χ̌ρνμσωλ + χ̌ρνμωλσ + χ̌ωλρσμν

−2χ̌ωλρμνσ − χ̌ωλμρνσ − χ̌ωμρσλν − χ̌ωμρλνσ

−χ̌ωμλρσν − 2χ̌ωμλρνσ + χ̌ωμνρλσ − χ̌ωνρσλμ

+2χ̌ωνρσμλ + χ̌ωνρλμσ − χ̌ωνμρσλ

+χ̌ωνμρλσ + χ̌μνρσωλ − 2χ̌μνωρσλ − χ̌μνωρλσ

)
, (244)

(5)χ̌αβμγ δν

= 1

36
Cρσωλ

αβγ δ

(
χ̌ρσωλμν + χ̌ρσωλνμ − 2χ̌ρσωμνλ

+2χ̌ρσμωλν − χ̌ρσμωνλ − χ̌ρσνωμλ + 3χ̌ρωσλμν

−χ̌ρωσλνμ + χ̌ρωλσμν − 3χ̌ρωλσνμ + 2χ̌ρωμσλν

+χ̌ρωμσνλ + 3χ̌ρωμλνσ + 2χ̌ρωνσλμ − 3χ̌ρωνσμλ

−χ̌ρωνλμσ − χ̌ρμσωλν + 5χ̌ρμσωνλ − 3χ̌ρμωσλν

−χ̌ρμωλνσ − χ̌ρμνσωλ − χ̌ρμνωλσ − χ̌ρνσωλμ

+χ̌ρνσωμλ + χ̌ρνωσλμ − 5χ̌ρνωλμσ + 3χ̌ρνμσωλ

−χ̌ρνμωλσ + χ̌ωλρσμν + χ̌ωλρσνμ + 2χ̌ωλρμνσ

−χ̌ωλμρνσ + 2χ̌ωλνρσμ − χ̌ωλνρμσ − χ̌ωμρσλν

−5χ̌ωμρσνλ − χ̌ωμλρσν + χ̌ωμλρνσ − χ̌ωμνρσλ

−3χ̌ωμνρλσ + 3χ̌ωνρσλμ − χ̌ωνρσμλ − χ̌ωνλρσμ

+5χ̌ωνλρμσ − χ̌ωνμρσλ + χ̌ωνμρλσ

−2χ̌μνρωλσ + 2χ̌μνωρσλ

)
, (245)

(6)χ̌αβμγ δν

= 1

18
Cρσωλ

αβγ δ

(
− 2χ̌ρσωμνλ + 3χ̌ρσμωλν + χ̌ρσνωλμ

−χ̌ρωσλμν + χ̌ρωσλνμ − 3χ̌ρωλσμν − χ̌ρωλσνμ

−4χ̌ρωμσλν − 3χ̌ρωμσνλ − χ̌ρωμλνσ − 4χ̌ρωνσλμ

−χ̌ρωνσμλ + χ̌ρωνλμσ − 3χ̌ρμσωνλ + χ̌ρμωσλν

+χ̌ρμωλνσ + χ̌ρμνσωλ − χ̌ρνσωμλ − χ̌ρνωσλμ

+3χ̌ρνωλμσ − χ̌ρνμσωλ − χ̌ωλρσμν − χ̌ωλρσνμ

+2χ̌ωλρμνσ − χ̌ωλμρσν + χ̌ωλμρνσ + χ̌ωλνρσμ

+χ̌ωλνρμσ + 3χ̌ωμρσλν − χ̌ωμρσνλ + χ̌ωμλρσν

+3χ̌ωμλρνσ + χ̌ωμνρσλ − χ̌ωμνρλσ + χ̌ωνρσλμ

−3χ̌ωνρσμλ + χ̌ωνλρσμ + χ̌ωνλρμσ + χ̌ωνμρσλ

−3χ̌ωνμρλσ − 2χ̌μνρωλσ + 2χ̌μνωρσλ

)
, (246)

(7)χ̌αβμγ δν

= 1

20
Cρσωλ

αβγ δ

(
2χ̌ρσωλμν + 2χ̌ρσωμνλ + 4χ̌ρσμωλν

−2χ̌ρσμωνλ − 2χ̌ρσνωλμ + 3χ̌ρωσλμν − 3χ̌ρωσλνμ

−χ̌ρωλσμν + χ̌ρωλσνμ − 2χ̌ρωμσλν − χ̌ρωμσνλ

+3χ̌ρωμλνσ + 2χ̌ρωνσλμ + χ̌ρωνσμλ − 3χ̌ρωνλμσ

−2χ̌ρμσωλν + χ̌ρμσωνλ − 3χ̌ρμωσλν − 3χ̌ρμωλνσ

−3χ̌ρμνσωλ + 3χ̌ρνσωμλ + 3χ̌ρνωσλμ − χ̌ρνωλμσ

+3χ̌ρνμσωλ − 2χ̌ρνμωλσ − χ̌ωλρσμν − χ̌ωλρσνμ

+χ̌ωλμρνσ − 2χ̌ωλνρσμ + χ̌ωλνρμσ + χ̌ωμρσλν

+5χ̌ωμρσνλ + χ̌ωμλρσν + χ̌ωμλρνσ + χ̌ωμνρσλ

+χ̌ωμνρλσ − χ̌ωνρσλμ − χ̌ωνρσμλ + χ̌ωνλρσμ

−5χ̌ωνλρμσ + χ̌ωνμρσλ − χ̌ωνμρλσ + 2χ̌μνρωλσ

)
. (247)

