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Abstract We investigate the gauge/gravity duality between
the N = 6 mass-deformed ABJM theory with Uk(N ) ×
U−k(N ) gauge symmetry and the 11-dimensional supergrav-
ity on LLM geometries with SO(2,1)×SO(4)/Zk ×SO(4)/Zk

isometry, in terms of a KK holography, which involves
quadratic order field redefinitions. We establish the quadratic
order KK mappings for various gauge invariant fields in order
to obtain the canonical 4-dimensional gravity equations of
motion and to reduce the LLM solutions to an asymptoti-
cally AdS4 gravity solutions. The non-linearity of the KK
maps indicates that we can observe the true purpose of the
non-linear KK holography of the LLM solutions. We read
the vacuum expectation value of conformal dimension two
operator from the asymptotically AdS4 gravity solutions.
For the LLM solutions which are represented by square-
shaped Young diagrams, we compare the vacuum expec-
tation value obtained from the holographic procedure with
the result obtained from the field theory, which is given by

〈O(�=2)〉 = √
kN

3
2 f(�=2) + O(N ), where f� is indepen-

dent of N . Based on this result, we examine the gauge/gravity
duality in the large N limit and finite k. We also show that
the vacuum expectation values of the massive KK graviton
modes are vanishing as expected by the supersymmetry.
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1 Introduction

AdS/CFT correspondence [1–3] and its various deformations
have been a central paradigm for the past two decades in the-
oretical physics. Among the deformations, we consider the
supersymmetry preserving mass deformation [4,5] of the 3-
dimensional N = 6 Uk(N ) × U−k(N ) Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory with Chern–Simons level
k [6], which is dual to the 11-dimensional supergravity on the
Lin–Lunin–Maldacena (LLM) geometries [7] with Zk orb-
ifold and SO(2,1)×SO(4)/Zk×SO(4)/Zk isometry. The cor-
respondence between the supersymmetric vacua of the mass-
deformed ABJM theory (mABJM) and the LLM geometries
with Zk orbifold was reported in [8].

Recently, we have disclosed more evidence for the
gauge/gravity duality between the mABJM theory and the
11-dimensional supergravity on the LLM geometry with
SO(2,1) ×SO(4)/Zk×SO(4)/Zk isometry [9,10]. We cal-
culated the vacuum expectation values (vevs) of a chiral
primary operator (CPO) of conformal dimension � = 1,
from all supersymmetric vacua of the mABJM theory in
the large N limit and from the LLM solutions in the 11-
dimensional supergravity in terms of the gauge/gravity dic-
tionary [2,3]. In order to show the duality, we defined the
4-dimensional dual scalar modes obtained from the proce-
dure of the Kaluza–Klein (KK) holography [11–13] for the
11-dimensional supergravity. We found an exact dual rela-
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tion between the two results for all possible supersymmetric
solutions in both sides in the large N limit.

In the case of the CPO of conformal dimension � = 1,
linearized Einstein equations and asymptotic expansion of
the LLM solutions upto the linear order were sufficient to
read the vev. In that case, the KK maps between the 4-
dimensional fields and 11-dimensional fields are trivial. In
this paper, we extend to the case of CPO of conformal dimen-
sion � = 2, which requires non-linear KK maps. We start
with the compactification on S7/Zk of the 11-dimensional
gravity equations in which the dynamical fields are writ-
ten as a sum of the AdS4 × S7/Zk background and fluctua-
tions. To obtain the vevs of the CPO of conformal dimension
� = 2, it is sufficient to write the equations of motion up
to the quadratic terms in fluctuations. After some manipula-
tions for equations of gauge invariant fluctuation modes, we
find that the quadratic terms contain higher derivatives, and
thus we need to introduce some non-trivial field redefinitions
(the KK maps) to obtain the canonical equations of motion
for the 4-dimensional fields. The asymptotically AdS4 solu-
tions to the resulting 4-dimensional equations of motion are
obtained from the asymptotic expansion of the LLM solu-
tions and combining various fields in the expansion, accord-
ing to our well established non-linear KK maps. Using the
holographic renormalization and asymptotic expansion of the
LLM geometries, we read the vevs of the CPO of conformal
dimension � = 2 and also confirm that the vevs of some
massive KK graviton modes are vanishing as required by
supersymmetry.1 On the field theory side, we use the dis-
crete Higgs vacua of the mABJM theory to determine the
vev of the CPO of conformal dimension � = 2 in the large
N limit. Due to computational difficulty, we focus on the
case of the LLM solutions which are represented by square-
shaped Young diagrams and we show that, in the large N
limit and finite k, the vev obtained from both the field theory

side and the gravity side is 〈O(�=2)〉 = √
kN

3
2 f(�=2), where

f� is independent of N .
The remaining part of the paper is organized as follows. In

Sect. 2, we apply the KK reduction to 11-dimensional super-
gravity equations and obtain the equations for 4-dimensional
gauge invariant fields. We also establish the non-trivial KK
maps for some 4-dimensional gauge invariant fields. In
Sect. 3, we obtain the CPO of conformal dimension � = 2
in the mABJM theory and determine its vev from the dis-
crete Higgs vacua. In Sect. 4, we rearrange the asymp-
totic expansion of the LLM solutions according to our KK
maps to obtain the asymptotically AdS4 solutions of the 4-
dimensional gravity equations of motion. From these solu-
tions, we read the vevs of various 4-dimensional KK modes,
using the gauge/gravity dictionary. In Sect. 5, we compare the
gravity and the field theory results for the vevs of the CPOs

1 See [16] for results of zeroth KK graviton modes.

and determine the values of some normalization factors. In
Sect. 6, we draw our conclusions. In the Appendix, we give
some details about the construction of CPO of conformal
dimension � = 2.

2 KK reduction of 11-dimensional gravity

In this section, we discuss the compactification of 11-
dimensional gravity on S7/Zk . The compactification involves
expansion of the 11-dimensional fluctuations in terms of
the spherical harmonics on S7/Zk and then projecting the
equations of motions on those spherical harmonics to obtain
the equations of motion for various KK modes. The result-
ing equations contain higher derivatives of those KK modes
and the necessary KK maps are introduced for obtaining the
canonical equations of motion of the 4-dimensional dynami-
cal fields. The non-linear KK maps established in this section
are used in Sect. 4 to obtain the asymptotically AdS4 solu-
tions of 4-dimensional gravity equations of motion from the
KK reduction of the LLM solutions. The vev of the CPO of
conformal dimension � = 2 is read from such asymptotic
solutions.

