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Abstract It has recently been demonstrated that given
a generic solution, the Classical Yang–Baxter Equation
(CYBE) emerges from supergravity via the open-closed
string map, thus providing tangible evidence for the conjec-
tured equivalence between supergravity equations of motion
and the homogeneous CYBE. To date, study of this equiv-
alence has largely been confined to the NS sector. In this
work, we make two extensions. First, we revisit the trans-
formation of the RR sector and clarify its precise role in
the emergence of the CYBE. Secondly, we identify direct
products of coset geometries as the only setting where the
transformation permits embeddings of the modified CYBE.
We illustrate our solution generating technique with deforma-
tions of AdS3 ×S3 ×M4, where M4 = T 4 (K3) and S3 ×S1,
and explicitly construct one and two-parameter integrable q-
deformations that are solutions to generalised supergravity.

1 Introduction

Over recent years, the Yang–Baxter σ -model [1–3] has
emerged as a systematic way to construct integrable defor-
mations of maximally symmetric AdS/CFT geometries. In
principle this extends the scope of integrability techniques in
holography to more realistic settings. Central to this approach
is an r -matrix solution to the Classical Yang–Baxter Equation
(CYBE). The Yang–Baxter σ -model was initially formulated
in terms of r -matrix solutions to themodified CYBE, before it
was later understood that there was a richer class of deforma-
tions based on r -matrix solutions to the homogeneous CYBE
[4–6].

Since there are fewer solutions to the modified CYBE,
it is perfectly understandable that the corresponding super-
gravity solutions are rarer.1 However, this appears to be a
disproportionate rareness, since given an r -matrix solution

1 See [7–9] for a discussion of inequivalent AdSn × Sn deformations.

ae-mail: ocolgain@gmail.com

to the modified CYBE, there is no guarantee a correspond-
ing embedding in supergravity exists. This ultimately can be
traced to the fact that such solutions are less natural from the
supergravity perspective, as we will explain in due course.

We recall from a series of recent papers [10–12] that
Yang–Baxter deformations for r -matrices based on both the
homogeneous and modified CYBE are described by an open-
closed string map [14], where the deformation is specified by
a bivector � that is an antisymmetric product of Killing vec-
tors, or simply “bi-Killing”. The joy of this map is it reduces
the deformation to a single matrix inversion in the σ -model
target space. Moreover, the map can be built into a power-
ful solution generating technique [13] for generalised super-
gravity [15,16]. This approach hinges on the assumption,
explicitly checked case by case in [13,17], that the equa-
tions of generalised supergravity reduce to the CYBE, and
once the homogeneous CYBE holds, so too do the equations
of motion. In the process, � is identified with an r -matrix
solution.2

A step towards a proof of the equivalence between the
equations of motion of generalised supergravity and the
CYBE for deformations appeared in [17]. In particular,
restricting to the NS sector, and geometries not supported
by the NSNS two-form, or B-field, it was shown perturba-
tively that the equations of motion are equivalent to the CYBE
once � is bi-Killing. More precisely, it has been checked to
a certain order that the equations of motion hold once the
homogeneous CYBE is satisfied. This leaves valid questions
regarding generalisations to i) supergravity solutions sup-
ported by RR field strengths and ii) examples based on the
modified CYBE, both of which fall outside the perturbative
analysis [17]. In this work, we continue our study in this
direction and provide further examples of the solution gener-
ating technique [13] in a bid to address both these questions.
We emphasise that our method to construct the solutions,

2 See [18,19] for earlier comments linking � with r -matrices and [20–
22] where the open-closed string map is recast as a β-transformation in
the context of O(d, d) transformations.
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versus T-duality on non-isometric directions [23] (see also
[24]), is more direct as we work in generalised supergravity
from the outset.

To address the first issue, in Sect. 2 we outline the role of
the RR sector in the solution generating technique of [13] by
making use of an illustrative example. We note that the RR
sector simply supports geometries and the CYBE emerges
exclusively from the NS sector. This should come as little
surprise, since our prescription for deforming the RR sector
[13] (see Sect. 2) does not involve derivatives of � and is
thus insensitive to the actual make-up of the bivector defin-
ing the deformation. Put differently, the RR sector sees little
difference between a TsT transformation [25], which triv-
ially satisfies the homogeneous CYBE, and more involved
Yang–Baxter deformations.

As for our second concern, namely geometries based
on the modified CYBE, it is instructive to recall the κ-
deformation of the Poincaré algebra g = iso(1, d), which
is specified by the r -matrix,

r = aμMμν ∧ Pν, (1.1)

where a is a constant vector. When a is light-like (null), it is
well documented, e.g. [26,27], that the r -matrix is a solution
to the homogeneous CYBE, otherwise we get a solution to
the modified CYBE. As we show in the appendix, starting
from flat spacetime, the light-like κ-deformation leads to a
“trivial” solution [28] of generalised supergravity.3 In con-
trast, we find using our method it is not possible to generate
a deformation of flat spacetime that admits κ-deformations
where a is not null.4

This above example is instructive as it illustrates how it
is relatively easy to generate supergravity solutions based
on r -matrix solutions to the homogeneous CYBE, whereas
this is not immediate for their modified CYBE counterparts.
This comes down to the fact that homogeneous Yang–Baxter
deformations are more natural from the perspective of super-
gravity, since as we explained, once the bi-Killing deforma-
tion parameter satisfies the homogeneous CYBE, the equa-
tions of motion hold. This naturalness is also evident in other
results, in particular the fact that homogeneous Yang–Baxter
deformations may be understood as non-Abelian T-duality
transformations [30–33]. It is telling that there is no interpre-
tation of modified deformations as a T-duality transforma-
tion.

In this work, to better understand when we may expect a
supergravity solution based on the modified CYBE, we recy-

3 Since we are deforming flat spacetime, this provides arguably the
simplest example in this class.
4 As we explain later, our prescription for generating solutions based
on the modified CYBE rests upon displacing the NS and RR sectors.
Without an RR sector, this prescription does not work. However, it is
possible to find deformations of flat spacetime by contracting AdS5×S5

deformations [29].

cle the perturbative results quoted in [17]. From the dilaton
equation, we see that one must consider multiple deforma-
tions whose contributions cancel amongst themselves, so that
the equation is satisfied. This gives rise to a feeling of “awk-
wardness”, since we are in essence fitting a square plug in
a round hole. Furthermore, allowing for the constant shift in
the dilaton, we note from the Einstein equation that this shift
must back-react on the entire geometry in cases where the
stress-energy tensor does not vanish, i.e. non-flat directions.5

This means that for a curved spacetime, we have to deform all
of the directions with no exceptions. Since our deformation
makes use of Killing vectors, this can only be done where
there is an isometry associated to each direction. This ulti-
mately precludes warped-product spacetimes, e.g. Dp-brane
geometries, and restricts us to deformations based on direct-
products of coset geometries. This in turn implies that we
should be able to deform geometries such as AdS5 × T 1,1,
even though the motion of strings in this background is not
classically integrable [37]. We flesh out these arguments in
Sect. 2, where we also review the solution generating tech-
nique of [13] and elucidate the role of the RR sector. The
above observation provides a supergravity insight into so-
called η-deformations [2,7] and explains why they should be
restricted to cosets.