It has been verified by computer algebra that the above
expressions indeed belong to orthogonal subspaces.
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8. M. Blagojević, F.W. Hehl (eds.), Gauge Theories of Gravitation:
A Reader with Commentaries (Imperial College Press, London,
2013). See arXiv:1210.3775

9. C.G. Böhmer, R.J. Downes, From continuum mechanics to
general relativity. Int. J. Mod. Phys. D 23, 1442015 (2014).
arXiv:1405.4728

123

http://arxiv.org/abs/1403.3467
http://arxiv.org/abs/1105.3504
http://arxiv.org/abs/1009.5112
http://arxiv.org/abs/1708.08766
http://arxiv.org/abs/1804.05556
http://arxiv.org/abs/1210.3775
http://arxiv.org/abs/1405.4728


Eur. Phys. J. C (2018) 78 :907 Page 23 of 23 907

10. J. Boos, Irreducible decomposition of the rank-6 constitutive tensor
(online computer algebra code). see http://spintwo.net/static/2018.
07.17/. Last retrieved: 17 Jul 2018

11. Y.M. Cho, Einstein Lagrangian as the translational Yang–Mills
Lagrangian. Phys. Rev. D 14, 2521 (1976)

12. D.H. Delphenich, The use of the teleparallelism connection in con-
tinuum mechanics. Math. Mech. Solids 21, 1260–1275 (2016).
arXiv:1305.3477

13. A. Einstein, The Meaning of Relativity, 5th edn. (Princeton Uni-
versity Press, Princeton, 1955)

14. R. Ferraro, M.J. Guzmán, Hamiltonian formulation of teleparallel
gravity. Phys. Rev. D 94, 104045 (2016). arXiv:1609.06766

15. M. Hamermesh, Group Theory and Its Applications to Physical
Problems (Addison-Wesley, Reading, 1962)

16. A. C. Hearn, REDUCE User’s Manual, Version 3.5, RAND Publi-
cation CP78 (Rev. 10/93). The RAND Corporation, Santa Monica,
CA 90407-2138, USA (1993). Nowadays Reduce is freely avail-
able for download; for details see [http://reduce-algebra.com] and
[http://sourceforge.net]

17. F.W. Hehl, Four lectures on Poincaré gauge field theory, in: Pro-
ceedings of the 6th Course of the School of Cosmology and Grav-
itation on Spin, Torsion, Rotation, and Supergravity, held at Erice,
Italy, May 1979, P.G. Bergmann, V. de Sabbata, eds. (Plenum, New
York 1980) pp. 5–61; see also the author’s homepage: http://www.
thp.uni-koeln.de/gravitation/mitarbeiter/hehl.html

18. F.W. Hehl, Y. Itin, Y.N. Obukhov, On Kottler’s path: origin and
evolution of the premetric program in gravity and in electrody-
namics. arXiv:1607.06159. A condensed version appeared in the
Int. J. Mod. Phys. D 25, 1640016 (2016)

19. F.W. Hehl, B. Mashhoon, Nonlocal gravity simulates dark matter.
Phys. Lett. B 673, 279 (2009). arXiv:0812.1059

20. F.W. Hehl, B. Mashhoon, A formal framework for a nonlocal gen-
eralization of Einstein’s theory of gravitation. Phys. Rev. D 79,
064028 (2009). arXiv:0902.0560

21. F.W. Hehl, J. Nitsch, P. von der Heyde, Gravitation and the Poincaré
gauge field theory with quadratic Lagrangian, in General Relativ-
ity and Gravitation: One Hundred Years After the Birth of Albert
Einstein, vol. 1, ed. by A. Held (Plenum Press, New York, 1980),
pp. 329–355

22. F.W. Hehl, Yu.N. Obukhov, Foundations of Classical Electrody-
namics: Charge, Flux, and Metric (Birkhäuser, Boston, 2003)

23. F.W. Hehl, E. Tonti, Tonti diagrams for the teleparallelism theory
of gravity (TG) and for the Poincaré gauge theory (PG), Verhand-
lungen DPG (German Physical Society) (VI) 52, 3/p.56 (2017)

24. P. von der Heyde, Is gravitation mediated by the torsion of space-
time? Z. Naturforsch. 31a, 1725–1726 (1976)

25. F.H. Ho, H. Chen, J.M. Nester, H.J. Yo, General Poincaré
gauge theory cosmology. Chin. J. Phys. 53, 110109 (2015).
arXiv:1512.01202

26. M. Hohmann, L. Järv, M. Krššák, C. Pfeifer, Teleparallel theories
of gravity as analogue of non-linear electrodynamics. Phys. Rev.
D 97, 104042 (2018). arXiv:1711.09930