2.1 Field equations at quadratic order

In [16], we have written the 11-dimensional gravity equa-
tions of motion up to quadratic order in the fluctuations by
perturbing the fields around the AdS4 × S7/Zk background
as

gpq = gpq + h pq , Fpqrs = Fpqrs + f pqrs, (2.1)

where p, q, · · · = 0, · · · , 10. For clarity, we summarize
those quadratic order equations. The quadratic order equa-
tions are obtained by inserting (2.1) into the 11-dimensional
gravity equations of motion and keeping all the terms up to
quadratic order in the fluctuations h pq and f pqrs . The results
are

∇r∇phqr + ∇r∇qh pr − ∇2h pq − ∇q∇ph
r
r − Rhpq

− gpq
(
−Rrshrs + ∇r∇shrs − ∇2hr r

)

+ 1

48

(
Frstu F

rstuh pq−4gpqhrs F
r
tuvF

stuv
)

+ 1

24
gpq frstu F

rstu − 1

2
hrs F

r
ptu Fq

stu

− 1

6

(
f prst F

rst
q + Fprst f

rst
q

)
+ Qpq = 0, (2.2)

∇p(h
t
t F

pqrs) + 2∇p(4F
[pqr

t hs]t + f pqrs)

+ 2√−g

1

(4!)2 ε̃ p1···p4q1···q4qrs f p1···p4 Fq1···q4 + Pqrs = 0,

(2.3)
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where the indices are raised (lowered) by the AdS4 × S7/Zk

metric and the covariant derivatives are also those of the back-
ground. Here, Pqrs and Qpq denote the quadratic terms in
the fluctuations and are given by

Pqrs = −1

2
∇p

[(
htuh

tu − 1

2
(ht t )

2
)
F pqrs

]

− 8∇p

(
F [pqr
u hs]t ht u − 3

2
Ftu[pqhr t hs]u − f [pqr

t hs]t
)

+ ∇p

[
ht t

(
4F [pqr

u hs]u + f pqrs
)]

+ 1√−g

1

(4!)2 ε̃ p1···p4q1···q4qrs f p1···p4 fq1···q4 , (2.4)

Qpq = −∇r

[
hrs

(∇phsq + ∇qhsp − ∇sh pq
)]

+ 1

2
∇ph

rs∇qhrs + hrs∇p∇qhrs

+ 1

2
∇r hs s

(∇phrq + ∇qhrp − ∇r h pq
)

+ ∇r hs p∇r hsq − ∇r hs p∇shqr − gpq Rrsh
rt hs t

+ 1

2
gpq∇r

[
hrs

(
2∇ t hst − ∇sh

t
t
)]

− 3

4
gpq∇ t hrs∇t hrs + 1

2
gpq∇r hst∇shtr

− 1

2
gpqh

rs∇2hrs

− 1

4
gpq∇r hs s

(
2∇ t hrt − ∇r h

t
t
) + 1

2
gpqh

rs

×
(
∇ t∇r hts + ∇ t∇shtr − ∇2hrs − ∇r∇sh

t
t

)

+ h pqh
rs Rrs − h pq

(
∇r∇shrs − ∇2hr r

)

+ 1

12

[
gpq Frstu F

rst
wh

uvhv
w − gpq Frstu f

rst
vh

uv

+ 3

2
gpq Frstu F

rs
vwh

tvhuw + 1

2
h pq frstu F

rstu

− h pq Frstu F
rst

vh
uv + 1

4
gpq frstu f

rstu

− gpq frstu F
rst

vh
uv

]
− 1

2

[
Fpstu Fq

st
wh

uvhv
w

+ Fpstu Fq
s
vwh

tvhuw − Fpstu fq
st

vh
uv

− f pstu Fq
st

vh
uv + 1

3
f pstu fq

stu
]
. (2.5)

The KK reduction of the 11-dimensional gravity to 4-
dimensional gravity involves the expansion of the fluctua-
tions h pq and f pqrs in terms of the spherical harmonics on
S7/Zk , with the metric

ds2
S7/Zk

= L2

4(1 − τ 2)
dτ 2 + L2(1 + τ)

2
ds2

S3/Zk

+ L2(1 − τ)

2
ds2

S̃3/Zk
, (2.6)

where L is the radius of S7. Later, we will identify the fluc-
tuations h pq and f pqrs with the deviations of the LLM solu-

tions from the AdS4 × S7/Zk solutions. Keeping in mind the
SO(2,1)×SO(4)/Zk ×SO(4)/Zk isometry of the LLM solu-
tions, we consider expansions in terms of the spherical har-
monics with SO(4)/Zk × SO(4)/Zk symmetry. Since those
spherical harmonics depend only on the τ coordinate, they
are not affected by the orbifolding. This implies that expan-
sions of the fluctuations h pq and f pqrs in terms of these
spherical harmonics are the same, irrespective of the orb-
ifolding. Therefore, in this section, we treat the expansion
of the fluctuations h pq and f pqrs in terms of the spherical
harmonics on S7 and reintroduce the Chern–Simons level k
in the following sections.

In [9,10], we have written a complete form of these expan-
sions whereas we have argued in [16] that many of the
KK modes do not contribute to the equations of motion at
quadratic order. Therefore, we use the following truncated
expansions,

hμν(x, y) = hI1
μν(x)Y

I1(y), hρ
ρ(x, y) = hI1(x)Y I1(y),

h(ab) = s I1(x)∇(a∇b)Y
I1(y), haa(x, y) = φ I1(x)Y I1(y),

fμνρσ (x, y) = 2

3
∇[μtλI1(x)ενρσ ]λY I1(y),

fμνρa(x, y) = − 1

3! εμνρ
σ t I1σ (x)∇aY

I1(y),

fμabc(x, y) = ∇μt
I35(x)Y I35

abc(y),

fabcd (x, y) = 4t I35(x)∇[aY I35
bcd](y), (2.7)

where In = 0, 1, 2, . . ., we have split the 11-dimensional
indices into the AdS4 indices (μ, ν, · · · = 0, · · · , 3) and the
S7 indices (a, b, · · · = 4, · · · , 10), x denotes the AdS4 coor-
dinates and y denotes the S7 coordinates. The notation (ab)
means symmetrized traceless combination, while [ab · · · ]
denotes complete antisymmetrization of indices. Here, Y I1

and Y I35
abc are the scalar and antisymmetric 3-tensor spherical

harmonics on S7, respectively.
Plugging (2.7) into the (μν) component of (2.2) and then

projecting on the scalar spherical harmonics Y I1 , we obtain

−
(

� + 
I1 − 24

L2

)
hI1

μν + ∇ρ∇μh
I1
νρ + ∇ρ∇νh

I1
μρ

− ∇μ∇ν(h
I1 + φ I1)

+ gμν

(
� + 
I1 − 30

L2

)
hI1 + gμν

(
� + 6

7

I1 + 6

L2

)
φ I1

− gμν

(
6

7

I1 + 6

L2

)