As we will demonstrate, a key point of this work is that the
method originally outlined in [13], which has not been exten-
sively tested in the literature, works and we can have greater
confidence in its use. In particular, through Page forms and
our descent procedure, one can simply write down solutions.
Admittedly, the RR sectors can be involved, so here we focus
on the geometries AdS3 × S3 × M4 deformations, where
M4 = T 4 or K3, and M4 = S3 × S1. It is worth noting that
a two-parameter q-deformation of this geometry, considered
earlier in [38,39], can be extended to a full solution includ-
ing the RR sector using our methods (Sect. 3) and that this
deformation can be easily extended to a one or two-parameter
q-deformation where the geometry encapsulates the excep-
tional Lie superalgebra D(2, 1;α) . In the case of the latter,
we confirm that the deformation respects a well-known con-
straint on the radii of the symmetric spaces. The deforma-
tions are expected to preserve integrability, but being solu-
tions to generalised supergravity, and not usual supergravity,
the AdS/CFT interpretation of the deformed solutions is not
clear. If one can be found, it is expected to be related to a non-
commutative deformation of Yang–Mills [10–12,18,19].

5 In string theory, a constant shift in the dilaton does not change the
world-sheet action as the two-dimensional Ricci scalar is a topological
number. This constant shift changes the effective string coupling con-
stant and this is a modulus of the theory. It is also worth stressing that
in the absence of an RR sector, the dilaton shift does not back-react.
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2 Methodology

We begin by reviewing the method outlined in [13], which is
valid for supergravity solutions not supported by an NSNS
two-form.6 Central to our prescription is the open-closed
string map [14]

(G−1 + �)−1 = g + B, (2.1)

where G denotes the original metric, � is a deformation
parameter, essentially an antisymmetric bivector, g and B
correspond to the deformed metric and B-field. We assume
that the original metric admits an isometry group, which
allows us to define � as an antisymmetric product of Killing
vectors Kμ

i

�μν = r i j Kμ
i K

ν
j , (2.2)

where r i j is a skew-symmetric matrix, r i j = −r ji , with
constant entries. One should note that the following vector,

Iμ = ∇ν�
νμ ≡ 1√

G
∂ν

(√
G�νμ

)
, (2.3)

is Killing by construction and for non-zero I it has been
proved [17] that the deformed geometry corresponds to a
solution to generalised supergravity [15], where I is the
Killing vector modification of usual supergravity [15,16]. To
complete the deformation in the NS sector, the scalar dilaton
of the deformed solution φ is related to the original dilaton
� through a well-known T-duality invariant,

e−2�
√
G = e−2φ√

g. (2.4)

For deformations involving just the NS sector of supergrav-
ity, it has been shown for generic spacetime metrics that the
CYBE emerges at second order from the equations of motion
[17]. Given an explicit solution, one can go further and show
that the equations of motion reduce to the CYBE and the coef-
ficients of � are constrained so that it is an r -matrix solution
to the (homogeneous) CYBE.7 It should be noted that in con-
trast to the Yang–Baxter σ -model, which typically involves
deformations of coset geometries and is purely algebraic, our
method reduces to the single matrix inversion (2.1). It can be
checked that the methods are equivalent [10–12].

With a prescription for deforming the NS sector in hand,
it is pretty immediate to extend this to the RR sector. The tra-
ditional approach is to identify how the transformation acts
on spinors and use this knowledge to reconstruct the trans-
formation of the RR sector [34–36]. In [13] an alternative
way was suggested. This method is rooted in the philosophy

6 At the heart of our approach is the open-closed string map of Seiberg
and Witten [14] and in open string parameters there is no B-field. The
extension to include the B-field, even in the presence of singular matri-
ces g + B, is an open problem. See [22] for progress in this direction.
7 See [13] for deformations of the Schwarzschild metric.

that all information of the deformation must follow from a
knowledge of �. In contrast to the usual approach, we arrive
at the deformed RR sector by descent simply by contracting
� into Page forms. This technique is based on the observation
made originally in [12] that the equations of motion of the
RR sector, when re-expressed in terms of Page forms (A.6),
take the simple form (A.7).

Observe that when I = 0 we recover the equations of
motion of usual type II supergravity where the Page forms
are closed and can be quantised as a result. Our prescrip-
tion now demands that for each non-zero Page form Q̃ from
the original supergravity solution, which is guaranteed to be
closed, we define induced Page forms Q associated to this
form by descent8

Q2(n−p)+1 = (−1)p

p! �p�Q̃2n+1. (2.5)

Summing up all the induced and original Page forms of
a given degree, one finds a final expression for the final
deformed Page form. It is easy to convince oneself using
(2.3) and the closure of Q̃ that the RR equations of motion
(A.7) are satisfied by construction.

Therefore, the task of confirming a solution exists reduces
to checking the Einstein (A.1), B-field (A.2) and dilaton
(A.3) equations of motion, essentially the same equations
one needs to check without an RR sector. In the absence of
an RR sector, it has been shown perturbatively that a neces-
sary condition for a deformed solution to exist is that � is
an r -matrix solution to the homogeneous CYBE [17]. Work-
ing with explicit solutions, one can show case by case that
this condition is in fact sufficient. It should be clear that our
prescription for the RR sector, in contrast to the NS sector,
does not involve derivatives of � and for this reason the RR
sector is ambivalent to the precise form of �: it is ultimately
determined exclusively by the NS sector. For this reason, the
knowledge of the CYBE is encoded only in the NS sector and
it is merely the role of the RR sector to support the geometry.
This observation should come as no surprise, since if we had
adopted the traditional approach and identified the transfor-
mation on spinors, we could use this knowledge to extract
the transformed RR sector.

As the above treatment may have been a tad abstract, let us
review a known deformation of the AdS2×S2×T 6 geometry,
which was identified using the above prescription [13]. We
begin with the original intersecting D3-brane geometry, and
in particular its near-horizon:

ds2 = (−dt2 + dz2)

z2 + dθ2 + sin2 θdφ2 + ds2(T 6),

F5 = (1 + ∗10)
1√
2z2

dt ∧ dz ∧ (ωr − ωi ), (2.6)

8 Given a p-form A andq-form B with p ≤ q, we define the contraction
(A�B)μp+1...μq = 1

p! A
μ1...μp Bμ1...μpμp+1...μq .
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where ωr , ωi are related to a complex (3, 0)-form on the
torus, ωr − iωi = �(3,0). With a view to teasing apart the
role of the NS and RR sectors, we will revisit and dissect the
equations of motion to see how they are satisfied. For clarity
we focus only on the AdS2 deformation.

The AdS2 Killing vectors are,

K1 = −t∂t − z∂z, K2 = −∂t ,

K3 = −(t2 + z2)∂t − 2t z∂z, (2.7)

so the most general deformation parameter we can construct
takes the form,

� = αK1 ∧ K2 + βK2 ∧ K3 + γ K3 ∧ K1

=
(
−αz + β2t z + γ z(−t2 + z2)

)
∂t ∧ ∂z . (2.8)

Using the above prescription (2.1), (2.3) and (2.4), the
deformed NS sector is easy to express as

ds2 = z2

(z4 − ζ 2)
(−dt2 + dz2), B = ζ

(z4 − ζ 2)
dt ∧ dz,

φ = −1

2
log

[
(z4 − ζ 2)

z4

]
, I = αK2 − 2βK1 + γ K3,

(2.9)

where everything depends on a single function,

ζ(t, z) ≡ −αz + β2t z + γ z(−t2 + z2). (2.10)

The rest of the geometry is undeformed and we omit it. Since
we are working with a 2D geometry, B is closed and as a result
its field strength is zero, H = 0. This simplifies the equations
of motion. Despite H being zero, B makes a contribution to
the equations of motion through X (A.4) and in contrast to
earlier work [15], we cannot gauge it away if our map is to
work.