27. M. Hohmann, M. Krššák, C. Pfeifer, U. Ualikhanova, Propaga-
tion of gravitational waves in teleparallel gravity theories. To be
published (2018). arXiv:1807.04580

28. Y. Itin, Weak field reduction in teleparallel coframe gravity: vacuum
case. J. Math. Phys. 46, 012501 (2005). arXiv:gr-qc/0409021

29. Y. Itin, On light propagation in premetric electrodynamics: the
covariant dispersion relation. J. Phys. A 42, 475402 (2009).
arXiv:0903.5520

30. Y. Itin, Skewon modification of the light cone structure. Phys. Rev.
D 91, 085002 (2015). arXiv:1407.6722

31. Y. Itin, F.W. Hehl, Y.N. Obukhov, Premetric equivalent of gen-
eral relativity: teleparallelism. Phys. Rev. D 95, 084020 (2017).
arXiv:1611.05759

32. G.K. Karananas, The particle spectrum of parity-violating Poincaré
gravitational theory. Class. Quantum Gravity 32, 055012 (2015).
arXiv:1411.5613; corrigendum: ibid. 32, 089501 (2015)

33. V.A. Kostelecký, M. Mewes, Lorentz and diffeomorphism vio-
lations in linearized gravity. Phys. Lett. B 779, 136–142 (2018).
arXiv:1712.10268

34. R. Kubo (in cooperation with H. Ichimura, T. Usui, N. Hashitsume),
Thermodynamics, 2nd printing (North Holland, Amsterdam, 1976)

35. J.W. Maluf, Dirac spinor fields in the teleparallel gravity: comment
on ‘Metric affine approach to teleparallel gravity’. Phys. Rev. D 67,
108501 (2003). arXiv:gr-qc/0304005

36. J.W. Maluf, The teleparallel equivalent of general relativity. Ann.
Phys. (Berlin) 525, 339 (2013). arXiv:1303.3897

37. B. Mashhoon,Nonlocal Gravity (Oxford University Press, Oxford,
2017)

38. H. Meyer, Møller’s tetrad theory of gravitation as a special case of
a Poincaré gauge theory—a coincidence? Gen. Relativ. Gravit. 14,
531–547 (1982)

39. U. Muench, F. Gronwald, F.W. Hehl, A Small guide to variations
in teleparallel gauge theories of gravity and the Kaniel–Itin model.
Gen. Relativ. Gravit. 30, 933–961 (1998). arXiv:gr-qc/9801036

40. F. Müller-Hoissen, J. Nitsch, Teleparallelism—a viable theory of
gravity? Phys. Rev. D 28, 718–728 (1983)

41. H.T. Nieh, M.L. Yan, An identity in Riemann–Cartan geometry. J.
Math. Phys. 23, 373 (1982)

42. H.T. Nieh, A torsional topological invariant. Int. J. Mod. Phys. A
22, 5237–5244 (2007)

43. Y.N. Obukhov, Poincaré gauge gravity: selected topics. Int. J.
Geom. Meth. Mod. Phys. 3, 95 (2006). arXiv:gr-qc/0601090

44. Y.N. Obukhov, Gravitational waves in Poincaré gauge gravity the-
ory. Phys. Rev. D 95, 084028 (2017). arXiv:1702.05185

45. Y.N. Obukhov, Poincaré gauge gravity: an overview, Lecture in
Tartu, Estonia (2017). Int. J. Geom. Methods Mod. Phys. 15,
1840005 (2018). arXiv:1805.07385

46. Y.N. Obukhov, E.W. Mielke, J. Budczies, F.W. Hehl, On the chiral
anomaly in non-Riemannian spacetimes. Found. Phys. 27, 1221–
1236 (1997). arXiv:gr-qc/9702011

47. Y.N. Obukhov, J.G. Pereira, Lessons of spin and torsion: Reply to
‘Consistent coupling to Dirac fields in teleparallelism’. Phys. Rev.
D 69, 128502 (2004). arXiv:gr-qc/0406015

48. C. Pellegrini, J. Plebanski, Tetrad fields and gravitational fields.
Mat. Fys. Skr. Dan. Vid. Selsk. 2(4), 1–39 (1963)

49. M. Planck, Treatise on Thermodynamics, 3rd edition 1926 [trans-
lated from the 7th German edition (Dover, New York, 1945)]

50. E.J. Post, Formal Structure of Electromagnetics—General Covari-
ance and Electromagnetics (North Holland, Amsterdam, 1962 and
Dover, Mineola, 1997)

51. I. Prigogine, Thermodynamics of Irreversible Processes, 2nd rev.
ed. (Interscience, New York, 1965)

52. R.J. Rivers, Lagrangian theory for neutral massive spin-2 fields.
Nuovo Cim. 34, 386–403 (1964)

53. J.A. Schouten, Ricci Calculus, 2nd edn. (Springer, Berlin, 1954)
54. J.J. Sławianowski, V. Kovalchuk, B. Gołubowska, A. Martens, E.E.
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