I1s I1

− gμν∇ρ∇σ hI1
ρσ + 1

L
gμν∇ρ t I1ρ + 2QI1

μν = 0, (2.8)

where � ≡ ∇μ∇μ, L is the radius of S7, QI1
μν =

1
ω7

∫
S7

1
2 QμνY I1 , and 
I1 = − I1(I1+6)

L2 is the eigenvalue

corresponding to the scalar harmonics Y I1 . The trace of the
above equation leads to
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(
� + 3

2

I1 − 48

L2

)
hI1 − ∇μ∇νhμν

+ 3

2

(
� + 8

7

I1 + 8

L2

)
φ I1 + 2

L
∇ρ t I1ρ

− 12
I1
(1

7

I1 + 1

L2

)
s I1 + QI1

h = 0, (2.9)

where QI1
h = gμνQI1

μν . Secondly, projecting the (μa) com-
ponent of (2.2) on ∇aY I1(I1 �= 0),2 we obtain

−
(6

7

I1 + 6

L2

)
∇μs

I1 + 6

7
∇μφ I1 − ∇νhI1

μν + ∇μh
I1

− 1

L
t I1μ + QI1

μ = 0, (2.10)

where QI1
μ = 1

ω7

∫
S7 Qμa∇aY I1 . Thirdly, projecting the (ab)

component of (2.2) on gabY I1 and ∇(a∇b)Y I1(I1 �= 0), we
obtain two scalar equations

3
(
� + 5

7

I1 + 5

L2

)
φ I1 + 7

2

(
� + 6

7

I1 + 6

L2

)
hI1

− 7

2
∇μ∇νhI1

μν − 7

2L
∇ρ t I1ρ

− 15
I1
(
I1

7
+ 1

L2

)
s I1 + QI1

φ = 0, (2.11)


I1

{(
� − 5

7

I1

)
s I1 + hI1 + 5

7
φ I1

}
− QI1

s = 0, (2.12)

where QI1
φ = 1

ω7

∫
S7

1
2 QabgabY I1 and QI1

s = 1
7

(
6
I1 +

42
L2

)−1
1
ω7

∫
S7 Qab∇(a∇b)Y I1 . Similarly, inserting (2.7) into

(μνρ) component of (2.3) and projecting on Y I1 , we obtain
the following equation3

2

3
∇σ ∇[σ tλI1εμνρ]λ+ 
I1

3! εμνρ
σ t I1σ − 3

L
εσμνρ∇σ

(
hI1 +φ I1

)

− 24

L
∇σ hI1

λ[σ εμνρ]λ + P I1
μνρ = 0, (2.13)

where P I1
μνρ = 1

ω7

∫
S7 PμνρY I1 . Applying ε

μνρ

μ′ ∇ν′ to (2.13),
we obtain

− 18


I1
∇μ∇ν(−hI1 + φ I1) − L∇ν t

I1
μ − L


I1
∇μ∇ν∇ρ t I1ρ

+ Q̃ I1
μν = 0, (2.14)

2 See [16] for the zeroth mode results.
3 More equations can be obtained by projecting the (μνa, μab, abc)
components of (2.4) on appropriate spherical harmonic elements, how-
ever those equations are not required for our purpose here. See [16] for
the full list of equations.

where Q̃ I1
μν = − L


I1
ε

ρσλ
μ ∇ν P

I1
ρσλ. The trace of the above

equation gives

18

L
�(−hI1 + φ I1) + (� + 
I1)∇ρ t I1ρ + QI1

ψ = 0, (2.15)

where QI1
ψ = −
I1gμν Q̃ I1

μν .

2.2 Quadratic order equations for KK modes

The quadratic order equations we listed in the previous sub-
section lead to the quadratic order equations of motions for
various 4-dimensional gauge invariant KK modes. In general,
the 4-dimensional gravity spectrum, which is obtained from
the KK reduction of the 11-dimensional gravity, is composed
of three towers of scalar modes, two towers of pseudoscalar
modes, two towers of vector modes, one tower of pseudovec-
tor modes, and one tower of spin-two modes [9,10]. Here,
we follow the gauge choice of the LLM solutions in which
hμa and fμνab are zero and as a result some of the KK towers
are absent. In addition, in this paper, we are interested in the
gravity field which is dual to the CPO of conformal dimen-
sion � = 2 in the mABJM theory. Such dual gravity field is
a part of the three KK towers of scalar modes with I1 = 4.
Therefore, from now on we focus on the equations of motion
for the KK modes with I1 = 4.

Setting I1 = 4 in (2.8)–(2.15) and rearranging the equa-
tions, we obtain the following set of equations,

�ĥ4
μν = 32

L2 ĥ
4
μν + 1

20
∇μ∇νψ̂

4 − 9

10
∇μ∇ν φ̂

4 − 4

3L2 gμνψ̂
4

− 40

7L2 gμνφ̂
4 + ∇μQ

4
ν + ∇νQ

4
μ

+ L2

40
∇μ∇νQ

4
s − 2

9
gμν

(
Q4

h + Q4
φ − 9

10
Q4

s

)

− 1

L2 (Q̃4
μν + Q̃4

νμ) + 2Q4
μν, (2.16)

Ĵ 4
μν = − L2

40
∇μ∇νψ̂

4 + 9L2

20
∇μ∇ν φ̂

4 + 1

2
(Q̃4

μν + Q̃4
νμ),

(2.17)

�φ̂4 = 28

L2 φ̂4 + 14

3L2 ψ̂4 − 14

9
Q4

h + 4

9
Q4

φ − Q4
s , (2.18)

�ψ̂4 = 124

L2 ψ̂4 + 7128

7L2 φ̂4 − 28Q4
h + 8Q4

φ + Q4
ψ, (2.19)

where we have introduced uI1
μν ≡ L

2 (∇μt
I1
ν + ∇ν t

I1
μ ), uI1 ≡

gμνuI1
μν , and the following gauge invariant combinations,

ĥ I1
μν ≡ hI1

μν + ∇μ∇νS
I1 , Ĵ I1

μν ≡ uI1
μν + 18∇μ∇νS

I1 ,

φ̂ I1 ≡ φ I1 − 
I1s I1 , ψ̂ I1 ≡ 18hI1 − uI1 . (2.20)

123
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2.2.1 Spin-zero field equations

The equations of motion for spin-zero mass eigenstates are
given by the linear combinations of (2.18) and (2.19). Intro-
ducing the mass eigenstates

φ̌4 = 297

49
φ̂4 + 11

14
ψ̂4, ψ̌4 = −297

49
φ̂4 + 3

14
ψ̂4,

(2.21)

and combining (2.18) and (2.19), we obtain the following
diagonalized equations

(
� + 8

L2

)
ψ̌4 − 24

7
Q4

h + 48

49
Q4

φ − 3

14
Q4

ψ + 297

49
Q4

s = 0,

(
�− 160

L2

)
φ̌4+ 220

7
Q4

h− 440

49
Q4

φ− 11

14
Q4

ψ − 297

49
Q4

s = 0.