Contracting in �, it is easy to identify the deformed Page
forms by descent from the original Page five-form, before
unravelling the Page forms to identify the RR field strengths
in terms of ζ :

F5 = (1 + ∗10)
z2

√
2(z4 − ζ 2)

dt ∧ dz ∧ (ωr − ωi ),

F3 = − ζ√
2z2

(ωr − ωi ). (2.11)

One can quickly confirm that the original geometry is recov-
ered when ζ = 0.

Before going further, let us pause to comment on the solu-
tion and its implications for generalised IIA supergravity.
We can envisage performing three T-dualities on the tori
directions so that we are left with a zero-form (scalar) “field
strength” in type IIA supergravity. These T-dualities will not
affect the geometry, just change the nature of the fluxes and
the chirality of the theory. From the perspective of usual
IIA supergravity, this scalar is expected to be the constant

Romans’ mass, however here we recognise that it is no longer
a constant. Thus, it appears to be a generic feature of gen-
eralised IIA supergravity that the zero-form is not closed
and has no interpretation as a mass. For completeness, in
the appendix based on the T-dual of the above geometry, we
write down the equations of motion it must satisfy.

We now redirect our attention to the equations of motion.
Since the equations involving the RR field strengths (A.7) are
satisfied from the outset, we are left to consider the Einstein,
B-field and dilaton equations.

Let us start with the Einstein equation and decompose it
in terms of NS and RR sector contributions. Owing to the
symmetry in the (t, x)-directions, it is enough to focus on
the temporal direction. The NS sector contribution is

Rtt + 2∇t Xt = z2(1 − 4β2 + 4αγ )(z4 + ζ 2)

(z4 − ζ 2)2 , (2.12)

while the RR sector appears through the stress-energy tensor,

Ttt = z2(z4 + ζ 2)

(z4 − ζ 2)2 . (2.13)

One immediately recognises that the expressions are the same
once β2 = αγ , which is precisely the homogeneous CYBE
for the algebra g = sl(2) once � is identified with the corre-
sponding r -matrix solution to the CYBE. This term is trace-
able to derivatives of �, or ζ in this case, and for TsT transfor-
mations where � is a constant in the usual frame, we see that
the Einstein equation would have been satisfied. It is clear
from this example that the non-trivial information about the
CYBE is not coming from the RR sector, but instead from the
NS sector. This conforms with our expectation that the RR
sector acts largely as a spectator and has no direct bearing on
the emergence of the CYBE.

Before studying the other equations and arriving at the
same conclusion, it is of interest to compare the above CYBE
contribution to the NS sector with the expression derived
in [17]. Since [17] studied only the NS sector equations of
motion, we cannot expect to recover all the deformation terms
at second order. From (3.12) of [17], we recall the contribu-
tion to the Einstein equation at second order in �,

E (2)
μν = 1

2
(∇ρKiμK jνK

ρ
k + ∇ρKiνK jμK

ρ
k )

(
c i
l1l2r

jl1rkl2

+ c k
l1l2r

il1r jl2 + c j
l1l2

rkl1r il2
)

. (2.14)

Using the fact that the CYBE term is antisymmetric in indices
and the commutation relations for the Lie algebra, we can
rewrite this term as

E (2)
μν = 1

2
(K[kνc l

i j]Klμ + K[kμc l
i j]Klν)

(
c i
l1l2r

jl1rkl2

+ c k
l1l2r

il1r jl2 + c j
l1l2

rkl1r il2
)

. (2.15)
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Evaluating this for the Ett component using the Killing vec-
tors (2.7), we obtain

E (2)
t t = 4

z2 (−β2 + αγ ), (2.16)

which precisely agrees with the CYBE term in (2.12). Thus,
if the perturbative analysis of [17] was extended to the RR
sector, we can expect the same term (2.14) to appear at second
order. We will return to this point soon.

Let us move onto the B-field equation to confirm this pic-
ture. Once again, we decompose the equation into an NS,

dX = −2z4ζ(1 − 4β2 + 4αγ )

(z4 − ζ 2)2 dt ∧ dz, (2.17)

and RR contribution,

1

2
e2φF3�F5 = − 2z4ζ

(z4 − ζ 2)2 dt ∧ dz. (2.18)

We see again that the contribution from the CYBE comes
through the NS sector and not through the RR sector. Finally,
the dilaton equation reads,

− β2 + αγ = 0, (2.19)

which once again is nothing more than the homogeneous
CYBE. Here, we remark that the dilaton equation is an equa-
tion involving only the NS sector with the RR sector dropping
out. So based on this example, we arrive at the following con-
clusion: the RR sector is merely a by-stander. It involves no
derivatives acting on � and has no influence on the permitted
deformations, but simply supports the original and deformed
geometry.

With a view to introducing the main focus of this paper,
namely solutions based on the modified CYBE, it is pretty
obvious that there is a second way to solve the above equa-
tions, which is simply to displace the RR sector relative to
the NS sector. Since the RR sector appears in the equations
dressed with the dilaton,9 it makes no difference if one shifts
the dilaton by a constant or rescales the RR sector, the result
is the same. We will take the view that we can shift the dilaton
by an additional constant, φ → φ + φ0. From the Einstein
equation and the B-field equation of motion, we see that
choosing

e2φ0 = 1 − 4β2 + 4αγ (2.20)

ensures that both equations are satisfied without constraining
α, β andγ . Of course this constant shift in the dilaton does not
affect the dilaton equation and this necessitates we perform
some gymnastics to find an additional contribution to cancel
the dilaton equation terms, which are no longer zero. The
solution to this is to also deform the two-sphere as explained

9 In fact once the RR sector is solved by descent, the contribution of the
RR sector to the remaining equations is the same as usual supergravity.

in [13]. Note, the same conclusion is reached by studying the
Einstein equation in the (θ, φ)-directions, as once the dilaton
is shifted, it back-reacts on the geometry and the Einstein
equations in these directions will no longer be satisfied. In
summary, it is clear that we have to also deform the two-
sphere.

This brings us back to the perturbative results of [17],
which are valid for generic spacetimes. To second order in
the deformation parameter the two equations are the dilaton
equation, which recall is independent of the RR sector [17]:

K α
i K

β
k ∇αKβm

(
c m
l1l2 r

il1rkl2 + c k
l1l2r

ml1r il2 + c i
l1l2r

kl1rml2
)

= 0,

(2.21)

and the Einstein equation,

1

2

(∇ρKiμK jνK
ρ
k + ∇ρKiνK jμK

ρ
k

) (
c i
l1l2r

jl1rkl2

+c k
l1l2r

il1r jl2 + c j
l1l2

rkl1r il2
)

= κ2T (0)
μν , (2.22)

where we have added the contribution from the dilaton shift,
φ → φ+log κ , and T (0)

μν is the undeformed stress-energy ten-
sor. Despite not being exact, these perturbative results we can
regard as necessary conditions for the existence of a defor-
mation. We omit the B-field equation of motion as it recovers
the CYBE only at third-order in �.

It is clear from the Einstein equation that the dilaton shift
back-reacts once T (0)

μν 	= 0. Therefore, we do not have to
deform flat directions, however to counteract the effect of
the dilaton shift we have to in effect deform components
of the geometry that are curved. Since our deformation is
only defined for Killing directions, this restricts us to direct-
products of coset spaces. In effect this rules out deformations
of warped geometries, since the warp factor will depend on a
non-Killing direction that cannot be deformed. This restric-
tion is echoed in the dilaton equation since if non-trivial coor-
dinate dependence appeared in this equation, one could no
longer trade off the bracketed algebraic terms against one
another. Even with cosets, one still has to choose the Killing
vectors correctly so that this can be achieved.

3 AdS3 × S3 revisited

Having laid out our stall, in this section we turn to explicit
examples and revisit deformations of AdS3 × S3 ×T 4 where
� is an r -matrix solution to the modified CYBE. Our motiva-
tion for doing so is two-fold. First, AdS3 ×S3 ×T 4 is usually
supported by three-form flux and not five-form flux, as was
the case of the example studied in the previous section,10 so

10 One can always T-dualise on T 4 to replace the three-form with five-
form flux. Note, this is not possible for AdS3 × S3 × S3 × S1.
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one can ask whether this complicates the descent procedure
involving the Page forms.

Secondly, the isometry group of AdS2 × S2 is SL(2,R)×
SU (2), whereas AdS3 × S3 has double the symmetry, i.e.
SL(2,R)L × SL(2,R)R × SU (2)L × SU (2)R , so we would
like to contemplate separate deformations involving the dif-
ferent factors. In particular, since the geometry is a product
of left and right symmetries, it is reasonable to expect that
one can have a deformation with two parameters. Such a
deformation has appeared previously in the literature [38,39],
where it is related to the two-parameter deformation of Fateev
[40]. To be more precise, the deformed metric was extracted
from the Yang–Baxter σ -model in [38] and in [39] a stan-
dard supergravity embedding was presented. To the extent of
our knowledge a generalised supergravity solution includ-
ing the dilaton, Killing vector I and RR sector has not been
presented. This provides a fitting test for our method.

However, before getting to that point, let us meander a bit
to understand the nuts and bolts of the solution generating
technique. With a view to isolating the different symmetries,
we will employ slightly atypical coordinates and this turns
out to be an instructive exercise. Let us begin by recalling the
original AdS3 × S3 × T 4 solution,

ds2 = ds2(AdS3) + ds2(S3) + ds2(T 4),

F3 = 2vol(AdS3) + 2vol(S3), (3.1)

where we will use the following “Hopf-fibre” metrics for
AdS3,

ds2(AdS3) = 1

4

(
−dτ2 + dω2 + dσ 2 + 2 sinh ωdτdσ

)
, (3.2)

and S3,

ds2(S3) = 1

4

(
dθ2 + dφ2 + dψ2 + 2 cos θdφdψ

)
. (3.3)

It is well known that one can analytically continue AdSp to
S p, and vice versa, so that the line elements are related by an
overall change in signature ds2(AdSp) = −ds2(S p). For the
above metrics this can be achieved by identifying coordinates
as follows,

θ = iω − π

2
, ψ = τ, φ = iσ, (3.4)

in order that one maps the S3 metric to the AdS3 metric with
opposite signature.

Given the above parametrisation of the spacetime metric,
the six AdS3 Killing vectors can be written as,

K1 = − sinh σ

cosh ω
∂τ − cosh σ∂ω + tanh ω sinh σ∂σ ,

K2 = cosh σ

cosh ω
∂τ + sinh σ∂ω − tanh ω cosh σ∂σ ,

K3 = ∂σ , (3.5)

and

K̃1 = sin τ tanh ω∂τ − cos τ∂ω + sin τ

cosh ω
∂σ ,

K̃2 = − cos τ tanh ω∂τ − sin τ∂ω − cos τ

cosh ω
∂σ ,

K̃3 = ∂τ . (3.6)

One can check that the two sets of Killing vectors commute
with each other and within each set, the SL(2,R) symmetry
is manifest through the commutation relations. The corre-
sponding Killing vectors for S3 take the form,

K4 = −cos φ

sin θ
∂ψ + sin φ∂θ + cot θ cos φ∂φ,

K5 = sin φ

sin θ
∂ψ + cos φ∂θ − cot θ sin φ∂φ,

K6 = ∂φ, (3.7)

and

K̃4 = − cot θ cos ψ∂ψ − sin ψ∂θ + cos ψ

sin θ
∂φ,

K̃5 = − cot θ sin ψ∂ψ + cos ψ∂θ + sin ψ

sin θ
∂φ,

K̃6 = ∂ψ . (3.8)

As may be anticipated, the Killing vectors are not completely
independent and they can also be mapped under the analytic
continuation (3.4):

K4 = K2, K5 = i K1, K6 = −i K3, K̃4 = −i K̃2,

K̃5 = i K̃1, K̃6 = K̃3. (3.9)

Having introduced coordinates that make the symmetries
manifest and explained the relation between the two met-
rics under analytic continuation, to define our deformation
we need to specify �. Making use of the symmetries, the
most general � with constant coefficients takes the form,

� = αK1 ∧ K2 + β K̃1 ∧ K̃2 + γ K4 ∧ K5 + δ K̃4 ∧ K̃5,

(3.10)

where α, β, γ and δ are constant coefficients. In terms of
components, � may be expressed as,

�τω = (α − β sinh ω)

cosh ω
, �ωσ = (α sinh ω + β)

cosh ω
,

�θφ = − (δ + γ cos θ)

sin θ
, �ψθ = − (δ cos θ + γ )

sin θ
, (3.11)

where, due to our conveniently chosen Killing vectors, �

only depends on ω and θ .
If we had chosen different Killing vectors, which are

equivalent up to SL(2,R) or SU (2) transformations, depen-
dence on the remaining coordinates would have crept in. For
this reason, this is the simplest �, but also the most general
modulo symmetry transformations.
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With � specified, it is a straightforward exercise to exploit
(2.1), (2.3) and (2.4) to write out the deformed metric,

ds2 = − (16 + β2 + 2αβ sinh ω + α2 sinh2 ω)

4�1
dτ 2

+ (16 − α2 + 2αβ sinh ω − β2 sinh2 ω)

4�1
dσ 2 + 4

�1
dω2

+ ((16 − α2 + β2) sinh ω + αβ sinh2 ω − αβ)

2�1
dτdσ

+ (16 + γ 2 + 2γ δ cos θ + δ2 cos2 θ)

4�2
dφ2

+ (16 + δ2 + 2γ δ cos θ + γ 2 cos2 θ)

4�2
dψ2

+ 4

�2
dθ2 + (γ δ + (16 + γ 2 + δ2) cos θ + γ δ cos2 θ)

2�2
dφdψ,

and supporting fields from the NS sector,

B = −cosh ω

�1
dω ∧ (αdτ + βdσ)

+ sin θ

�2
dθ ∧ (δdφ − γ dψ),

φ = −1

2
log

[
�1�2

256

]
+ φ0,

I = β∂τ + α∂σ + γ ∂φ − δ∂ψ . (3.12)

Here we have introduced,

�1 = 16 − α2 + β2 + 2αβ sinh ω,

�2 = 16 + γ 2 + δ2 + 2γ δ cos θ. (3.13)

To accommodate deformations based on the modified CYBE
we have also allowed for a constant shift in the dilaton φ0. It
is easy to check that the B-field is closed, i.e. H = 0, so that
our examination of the equations of motion will be somewhat
simplified.