(2.22)

All the quadratic terms in the above equations are com-
posed of the expressions which are quadratic in the fields
hI1

μν, t
I1
μ , hI1 , φ I1 , uI1 , s I1 , t I35 and their derivatives, with

infinite summations over I1 and I35. The LLM solution solves
the 11-dimensional equations of motion order by order in
the mass parameter μ0 of the LLM geometries [9,10,16]. In
the above equations of motion, we have kept only up to the
quadratic terms in the fluctuations and they are expected to
be solved by the LLM solution only up to quadratic order
in μ0. On the other hand, except for the modes with I1 = 2
and I35 = 1, the asymptotic expansions of the other modes
are non-linear in the expansion parameter μ0. Thus, the rel-
evant quadratic terms in the above equations are built only
by the modes with I1 = 2 and I35 = 1. In addition, we note
that for the spherical harmonics on S7 with SO(4) × SO(4)

symmetry, (see [9,10])

∫

S7
Y 4Y 1

abc g
aa′

gbb
′
gcc

′
Y 1
a′b′c′ = 0,

∫

S7
∇a∇bY 4Y 1

acd gcc
′
gdd

′
Y 1
bc′d ′ = 0. (2.23)

The LLM solutions depend only on such spherical harmon-
ics. In that case, the terms involving t I35=1 are also absent and
the quadratic terms depend only on h2

μν, t
2
μ, h2, φ2, u2, s2

and their derivatives. Combining the four scalar fields
h2, φ2, u2, s2, we obtain two gauge invariant physical mode,
φ̌2 = 9

70 (7ψ̂2 + 18φ̂2), ψ̌2 = 1
70 (7ψ̂2 − 162φ̂2), which

are mass eigenstates. The other potentially relevant gauge
invariant physical mode is the second KK massive graviton
mode, which is given by

ȟ2
(μν) = ĥ2

(μν)−
1

4
Ĵ 2
(μν)+

15L2

112
∇(μ∇ν)φ̂

2− L2

96
∇(μ∇ν)ψ̂

2.

(2.24)

In general, our quadratic terms depend on the two physical
scalar modes (φ̌2, ψ̌2) and the second KK massive graviton
mode ȟ2

(μν). However, the leading order terms in the asymp-

totic expansions of ȟ2
(μν) and φ̌2 are μ3

0-order, and they are
irrelevant for quadratic order equations. As a result, the oth-
erwise very complex quadratic terms are composed of only
ψ̌2, and are given by

Q4
h = − 1

41472
√

10L2

(
41216ψ̌2ψ̌2

+ 2560L2∇ρψ̌2∇ρψ̌2 + 88L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

− ∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2

)
,

Q4
φ = − 1

82944
√

10L2

(
126080ψ̌2ψ̌2

+ 12736L2∇ρψ̌2∇ρψ̌2 − 32L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

− 7L6∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2

)
,

Q4
s = − 5

1944
√

10L2

(
120ψ̌2ψ̌2 + 8L2∇ρψ̌2∇ρψ̌2

+ L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2
)

,

Q4
ψ = − 1

576
√

10L2

(
3584ψ̌2ψ̌2 + 416L2∇ρψ̌2∇ρψ̌2

− 80L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2
)

+ L6∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2,

Q4
μν = − 1

41472
√

10L2

[
1

2
gμν

(
22400ψ̌2ψ̌2

+ 1600L2∇ρψ̌2∇ρψ̌2 + 48L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

− L4∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2

)

+ 320∇μψ̌2∇νψ̌
2 + 448L2ψ̌2∇μ∇νψ̌

2

+ 48L4∇ρψ̌2∇μ∇ν∇ρψ̌2 − 8L6∇μ∇ρψ̌2∇ν∇ρψ̌2

+ L6∇μ∇ρ∇σ ψ̌2∇ν∇ρ∇σ ψ̌2
]
,

Q4
μ = 1

41472
√

10

(
1568ψ̌2∇μψ̌2 + 24L2∇ρψ̌2∇μ∇ρψ̌2

+ L4∇ρ∇σ ψ̌2∇μ∇ρ∇σ ψ̌2
)

,

Q̃4
μν = L2

23040
√

10

(
384∇μψ̌2∇νψ̌

2 + 40L2∇μ∇ρψ̌2∇ν

× ∇ρψ̌2 − L4∇μ∇ρ∇σ ψ̌2∇ν∇ρ∇σ ψ̌2

+ 384ψ̌2∇μ∇νψ̌
2 + 40L2∇ρψ̌2∇μ∇ν∇ρψ̌2

− L4∇ρ∇σ ψ̌2∇μ∇ν∇ρ∇σ ψ̌2
)

. (2.25)
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Inserting these quadratic terms into (2.22), we obtain

(
� + 8

L2

)
ψ̌4 + 1

8064
√

10L2

(
11136ψ̌2ψ̌2

+ 736L2∇ρψ̌2∇ρψ̌2 − 304L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

+ 3L6∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2

)
= 0,

(
� − 160

L2

)
φ̌4 + 11

8064
√

10L2

(
− 7936ψ̌2ψ̌2

+ 96L2∇ρψ̌2∇ρψ̌2 − 120L4∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

+ L6∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2

)
= 0. (2.26)

This shows that the usual compactification of the 11-
dimensional supergravity on S7 results in the field equations
which contain higher derivative terms. In order to obtain
the canonical 4-dimensional gravity equations of motion, we
need to introduce some field redefinitions to absorb those
higher derivative terms [11,14–16]. For instance, for some
scalar KK mode whose equation of motion contains up to
four derivatives, the field redefinition is of the form

SI = s I + KI J1 J2 t
J1 t J2 + L I J1 J2∇μt

J1∇μt J2 , (2.27)

where KI J1 J2 , L I J1 J2 are some numerical coefficients, s I

represent a gauge invariant 11-dimensional field and SI is
the corresponding 4-dimensional field. The t Ji ’s represent the
gauge invariant 11-dimensional fields that appear in higher
derivative part of the equations of motion of s I . In Sect. 5,
we will use the asymptotic expansion of the 4-dimensional
field SI to read the vev of the dual operator. Then, the non-
linearity of the field redefinition (2.27) shows that the vev
gets contributions from terms which are non-linear in the
11-dimensional fields.