With the deformed NS sector in hand, bearing in mind that
the dilaton equation (A.3) only involves fields from this sec-
tor, we are now in a position to document our first constraint
on the coefficients:

α4 + β4 + 96β2 − 96α2 + 2α2β2 − γ 4

− 96γ 2 + 2γ 2δ2 − 96δ2 − δ4 = 0. (3.14)

To go further and specify the complete solution, we iden-
tify the invariant Page forms. In contrast to geometries sup-
ported by five-form flux, where there is only a Page five-form,
here we have a three-form flux, so we can define both three
and seven-form Page forms:

Q3 = 1

4
cosh ωdτ ∧ dω ∧ dσ + 1

4
sin θdθ ∧ dφ ∧ dψ,

Q7 = −Q3 ∧ vol(T 4). (3.15)

The presence of two Page forms simply reflects the fact that
the geometry is sourced by D1 and D5-branes and not inter-
secting D3-branes and this marks a departure from the earlier
example. Regardless, our descent procedure still works and

employing it we can define an induced one-form and a five-
form:

Q1 = −1

4
(α − β sinh ω)dσ − 1

4
(α sinh ω + β)dτ

+ 1

4
(δ + γ cos θ)dψ + 1

4
(δ cos θ + γ )dφ,

Q5 = −Q1 ∧ vol(T 4). (3.16)

The one-form Q1 is induced from Q3, while the five-form
Q5 is induced from Q7. It is straightforward to check that
dQ1 = i I Q3, which implies that dQ5 = i I Q7. This leaves
only the dQ3 = i I Q5 equation of motion from (A.7), which
is not obviously satisfied by our descent procedure since there
is no induced component to Q3, which means that it must be
closed. As a result, we identify a further constraint,

i I Q5 =
[
β

4
(α sinh ω + β) + α

4
(α − β sinh ω)

+ δ

4
(δ + γ cos θ) − γ

4
(δ cos θ + γ )

]
vol(T 4),

= 1

4

(
α2 + β2 + δ2 − γ 2

)
vol(T 4) = 0. (3.17)

The above signs are interesting, since assuming everything is
real, there is no way to identify constants in a symmetric fash-
ion consistent with analytic continuation (3.4). This suggests
that at least one of the constants is pure imaginary. To better
understand this point, we recall that the metrics are related
by analytic continuation, which in turn relates the constants
in the following manner:

α = −iγ, β = −δ. (3.18)

One immediate consequence of imposing these conditions is
that the constraint coming from the dilaton equation (3.14) is
trivially satisfied. Furthermore, the constraint (3.17) can be
satisfied for two constants κ±,

− β = δ = ±γ = ±iα = 2κ±, (3.19)

which may be distinguished by a choice of signs. At this junc-
ture, we should be a little concerned: assuming the remaining
equations of motion hold and a solution exists, it is clear that
the final geometry will be complex. In contrast, the solutions
quoted in the literature, e.g. [15], are all real. That being said,
the known solutions differ in an obvious way: the coordinates
are not the same. To reconcile everything, it is reasonable to
suspect there exists a coordinate transformation, essentially
another analytic continuation, through which a real solution
is produced. This is indeed the case, as we now explain.

To get a real solution, one must entertain the following
coordinate transformations:

sin
θ

2
= r, ψ = ϕ + φ1, φ = ϕ − φ1,

sin

(
iω

2
− π

4

)
= iρ, τ = t + ψ1, σ = −i(t − ψ1). (3.20)
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We are now in a position to analyse the two branches
(3.19) to recover known solutions from the literature. Let us
start with the κ− deformation, which will turn out to be more
familiar, since it has been quoted more often in the literature.
Employing the coordinate transformation, the deformation
parameter may be expressed as,

�
tρ
− = κ−ρ, �

ϕr
− = κ−r, (3.21)

and the NS sector for the solution becomes:

ds2 = − (1 + ρ2)

(1 − κ2−ρ2)
dt2 + dρ2

(1 − κ2−ρ2)(1 + ρ2)
+ ρ2dψ2

1

+ (1 − r2)

(1 + κ2−r2)
dϕ2 + dr2

(1 + κ2−r2)(1 − r2)

+ r2dφ2
1 + ds2(T 4),

B = κ−ρ

(1 − κ2−ρ2)
dt ∧ dρ − κ−r

(1 + κ2−r2)
dϕ ∧ dr,

φ = −1

2
log[(1 − κ2−ρ2)(1 + κ2−r2)] + φ0,

I = −2κ−(∂t + ∂ϕ), (3.22)

where we have retained the constant shift in the dilaton.
Neglecting Q7, which is simply the Hodge dual of Q3, the
key Page forms are

Q1 = 2κ−(−ρ2dψ1 + r2dφ1),

Q3 = 2ρdt ∧ dρ ∧ dψ1 − 2rdϕ ∧ dr ∧ dφ1,

Q5 = 2κ−(ρ2dψ1 − r2dφ1) ∧ vol(T 4), (3.23)

which can be unravelled to extract the RR field strengths:

F1 = 2κ−(−ρ2dψ1 + r2dφ1),

F3 = 2ρ

(1 − κ2−ρ2)
dt ∧ dρ ∧ dψ1

− 2r

(1 + κ2−r2)
dϕ ∧ dr ∧ dφ1

− 2κ2−ρr2

(1 − κ2−ρ2)
dt ∧ dρ ∧ dφ1

− 2κ2−rρ2

(1 + κ2−r2)
dϕ ∧ dr ∧ dψ1,

F5 = 2κ−rρ
(1 − κ2−ρ2)(1 + κ2−r2)

dt ∧ dρ ∧ dϕ ∧ dr

∧(dφ1 + dψ1)

+ 2κ−(ρ2dψ1 − r2dφ1) ∧ vol(T 4). (3.24)

To complete the solution, one needs to fix the constant shift
in the dilaton and this can be done using either the Einstein
(A.1) or the B-field equation of motion (A.2):

e2φ0 = 1 + κ2−. (3.25)

Let us now return to the κ+ branch. In this case the defor-
mation parameter is

�
ρψ1+ = −κ+

(
1

ρ
+ ρ

)
, �

rφ1+ = κ+
(

1

r
− r

)
, (3.26)

and once re-written in the new coordinates, the deformed NS
sector takes the form:

ds2 = −(1 + ρ2)dt2 + dρ2

(1 + κ2+(1 + ρ2))(1 + ρ2)

+ ρ2

(1 + κ2+(1 + ρ2))
dψ2

1

+ (1 − r2)dϕ2 + dr2

(1 − r2)(1 + κ2+(1 − r2))

+ r2dφ2
1

(1 + κ2+(1 − r2))
+ ds2(T 4),

B = κ+ρ

(1 + κ2+(1 + ρ2))
dρ ∧ dψ1

− κ+r
(1 + κ2+(1 − r2))

dr ∧ dφ1,

φ = −1

2
log[(1 + κ2+(1 + ρ2))(1 + κ2+(1 − r2))] + φ0,

I = −2κ+(∂ψ1 + ∂φ1). (3.27)

We omit further expressions, but simply remark that one can
analytically continue the two solutions into each other start-
ing with the κ− deformation. The required analytic continu-
ation is

ρ → i
√

1 + ρ2, t → ψ1, r →
√

1 − r2,

ϕ → φ1, κ− → κ+. (3.28)

A number of comments are in order. The simplest obser-
vation is that even though we have used unusual coordinates,
our prescription works for AdS3 × S3 and that the RR sector
can be constructed via descent from the Page forms. While
we have taken pains to isolate the different symmetry factors
and their respective Killing vectors, we see that the real-
ity, or otherwise, of the final solution may depend on the
choice of coordinates, or alternatively, the Killing vectors. We
noted that the deformed solution was complex in the original
coordinates we adopted, but through analytic continuation,
it could be made real.11 The fact that we arrive at a com-
plex deformation is expected to be an artifact of the fact that
we have also imposed a requirement that the deformations
respect the analytic continuation, which clearly complexifies
Killing vectors. Presumably if one relaxes this condition, an
independent real solution can be found in the original coordi-
nates. Note, even in global coordinates the underlying Killing

11 This is somewhat reminiscent of λ-deformations of AdS3 ×S3 based
on SL(2,R) and SU (2) group manifolds [41], but there it is simply the
RR sector that is complex, whereas here the spacetime metric is also
complex in the original coordinates.
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vectors are complex (see appendix B of [11]), but they con-
spire to give a real deformation parameter �, so the final
geometry is real.

3.1 Two-parameter q-deformation

Now that we have recovered the known solutions, we can con-
sider the two-parameter q-deformation [38,39]. In [38] only
the metric appears, while in [39], the metric is embedded in
type II supergravity, where the solution is supported by an RR
three-form and one-form. Here, we provide a direct embed-
ding in generalised supergravity, where as is now standard
in our approach, we directly use (2.3) to specify the Killing
vector.

In order to write down the solution at this stage all we
have to do is simply combine the earlier deformations (3.21)
and (3.26) and use the map (2.1). Doing so, the NS sector
becomes,

ds2 = 1

X1

[
−(1 + κ2+(1 + ρ2))(1 + ρ2)dt2

+ (1 − κ2−ρ2)ρ2dψ2
1 + dρ2

(1 + ρ2)

+ 2κ+κ−ρ2(1 + ρ2)dtdψ1

]

+ 1

X2

[
(1 + (1 − r2)κ2+)(1 − r2)dϕ2

+ (1 + κ2−r2)r2dφ2
1 + dr2

(1 − r2)

+2κ+κ−r2(1 − r2)dϕdφ1

]
+ ds2(T 4),

B = −ρdρ

X1
∧ (κ−dt − κ+dψ1)

+rdr

X2
∧ (κ−dϕ − κ+dφ1),

φ = −1

2
log(X1X2) + φ0,

I = −2
(
κ−∂t + κ+∂ψ1 + κ−∂ϕ + κ+∂φ1

)
, (3.29)

where we have defined,

X1 = 1 − κ2−ρ2 + κ2+(1 + ρ2),

X2 = 1 + κ2+(1 − r2) + κ2−r2. (3.30)

One can check that the dilaton equation (A.3) is satisfied, so
we are clearly on the right track, since one of the non-trivial
equations holds.

Using our descent procedure for the RR sector, the
deformed Page forms become:

Q1 = 2κ+((1 + ρ2)dt + (1 − r2)dϕ)

+ 2κ−(−ρ2dψ1 + r2dφ1),

Q3 = 2ρdt ∧ dρ ∧ dψ1 − 2rdϕ ∧ dr ∧ dφ1,

Q5 = −Q1 ∧ vol(T 4). (3.31)

Unravelling these expressions, we find the RR field strengths:

F1 = 2κ+((1 + ρ2)dt + (1 − r2)dϕ)

+ 2κ−(−ρ2dψ1 + r2dφ1),

F3 = 1

X1

[
2ρdtdρdψ1 − 2κ+κ−ρ(1 − r2)dtdρdϕ

− 2κ2−r2ρdtdρdφ1 − 2κ2+ρ(1 − r2)dρdψ1dϕ

− 2κ+κ−ρr2dρdψ1dφ1

]
+ 1

X2
[−2rdϕdrdφ1

− 2κ+κ−r(1 + ρ2)drdϕdt + 2κ2−rρ2drdϕdψ1

+ 2κ2+r(1 + ρ2)drdφ1dt − 2κ+κ−rρ2drdφ1dψ1

]
,

F5 = 2ρr

X1X2

[
κ−dtdρdψ1dϕdr + κ−dtdρdϕdrdφ1

+ κ+dtdρdψ1drdφ1 + κ+dρdψ1dϕdrdφ1
]

+
[
−2κ+((1 + ρ2)dt + (1 − r2)dϕ)

+ 2κ−(ρ2dψ1 − r2dφ1)
]

∧ vol(T 4). (3.32)

It can be checked that the remaining equations of motion
are satisfied provided,

e2φ0 = (1 + κ2+)(1 + κ2−). (3.33)

Our analysis shows that there is a two-parameter q-
deformation of AdS3 × S3 giving rise to a solution to gen-
eralised supergravity. In essence, we have simply written it
down using the methods outlined in Sect. 2. The existence of
this solution was anticipated in earlier work [38,39], but to
our knowledge never completed.

4 AdS3 × S3 × S3 × S1

Having discussed the simpler setting of AdS3 × S3, let us
move onto AdS3 × S3 × S3, which exhibits large supercon-
formal symmetry and comprises two copies of the excep-
tional Lie supergroup D(2, 1;α). From the perspective of
geometry, we recall that the constant α is the ratio between
the radii of the three-spheres and it is our goal here to
check that deformations exist for all values of α and con-
struct the solution explicitly. To avoid added complex-
ity, and the resulting lengthy expressions, we will simply
deform one of these D(2, 1;α) factors with bosonic sub-
group SL(2,R)×SU (2)×SU (2). The generalisation to both
copies of D(2, 1;α) is straightforward and follows similar
lines to the previous section.

Before proceeding to the analysis, let us advertise one
interesting feature of the deformation. In contrast to the pre-
vious example where there was no induced Page three-form
Q3, here we will find that it is induced from the (closed)
Page seven-form Q7. This means that there are two contri-
butions to Q3: one is inherited from the original geometry,
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while the other is induced. This is a feature of more compli-
cated deformations. For example, it is relatively straightfor-
ward to extend our analysis here to IIA and cosets, such as
AdS4 ×M6, where M6 is CP3, CP2 × S2, S2 × S2 × S2,
etc.12 In the process, it is clear one will generate exam-
ples of deformed geometries supported by a zoo of RR field
strengths.

But back to the task at hand. We recall that the undeformed
geometry may be written as,

ds2 = L2ds2(AdS3) + R2
1ds2(S3

1) + R2
2ds2(S3

2) + dx2,

F3 = 2L2vol(AdS3) + 2R2
1vol(S3

1) + 2R2
2vol(S3

2), (4.1)

where adopting the lesson from the last section, we will
employ global coordinates,

ds2(AdS3) = −(1 + ρ2)dt2 + dρ2

(1 + ρ2)
+ ρ2dψ2,

ds2(S3
i ) = (1 − r2

i )dϕ2
i + dr2

i

(1 − r2
i )

+ r2
i dφ2

i ,

vol(AdS3) = ρdt ∧ dρ ∧ dψ,

vol(S3
i ) = ridϕi ∧ dri ∧ dφi . (4.2)

This is a solution to type IIB supergravity provided the radii
satisfy the relation

1

L2 = 1

R2
1

+ 1

R2
2

. (4.3)

As we have seen in the last section, if one neglects the sec-
ond three-sphere, there is a deformation where the bivector
takes the form (3.21). This suggests that we can extend the
deformation to the second three-sphere by simply repeating
it,

�tρ = κ0ρ, �ϕ1r1 = κ1r1, �ϕ2r2 = κ2r2. (4.4)

Since we have yet to identify the relation between the defor-
mation parameters, for the moment κ0, κ1 and κ2 are arbitrary
constants. The plan now is to use our prescription to fix them
and check that the constant α drops, or put alternatively, that
there is a choice of constants so that the constraint on the
radii (4.3) still holds.

First, let us perform the transformation (2.1) with a view
to identifying the deformed metric and B-field. The resulting
expressions are,

12 See [42] for a review.

gμνdxμdxν = − L2(1 + ρ2)

(1 − L4κ2
0 ρ2)

dt2

+ L2

(1 + ρ2)(1 − L4κ2
0 ρ2)

dρ2 + L2ρ2dψ2

+ R2
1(1 − r2

1 )

(1 + R4
1κ2

1r
2
1 )

dϕ2
1

+ R2
1

(1 − r2
1 )(1 + R4

1κ2
1r

2
1 )

dr2
1 + R2

1r
2
1 dφ2

1

+ R2
2(1 − r2

2 )

(1 + R4
2κ2

2r
2
2 )

dϕ2
2

+ R2
2

(1 − r2
2 )(1 + R4

2κ2
2r

2
2 )

dr2
2

+ R2
2r

2
2 dφ2

2 + dx2,

B = L4κ0ρ

(1 − L4κ2
0 ρ2)

dt ∧ dρ

− R4
1r1κ1

(1 + R4
1κ2

1r
2
1 )

dϕ1 ∧ dr1

− R4
2r2κ2

(1 + R4
2κ2

2r
2
2 )

dϕ2 ∧ dr2. (4.5)

It should be noted that H = dB = 0 and it will not feature
in the equations of motion.