The 4-dimensional gravity equations of motion should
read as follows,

(
� + 8

L2

)
4 + α22 = 0,

(
� − 160

L2

)
�4 + β22 = 0, (2.28)

where 2 ≡ ψ̌2. Since the equations in (2.26) contain the
terms with up to sextic derivatives, the field redefinitions
absorbing those sextic derivatives should contain terms with
up to quartic derivatives

4 = ψ̌4 + A1ψ̌
2ψ̌2 + A2∇ρψ̌2∇ρψ̌2

+ A3∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2,

�4 = φ̌4 + B1ψ̌
2ψ̌2 + B2∇ρψ̌2∇ρψ̌2

+ B3∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2. (2.29)

Insertion of (2.29) into (2.28) and comparison with (2.26)
fix the unknown coefficients in (2.28)–(2.29) as

A1 = − 25

168
√

10
, A2 = − 7L2

576
√

10
,

A3 = L4

5376
√

10
, α = 0,

B1 = 11

168
√

10
, B2 =0, B3 = 11L4

5376
√

10
, β = 0.

(2.30)

The field redefinition of the type (2.29) is usually called the
KK map between the 11-dimensional fields (ψ̌4, φ̌4) and the
4-dimensional fields (4,�4).

2.2.2 Spin-two field equations

The equation of motion for the fourth KK massive graviton
mode is a linear combinations of the Eqs. (2.16)–(2.19). Let
us define the spin-two mass eigenstate as

ȟ4
μν = ĥ4

μν + a1 Ĵ
4
μν + a2∇μ∇νφ̂

4 + a3∇μ∇νψ̂
4

+ gμν(cφ̂
4 + dψ̂4)

= ĥ4
μν + a∇μ∇νφ̂

4 + b∇μ∇νψ̂
4 + gμν(cφ̂

4 + dψ̂4),

(2.31)

where in the second line, we have used the algebraic equa-
tion (2.17) to eliminate Ĵ 4

μν up to a redundant quadratic
term, which we omit from the definition. Organizing the Eqs.
(2.16)–(2.19) according to this definition and setting

a = −17L2

1120
, b = L2

2880
, c = 11

56
, d = 1

144
,

(2.32)

we obtain the diagonalized equation for the mass eigenstate

(
� − 32

L2

)
ȟ4

μν −
[
∇μQ

4
ν + ∇νQ

4
μ + L2

72
∇μ∇ν

×
(
Q4

h + 99

140
Q4

s − 2

7
Q4

φ + 1

40
Q4

ψ

)

− gμν

(11

18
Q4

h − 11

40
Q4

s + 1

9
Q4

φ − 7

720
Q4

ψ

)

− 2

L2 Q̃
4
μν + 2Q4

μν

]
= 0. (2.33)

Inserting the quadratic terms in (2.25) into this equation, we
rewrite (2.33) as
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(
� − 32

L2

)
ȟ4

μν − 1

1080
√

10

×
[

2gμν

( 49

L2 ψ̌2ψ̌2 + 137

72
∇ρψ̌2∇ρψ̌2

+ 115L2

288
∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

− 7L4

768
∇ρ∇σ ∇λψ̌

2∇ρ∇σ ∇λψ̌2
)

+ ∇μψ̌2∇νψ̌
2

+ 17

3
ψ̌2∇μ∇νψ̌

2 − 259L2

72
∇μ∇ρψ̌2∇ν∇ρψ̌2

− 469L2

72
∇ρψ̌2∇μ∇ν∇ρψ̌2

+ 11L4

144
∇μ∇ρ∇σ ψ̌2∇ν∇ρ∇σ ψ̌2

+ 37L4

288
∇ρ∇σ ψ̌2∇μ∇ν∇ρ∇σ ψ̌2

− L6

768
∇μ∇ρ∇σ ∇λψ̌

2∇ν∇ρ∇σ ∇λψ̌2

− L6

768
∇ρ∇σ ∇λψ̌

2∇μ∇ν∇ρ∇σ ∇λψ̌2
]

= 0. (2.34)

This spin-two field equation contains the terms with up to
octic derivatives. In order to absorb these higher derivative
terms, we need to introduce another field redefinition with
up to sextic derivatives as follows

H4
μν = ȟ4

μν + gμν

(
C̃0ψ̌

2ψ̌2 + C̃1∇ρψ̌2∇ρψ̌2

+ C̃2∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

+ C̃3∇ρ∇σ ∇λψ̌
2∇ρ∇σ ∇λψ̌2

)

+ C1∇μψ̌2∇νψ̌
2 + D1ψ̌

2∇μ∇νψ̌
2

+ C2∇μ∇ρψ̌2∇ν∇ρψ̌2 + D2∇ρψ̌2∇μ∇ν∇ρψ̌2

+ C3∇μ∇ρ∇σ ψ̌2∇ν∇ρ∇σ ψ̌2

+ D3∇ρ∇σ ψ̌2∇μ∇ν∇ρ∇σ ψ̌2. (2.35)

Then the equation of motion of the spin-two field H4
μν should

read

(
� − 32

L2

)
H4

μν + gμν

(
α0

22 + α1∇ρ2∇ρ2)

+ β1∇μ2∇ν
2 + β2

2∇μ∇ν
2 = 0. (2.36)

Inserting (2.35) into (2.36) and comparing with (2.34), we
determine the unknown coefficients as

D3 = L6

1658880
√

10
, C3 = L6

1658880
√

10
, C̃3 = 0,

D2 = − L4

62208
√

10
, C2 = L4

124416
√

10
,

C̃2 = L4

165888
√

10
, D1 = 103L2

51840
√

10
,

C1 = 113L2

51840
√

10
, C̃1 = L2

7776
√

10
,

C̃0 = −7
√

10 + 5184α1

10368
,

β1 = 1

6
√

10
, β2 = 1

6
√

10
, α0 = −4

√
10 + 3240α1

135L2 ,

(2.37)

and then write

(
� − 32

L2

)
H4

μν

+ gμν

(
4
√

10 + 3240α1

135L2 22 + α1∇ρ2∇ρ2
)

+ 1

6
√

10

(
∇μ2∇ν

2 + 2∇μ∇ν
2
)

= 0. (2.38)

The asymptotic expansion of the LLM solution satisfies this
equation up to quadratic order in the mass parameter, inde-
pendent of the value of the constant α1. Since this constant
plays no physical role, we can set it to zero and write

H4
μν = ȟ4

μν + 1

51840
√

10

×
[

− 10gμν

(
35ψ̌2ψ̌2 − 2L2

3
∇ρψ̌2∇ρ

× ψ̌2 − L4

32
∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

)

+ 113L2∇μψ̌2∇νψ̌
2 + 103L2ψ̌2∇μ∇νψ̌

2

+ 5L4

12
∇μ∇ρψ̌2∇ν∇ρψ̌2 − 5L4

6
∇ρψ̌2∇μ∇ν∇ρψ̌2

+ L6

32
∇μ∇ρ∇σ ψ̌2∇ν∇ρ∇σ ψ̌2

+ L6

32
∇ρ∇σ ψ̌2∇μ∇ν∇ρ∇σ ψ̌2

]
. (2.39)

The equation of motion for the fourth traceless KK gravi-
ton mode is the traceless part of (2.38) and is given by

(
� − 32

L2

)
H4

(μν) + 1

6
√

10(
∇(μ2∇ν)

2 + 2∇(μ∇ν)
2
)

= 0, (2.40)
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where

H4
(μν) = H4

μν − 1

4
gμνg

ρσ H4
ρσ

= ȟ4
(μν) + 1

1080
√

10

[
1

72
gμν

(
303ψ̌2ψ̌2 − 389L2

8

× ∇ρψ̌2∇ρψ̌2 + 5L4

16
∇ρ∇σ ψ̌2∇ρ∇σ ψ̌2

− 3L6

256
∇ρ∇σ ∇λψ̌

2∇ρ∇σ ∇λψ̌2
)

+ 113L2∇μψ̌2∇νψ̌
2 + 103L2ψ̌2∇μ∇νψ̌

2

+ 5L4

12
∇μ∇ρψ̌2∇ν∇ρψ̌2 − 5L4

6
∇ρψ̌2∇μ∇ν∇ρψ̌2

+ L6

32
∇μ∇ρ∇σ ψ̌2∇ν∇ρ∇σ ψ̌2

+ L6

32
∇ρ∇σ ψ̌2∇μ∇ν∇ρ∇σ ψ̌2

]
. (2.41)

The last equation is the KK map for the fourth KK graviton
mode in quadratic order in the mass parameter. The non-
linear KK maps for the scalar and tensor modes given in
(2.29) and (2.41), respectively, are crucial in holographic
determination of the vevs of gauge invariant operators, which
are dual to these KK modes. See Sect. 4.

3 Gauge invariant operators and Vevs in mABJM
theory

In the previous section, we defined the physical modes in
4-dimensions using various non-linear KK maps including
higher derivatives. These physical modes have corresponding
operators by the gauge/gravity dictionary. In this section, we
discuss possible operators with conformal dimension � = 2
in the ABJM theory and read the vevs of those operators in
the large N limit from the vacua of the mABJM theory.

3.1 Vacua in the mABJM theory

The mass term in the mABJM theory breaks the SU(4) global
symmetry of the ABJM theory to SU(2) × SU(2) × U(1).
According to the reduced global symmetry, we split the
four-complex scalar fields in the ABJM theory as Y A =
(Za,W †a), where A = 1, 2, 3, 4 and a, b = 1, 2. Accord-
ingly, the vacuum equation in the mABJM theory is written
as

Za Z†
b Z

b − ZbZ†
b Z

a = −μk

2π
Za,

W †aWbW
†b − W †bWbW

†a = μk

2π
W †a,

WaZ
bWb − WbZ

bWa = 0, ZbWbZ
a − ZaWbZ

b = 0,

(3.1)

where μ is a mass parameter. The solutions of those vac-
uum equations have been obtained in [5] and are presented
by a direct sums of two types of irreducible n × (n + 1)

matrices M(n)
a (a = 1, 2) and their Hermitian conjugates,

M̄(n)
a . These rectangular matrices are referred as the GRVV

matrices,

M(n)
1 =

⎛
⎜⎜⎜⎜⎜⎝

√
n 0√

n − 1 0
. . .

. . .√
2 0

1 0

⎞
⎟⎟⎟⎟⎟⎠

,

M(n)
2 =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0

√
2

. . .
. . .

0
√
n − 1
0

√
n

⎞
⎟⎟⎟⎟⎟⎠

, (3.2)

where n = 0, 1, . . . , N − 1. The vacuum solutions are given
by

Za
0 =

√
μk

2π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(n1)
a

. . .

M(ni )
a

0(ni+1+1)×ni+1

. . .

0(n f +1)×n f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W †a
0 =

√
μk

2π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n1×(n1+1)

. . .

0ni×(ni+1)

M̄(ni+1)
a

. . .

M̄(n f )
a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.3)

A given vacuum solution contains Nn rectangular matrices
of the type M(n)

a and N ′
n rectangular matrices of the type

M̄(n)
a . The set of parameters {Nn, N ′

n} completely specifies
a vacuum solution and they are called occupation numbers [8,
17]. Since Za and W †a are N × N matrices, the occupation
numbers should satisfy the two constraints,

N =
N−1∑
n=0

[(
n + 1

2

) (
Nn + N ′

n

) ]
,

∞∑
n=0

Nn =
∞∑
n=0

N ′
n .

(3.4)

At quantum level, some of vacuum solutions are not super-
symmetric and only a subset of these classical solutions sat-
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isfying the conditions, 0 ≤ Nn and N ′
n ≤ k, remain to be

supersymmetric [17].

3.2 Gauge invariant operators in the ABJM theory

In general, the CPOs of conformal dimension � in the
mABJM theory are given by a trace of products of the four
complex scalar fields Y A and their Hermitian conjugates Y †

A,

O(�) = CB1···B�

A1···A�
Tr

(
Y A1Y †

B1
· · · Y A�Y †

B�

)
. (3.5)

These CPOs are dual to the KK scalar modes  I1 with mass
M2

 I1
= I1(I1−6)

L2 and conformal dimensions � = I1
2 , {I1 =

2, 4, 6, . . .} [9,10]. The dual gauge invariant operators for the
other KK towers of scalar modes are the descendent of these
CPOs, which are obtained by applying the supersymmetry
generators of the N = 6 mABJM theory to O(�). In partic-
ular, the gauge invariant operators dual to the scalar modes
�I1 are obtained by applying six supersymmetry generators
to the CPO and thus they are given by

O(�)
6 = C (6)b1b2b3B1···B�−6

a1a2a3A1···A�−6
STr

(
ψ†a1ψb1ψ

†a2ψb2ψ
†a3

× ψb3Y
A1Y †

B1
· · · Y A�−6Y †

B�−6

)
, (3.6)

where ψ†a with a = 1, 2, 3, 4 are the four complex fermionic
fields of the ABJM theory and STr denotes symmetrized
trace. According to the relations between the mass of the
scalar fields and the conformal dimension of the dual opera-
tors listed in [9,10], the masses of the KK scalar modes �I1

are M2
�I1

= (I1+12)(I1+6)

L2 and their conformal dimensions

are � = I1+12
2 , {I1 = 0, 2, 4, . . .}. Therefore, the gauge

invariant operator dual to the scalar mode �4 is

O(�=8)
6 = C (6)b1b2b3B1B2

a1a2a3A1A2
STr

(
ψ†a1ψb1ψ

†a2ψb2

× ψ†a3ψb3Y
A1Y †

B1
Y A2Y †

B2

)
, (3.7)

whereas the scalar field 4 is dual to the CPO,

O(�=2) = CB1B2
A1A2

Tr
(
Y A1Y †

B1
Y A2Y †

B2

)
. (3.8)

In our previous paper, we defined the CPO with � = 1,
which reflects the global SU(2)×SU(2)×U(1) symmetry of
the mABJM theory. The form of the CPO is given by

O(�=1) = N1Tr
(
Y 1Y †

1 + Y 2Y †
2 − Y 3Y †

3 − Y 4Y †
4

)
, (3.9)

whereN1 is the normalization factor. The procedure to deter-
mine the form of the O(�=1) was explained in the Appendix
A.4 of [9,10]. However, we fix the normalization factor N1

in a different way, which matches the GKP-W relation [2,3]

in the gauge/gravity dictionary. We will explain the details
later.