From (2.3) we can determine the Killing vector,

I = −2
(
κ0∂t + κ1∂ϕ1 + κ2∂ϕ2

)
, (4.6)

while the dilaton, modulo the usual constant φ0, follows from
the T-duality invariant (2.4):

e−2φ = e2φ0
(

1 − L4κ2
0 ρ2

) (
1 + R4

1κ2
1 r

2
1

) (
1 + R4

2κ2
2 r

2
2

)
. (4.7)

At this juncture, we can once again go ahead and check
the dilaton equation as it does not involve the RR sector. The
dilaton equation is satisfied provided,

− 1

L2 + 1

R2
1

+ 1

R2
2

+ L2κ2
0 − R2

1κ2
1 − R2

2κ2
2 = 0. (4.8)

This is the first indication that there is a good deformation.
The κ-independent terms vanish using the constraint on the
radii, as expected, leaving a constraint on the constants to be
imposed.

To make use of our procedure, we identify the original
Page forms,

Q3 = 2L2vol(AdS3) + 2R2
1vol(S3

1) + 2R2
2vol(S3

2),

Q7 = −2R3
1R

3
2

L
vol(S3

1) ∧ vol(S3
2) ∧ dx

− 2L3R3
2

R1
vol(AdS3) ∧ vol(S3

2) ∧ dx

+ 2L3R3
1

R2
vol(AdS3) ∧ vol(S3

1) ∧ dx, (4.9)
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and define induced Page forms by descent, starting with the
one-form Q1, which can be unambiguously identified,

Q1 ρ = −(��Q3)ρ ≡ −1

2
�μνQ3 μνρ. (4.10)

The sign is essentially fixed by the requirement that dQ1 =
i I Q3. This allows us to identify the one-form F1,

F1 = −2L2κ0ρ
2dψ − 2R2

1κ1r
2
1 dφ1 − 2R2

2κ2r
2
2 dφ2. (4.11)

From here we can move onto extracting F3. While there
is a contribution to Q3 that is invariant and therefore closed,
there is also an additional induced contribution from the Page
seven-form,

Q3 μνρ = 1

8
�σ1σ2�σ3σ4 Q7 σ1σ2σ3σ4μνρ. (4.12)

Combining this with the original Q3, we can evaluate F3:

F3 = Q3 − B ∧ F1,

= 2L2

(1 − L4κ2
0 ρ2)

(
ρdtdρdψ + L2R2

1κ0κ1r
2
1 ρdtdρdφ1

+ L2R2
2κ0κ2r

2
2 ρdtdρdφ2

)
+ 2R2

1

(1 + R4
1κ2

1 r
2
1 )

(r1dϕ1dr1dφ1

− R2
1L

2κ1κ0r1ρ
2dϕ1dr1dψ − R2

1 R
2
2κ1κ2r1r

2
2 dϕ1dr1dφ2

)

+ 2R2
2

(1 + R4
2κ2

2 r
2
2 )

(r2dϕ2dr2dφ2

− R2
2L

2κ2κ0r2ρ
2dϕ2dr2dψ − R2

1 R
2
2κ1κ2r2r

2
1 dϕ2dr2dφ1

)

− 2R3
1 R

3
2κ1r2

1 κ2r2
2

L
dφ1dφ2dx − 2L3R3

2κ0ρ
2κ2r2

2

R1
dψdφ2dx

+2L3R3
1κ0ρ

2κ1r2
1

R2
dψdφ1dx, (4.13)

where we have omitted wedge products to save space. Fol-
lowing our prescription, Q5 follows from Q7, again through
contraction,

Q5 = −��Q7,

= 2L3R3
2κ0ρ

2

R1
dψ ∧ vol(S3

2) ∧ dx

− 2L3R3
1κ0ρ

2

R2
dψ ∧ vol(S3

1) ∧ dx,

+ 2R3
1R

3
2κ1r2

1

L
dφ1 ∧ vol(S3

2) ∧ dx

+ 2L3R3
1κ1r2

1

R2
dφ1 ∧ vol(AdS3) ∧ dx,

− 2R3
1R

3
2κ2r2

2

L
dφ2 ∧ vol(S3

1) ∧ dx

− 2L3R3
2κ2r2

2

R1
dφ2 ∧ vol(AdS3) ∧ dx . (4.14)

One can again check that the equations of motion dQ3 =
i I Q5 and dQ5 = i I Q7 are satisfied. We also require that

dQ3 = i I Q5, otherwise the equations of motion will not be
satisfied. This turns out to be the case.

We are now in a position to identify the lengthy five-form
flux,

F5 = Q5 − B ∧ F3 − 1

2
B2 ∧ F1,

= 2κ0L3R3
2ρ2r2

R1(1 + R4
2κ2

2r
2
2 )

dϕ2dr2dψdφ2dx

− 2R2
1L

4κ0r1ρ

(1 − L4κ2
0 ρ2)(1 + R4

1κ2
1r

2
1 )

dtdρdϕ1dr1dφ1,

− 2κ0L3R3
1ρ2r1

R2(1 + R4
1κ2

1r
2
1 )

dϕ1dr1dψdφ1dx

− 2R2
2L

4κ0r2ρ

(1 − L4κ2
0 ρ2)(1 + R4

2κ2
2r

2
2 )

dtdρdϕ2dr2dφ2

− 2κ1R3
1R

3
2r

2
1r2

L(1 + R4
2κ2

2r
2
2 )

dϕ2dr2dφ2dφ1dx

+ 2L2R4
1κ1r1ρ

(1 − L4κ2
0 ρ2)(1 + R4

1κ2
1r

2
1 )

dtdρdψdϕ1dr1

− 2κ1L3R3
1r

2
1 ρ

R2(1 − L4κ2
0 ρ2)

dtdρdψdφ1dx

+ 2R4
1 R

2
2κ1r1r2

(1 + R4
1κ2

1r
2
1 )(1 + R4

2κ2
2r

2
2 )

dϕ2dr2dφ2dϕ1dr1

+ 2κ2R3
1R

3
2r

2
2r1

L(1 + R4
1κ2

1r
2
1 )

dϕ1dr1dφ1dφ2dx

+ 2R4
2L

2κ2r2ρ

(1 − L4κ2
0 ρ2)(1 + R4

2κ2
2r

2
2 )

dtdρdψdϕ2dr2

+ 2κ2L3R3
2r

2
2 ρ

R1(1 − L4κ2
0 ρ2)

dtdρdψdφ2dx

+ 2R4
2 R

2
1κ2r2r1

(1 + R4
1κ2

1r
2
1 )(1 + R4

2κ2
2r

2
2 )

dϕ1dr1dφ1dϕ2dr2

+ 2L4R4
1 R

2
2r1ρr2

2 κ0κ1κ2

(1 − L4κ2
0 ρ2)(1 + R4

1κ2
1r

2
1 )

dtdρdϕ1dr1dφ2

+ 2L3R3
1R

3
2ρ2r2

1r2κ0κ1κ2

(1 + R4
2κ2

2r
2
2 )