In this section, we consider the CPO with � = 2, which
reflects the global SU(2)×SU(2)×U(1) symmetry of the
mABJM theory. Using a similar procedure as in the Appendix
A.4 of [9,10], we determine the relations among the constants
CB1B2

A1A2
in (3.8) and construct the CPO with � = 2 with the

global SU(2)×SU(2)×U(1) symmetry as4

O(�=2) = N2

⎡
⎣

2∑
A,B=1

Tr(Y AY †
AY

BY †
B)

+
2∑

A,B=1

Tr(Y AY †
BY

BY †
A)

+
4∑

A,B=3

Tr(Y AY †
AY

BY †
B)+

4∑
A,B=3

Tr(Y AY †
BY

BY †
A)

− 3
2∑

A=1

4∑
B=3

Tr(Y AY †
AY

BY †
B)

−3
2∑

A=1

4∑
B=3

Tr(Y AY †
BY

BY †
A)

]
. (3.10)

where N2 is the normalization factor. We will fix the normal-
ization factor later by use of the GKP-W relation.

In order to obtain the vevs of the above CPOs, we expand
the complex scalar fields near the vacuum as

Y A = Y A
0 + Ŷ A, (3.11)

where Y A
0 ’s denote the discrete Higgs vacua discussed above

and Ŷ A’s are the complex scalar operators representing fluc-
tuations around the vacua. Then the vev of a CPO in the
mABJM theory is given by [9,10]

〈O(�)〉m = O(�)
∣∣
Y A=Y A

0
+

∑
i

〈δO(�)
i 〉0 + O

(
1

N

)
, (3.12)

where 〈· · · 〉m and 〈· · · 〉0 denote the vevs of an operator in
the mABJM theory and the ABJM theory, respectively, and
δO(�)

i is an operator containing at least one Ŷ A or Ŷ †A. The
1
N -corrections come from the contributions of multi-trace
terms. The second term is a one point function in a confor-
mally symmetric ABJM theory and is vanishing. Therefore,
in the large N limit, we have

〈O(�)〉m = O(�)
∣∣
Y A=Y A

0
. (3.13)

4 See also the Appendix of the current paper for the details.
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We will display the explicit forms of the vevs for CPOs of
conformal dimensions � = 1 and � = 2 in Sect. 5.

4 Asymptotic behavior of LLM geometries and
4-dimensional KK modes

The metric for the LLM geometries with Zk orbifold, which
have SO(2,1)×SO(4)/Zk × SO(4)/Zk isometry [8,18], is
given by

ds2 = L2

4z2

[
dz2 + 4z2

L2

(
1 + g̃1(z, τ )

) (−dt2 + dw2
1 + dw2

2

)]

+ L2

4(1 − τ 2)

(
1 + g̃2(z, τ )

)
dτ 2

+ L2(1 + τ)

2

(
1 + g̃3(z, τ )

)
ds2

S3/Zk

+ L2(1 − τ)

2

(
1 + g̃4(z, τ )

)
ds2

S̃3/Zk
, (4.1)

where the g̃i (z, τ ) represent the deviation of the LLM metric
from the AdS4×S7 background. See [9,10] for details. Simi-
larly, the 4-form field strength of the LLM geometries can be
split into the background and the fluctuations. The values of
the various KK modes (hI1

μν, φ
I1 , . . .), introduced in Sect. 2,

are read from the asymptotic expansion of g̃i (z, τ ) and the
similar functions in 4-form field strength. In [9,10], we have
listed the full result for all the KK modes up to μ2

0 order.
As mentioned in the previous section, here we focus on the
equations of motion for the fourth KK scalar and graviton
modes. For the quadratic parts in the equations of motion
and in the KK maps discussed in the previous section, we
also need the asymptotic expansion of ψ̌2. Then we take the
following results for the 11-dimensional modes from [9,10]

ȟ4
i j =

[
−3L2μ2

0

4
√

10
β2

3 + O
(
μ4

0

)]
ηi j ,

ȟ4
zz = − L2μ2

0

4
√

10
β2

3 + O
(
μ4

0

)
,

ψ̌4 = −2
√

10(μ0z)2

35

(
3780β3

2 + 758β2
3 − 945β2β4

)

+ O
(
μ4

0

)
,

φ̌4 = −44
√

10(μ0z)2

7
β2

3 + O
(
μ4

0

)
,

ψ̌2 = −24β3μ0z + O(μ3
0), (4.2)

where ηi j = diag(−1, 1, 1) and

β2 = C2 − C2
1 , β3 = C3 − 3C1C2 + 2C3

1 ,

β4 = C4 + 3C2
2 − 4C1C3. (4.3)

The parameters Cp were introduced in [19–21],

Cp =
∞∑
i=1

(−1)i+1

(
x̃i

2πl3Pμ0
√
A

)p

, (4.4)

where A is defined by

A = kN − 1

2

∞∑
n=0

[
ln(k − ln) + l ′n(k − l ′n)

]
(4.5)

with the discrete torsions (ln, l ′n) introduced in [8]. In the
Young diagram representation of the LLM solutions, A
means the area of the Young diagram [9,10].