dϕ2dr2dψdφ1dx

+ 2L4R2
1 R

4
2r2ρr2

1 κ0κ1κ2

(1 − L4κ2
0 ρ2)(1 + R4

2κ2
2r

2
2 )

dtdρdϕ2dr2dφ1

− 2L3R3
1R

3
2ρ2r2

2r1κ0κ1κ2

(1 + R4
1κ2

1r
2
1 )

dϕ1dr1dψdφ2dx

− 2L2R4
1 R

4
2r2ρ

2r1κ0κ1κ2

(1 + R4
1κ2

1r
2
1 )(1 + R4

2κ2
2r

2
2 )

dϕ1dr1dϕ2dr2dψ

+ 2L3R3
1R

3
2ρr2

2r
2
1 κ0κ1κ2

(1 − L4κ2
0 ρ2)

dtdρdφ1dφ2dx, (4.15)

where once again we have omitted wedge products.
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At this stage, there are two consistency checks that confirm
we are on the right track. First, it can be checked that the final
F5 is self-dual, a feature we have not put in by hand, rather it
falls out of our prescription. Secondly, it can be checked that
the Einstein equation Exx = 0 is satisfied, once (4.3) holds,
consistent with our expectation of a solution existing.

To complete the solution, we should use the remaining
equations of motion to fix φ0. With H = 0, this is most
easily done by checking the B-field equation (A.2), which is
satisfied once we introduce an additional constant κ , so that
the dilaton shift takes the form,

e2φ0 ≡ 1 + κ2 = 1 + L4κ2
0 = 1 + R4

1κ2
1 = 1 + R4

2κ2
2 . (4.16)

This allows us to rewrite the original constants in terms of κ ,

κ0 = L−2κ, κ1 = R−2
1 κ, κ2 = R−2

2 κ. (4.17)

With this choice, it is now clear the dilaton equation (4.8)
is satisfied once (4.3) holds. This confirms that a solution
exists and it is a lengthy, but straightforward calculation, to
check that the Einstein equation also holds. As stated earlier,
it is straightforward to generalise the above deformation to a
two-parameter deformation.
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A Generalised supergravity

The equations of motion of generalised IIB supergravity may
be expressed as [15,16]:

RMN − 1

4
HMKL HN

K L − T I I B
MN + ∇M XN + ∇N XM = 0,

(A.1)
1

2
∇K HKMN + 1

2
FKFKMN + 1

12
FMNK LPFK LP

= XK HKMN + ∇M XN − ∇N XM , (A.2)

R − 1

12
H2 + 4∇M XM − 4XM XM = 0, (A.3)

where we have defined the one-form in terms of the dilaton
φ, Killing vector I and B-field,

X = dφ + I + i I B, (A.4)

and the stress-energy tensor,

T I I B
MN ≡ 1

2
FMFN + 1

4
FMKLFN

K L

+ 1

96
FMPQRSFN

PQRS

− 1

4
GMN

(
FKFK + 1

6
FPQRF PQR

)
, (A.5)

where the formsF are the usual RR field strengths F rescaled
by the dilaton, F = eφF . It should be noted that the modifi-
cation from usual IIB supergravity is captured by the Killing
vector and setting I = 0, we recover the original theory.

To simplify the equations involving the RR sector only,
following [12] we introduce Page forms,

Q1 = F1, Q3 = F3 + B ∧ F1,

Q5 = F5 + B ∧ F3 + 1

2
B2 ∧ F1,

Q7 = − ∗ F3 + B ∧ F5 + 1

2
B2 ∧ F3 + 1

3! B
3 ∧ F1,

Q9 = ∗F1 − B ∧ ∗F3 + 1

2
B2 ∧ F5 + 1

3! B
3

∧ F3 + 1

4! B
4 ∧ F1, (A.6)

so that the equations of motion take the simple form,

dQ2n−1 = i I Q2n+1, n = 1, 2, 3, 4. (A.7)

It is worth noting that the RR sector acts largely as a spectator
and the modification is more pronounced in the NS sector,
where it may be traced to non-Abelian T-duality with respect
to non-semisimple groups [43,44].

The equations of motion of generalised IIA supergravity
may be expressed as

RMN − 1

4
HMKL HN

K L − T I I A
MN + ∇M XN + ∇N XM = 0,

(A.8)
1

2
∇K HKMN + 1

2
FFMN + 1

4
F PQFMN PQ

= XK HKMN + ∇M XN − ∇N XM , (A.9)

with no change for the dilaton equation (A.3) and we have
defined the stress-energy tensor:

T I I A
MN ≡ 1

2
FMPF P

N + 1

12
FMPQRFN

PQR − 1

4
GMN

×
(
F2 + 1

2
FPQF PQ + 1

24
FPQRSF PQRS

)
,

(A.10)
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where the zero, two and four-form are related to the usual
RR field strengths through a factor of the dilaton, F = eφF .
Defining the Page forms,

Q0 = F0, Q2 = F2 + BF0,

Q4 = F4 + B ∧ F2 + 1

2
B2F0,

Q6 = − ∗ F4 + B ∧ F4 + 1

2
B2 ∧ F2 + 1

3! B
3F0,

Q8 = ∗F2 − B ∧ ∗F4 + 1

2
B2 ∧ F4

+ 1

3! B
3 ∧ F2 + 1

4! B
4 ∧ F0.

(A.11)

Note that in contrast to usual massive IIA supergravity, F0

may not be a constant. The equations of motion of the RR
sector take the form

dQ2n = i I Q2n+2, n = 0, 1, 2, 3, 4. (A.12)

B A trivial solution

In [28] a class of “trivial” solutions to generalised super-
gravity were identified. Solutions are deemed trivial when
they satisfy the standard supergravity equations, even though
I 	= 0, and this happens when the following two conditions
are met:

Iμ I
μ = 0, dI = i I H. (B.1)

Here we present a simple example of a trivial solution by
considering a deformation of flat spacetime. In particular,
we consider flat spacetime in 3D,13 but this example imme-
diately generalises to higher dimensions. We recall the r -
matrix (1.1) and take the vector a to be null, a = (η, η, 0).
See [45] for an earlier pp-wave example of a trivial solution.

Concretely, we consider the spacetime,

ds2 = −dt2 + dx2 + dy2, (B.2)

and we will use our prescription outlined in Sect. 2 to generate
the deformed geometry. Replacing the generators by Killing
vectors, while identifying � = r , the deforming bivector
becomes:

�t x = η(t + x), �t y = ηy, �xy = −ηy. (B.3)

13 We thank S. van Tongeren for pointing out the 2D deformation is
simply flat spacetime, thus making it completely trivial.

Using (2.1), (2.3) and (2.4), the deformed solution is

ds2 = 1

�

[
−(1 + η2y2)dt2 + (1 − η2y2)dx2

+ dy2 − 2η2y2dtdx + 2η2(t + x)ydtdy

+ 2η2(t + x)ydxdy
]
,

B = 1

�
[η(t + x)dt ∧ dx + ηydt ∧ dy + ηydx ∧ dy] ,

� = −1

2
log �, I = 2η(−∂t + ∂x ), (B.4)

where we have defined

� = 1 − η2(t + x)2. (B.5)

Lowering the indices on the Killing vector, the one-form I is

I = 2η

�
(dt + dx). (B.6)

It is easy to check that I is null and since both it and B are
closed, the second condition presented in (B.1) is trivially
satisfied. As a result, this solution constitutes an example of
a trivial solution. This means that the dilaton can be shifted to
absorb the Killing vector I , so that the deformed spacetime
may be regarded as a solution to standard supergravity.
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