In the previous section, we have established the KK maps
which relate the above 11-dimensional KK modes to the
corresponding canonical 4-dimensional gravity fields. These
maps are given in (2.29) and (2.41). These maps express the
asymptotic expansions of the fourth KK scalar and graviton
modes as follows

�4 = O
(
(μ0z)

4
)
,

4 = −54
√

10(4β3
2 + β2

3 − β2β4)(μ0z)
2 + O

(
(μ0z)

4
)

H4
(i j) = L2

4z2

[
− 4(μ0z)2

√
10

β2
3 + O

(
(zμ0)

4
)]

ηi j ,

H4
(zz) = L2

4z2

[
12(μ0z)2

√
10

β2
3 + O

(
(μ0z)

4
)]

. (4.6)

For clarity of presentation, we also rewrite the similar results
for the zeroth and second KK graviton modes obtained in [16]
and [9,10], respectively,

H0
i j = L2

4z2

[
− (μ0z)2

45

(
30 + β2

3

)
+ O

(
(μ0z)

4
)]

ηi j ,

H0
zz = L2

4z2

[
− (μ0z)2

360

(
960 + 29β2

3

)
+ O

(
(μ0z)

4
)]

,

H2
μν = L2

4z2

[
0 + O

(
(μ0z)

3
)]

. (4.7)

The Fefferman–Graham (FG) coordinate system is more
convenient for the implementation of the gauge/gravity dic-
tionary. Therefore, we write the asymptotically AdS4 4-
dimensional metric

(
ĝμν = gAdS4

μν + H0
μν

)
in the FG coor-

dinate by using the coordinate transformation z = z̃ +
μ2

0(960+29β2
3 )

1440 z̃3,

ds2 = L2

4z̃2

[
dz̃2 +

(
1 −

(
2 + β2

3

16

)
(μ0 z̃)

2

+O
(
(μ0 z̃)

4
))

ηi j dx
i dx j

]
. (4.8)
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Since all the terms in (4.6) are already at least quadratic in μ0,
the above coordinate transformation only amounts to replacing
z by z̃ in those terms.

As mentioned in the previous section, the scalar field 4

with M2
4 = I (I−6)

L2

∣∣
I=4 is dual to a CPO of conformal dimen-

sion � = I
2

∣∣
I=4 = 2 while the scalar field �4 with M2

�4 =
(I+12)(I+6)

L2

∣∣
I=4 is dual to a gauge invariant operator with con-

formal dimension � = I+12
2

∣∣
I=4 = 8. The GKP-W relation

states that the vev of a CPO (O�) of conformal dimension � is
determined by the coefficient of z� in the asymptotic expansion
of the dual scalar field. Thus the vev of the CPO in terms of the
holographic renormalizaton [22–31] is given by

〈O�=2〉HR = −54N
√

10μ2
0(4β3

2 + β2
3 − β2β4), (4.9)

where N is some normalization factor to be fixed later.
Similarly, the gauge/gravity dictionary maps the metric to

the stress-energy tensor Ti j of the dual gauge theory. Writing
the (d + 1)-dimensional metric in the FG coordinate

ds2 = L2
AdS

z̃2

[
dz̃2 + gi j (x, z̃)dx

i dx j
]

(4.10)

with the asymptotic expansion of the function gi j (x, z̃) given by

gi j (x, z̃) = g(0)i j (x) + z̃2g(2)i j (x) + · · · + z̃d g(d)i j (x) + · · · ,

(4.11)

then the vev of the stress-energy tensor is given by [22–25]

〈Ti j 〉HR = dLd−1
AdS

16πGN
g(d)i j . (4.12)

From (4.8) we read that the asymptotic expansion does not con-
tain the z̃3 term with d = 3 in (4.12), which implies that the vev
of the stress-energy tensor of the mABJM theory is vanishing
as required by the supersymmetry of the theory.

The non-zero KK graviton modes H2
μν and H4

μν are dual to
the operators

T (2)
i j = CB

ASTr
(
Ti j Y

AY †
B

)
,

T (4)
i j = CBB′

AA′ STr
(
Ti j Y

AY †
BY

A′
Y †
B′
)
, (4.13)

respectively. The vevs of these operators are given by

〈T (2)
i j 〉HR = N2 g

(2)
(d−1)i j , 〈T (4)

i j 〉HR = N4 g
(4)
(d)i j , (4.14)

where g(2)
(d−1)i j is the coefficient of z̃d−1=2 in the expansion of

H2
i j and g(4)

(d)i j is the coefficient of z̃d=3 in the expansion of H4
i j .

From (4.6) and (4.7), we see that the expansion of H2
i j contains

only odd powers of z̃ whereas the expansion of H4
i j contains

only even powers of z̃. Therefore, the vevs of both T (2)
i j and

T (4)
i j are vanishing.

5 Vevs of CPOs and GKP-W relation

In our previous work [16], we have constructed the 4-dimensional
gravity action with two scalar fields, T and (1), after the KK
reduction from the 11-dimensional supergravity. The field T is
dual to a gauge invariant operator, Õ(2) = C̃ B

ATr
(
ψ†AψB

)
with

� = 2 and the field (1) is dual to the CPO (3.9).
In this section, we focus on the GKP-W relation for the CPOs

with � = 1, 2. For that purpose, we consider the 4-dimensional
gravity action with two scalar fields, (1) and (2),

S = 1

16πG4

∫
d4x

√−g
(
R̂ − 2


)

−
2∑

i=1

[
A(i)

2

∫
d4x

√−g
(
∂μ(i)∂

μ(i) + M2
(i)

2
(i)

)]

= N 2

3
√

2π2λL2

∫
d4x

√−g

×
[
R̂ − 2
 − 1

2

2∑
i=1

(
∂μ̃(i)∂

μ̃(i) + M2
̃(i)

̃2
(i)

)]
,

(5.1)

where

1

16πG4
= N 2

3
√

2π2λL2
(5.2)

with the ’t Hooft coupling λ = N/k in the ABJM theory [6]. In
order to obtain the normalization which is consistent with the
GKP-W relation in the literature, we rescaled the scalar fields
as

̃(i) =
√

16πG4A(i) (i). (5.3)

Solutions for the rescaled fields are read from the asymptotic
expansion of the LLM geometries,

̃(1) = − 1√
2
β3μ0z + O(μ3

0),

̃(2) = − 1√
2

(4β3
2 + β2

3 − β2β4)(μ0z)
2 + O(μ4

0), (5.4)

where we set the scaling factor in (5.3) as
√

16πG4A(1)
=

1
24

√
2

by reading the value of A(1)
from the equation of motion

of H0
μν at μ2

0 order obtained in [16]. However, the scaling factor√
16πG4A(2)

in (5.3) cannot be fixed without the information
for the equation of motion of H0

μν at μ4
0-order. Since we do

not have the equation of motion of H0
μν up to μ4

0-order, we

choose this scaling factor as
√

16πG4A(2)
= 1

108
√

5
for later

convenience.
As we mentioned in Sect. 4, the GKP-W relation imply, for

odd dimensional QFT, the vev of a gauge invariant operator
with conformal dimension � is obtained from the holographic
renormalization procedure [22–31] in the large N limit,
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Fig. 1 a Symmetric droplet
representation of the LLM
geometry, where the number of
black strip is one, the length of it
is a, and k = a

n with integer n. b
Young diagram corresponding
to the droplet picture (a)

(a) (b)

〈O(�)〉HR = N 2

3
√

2π2λ
(2� − d) ψ̃

(i)
� , (5.5)

where ψ̃
(i)
� is the coefficient of z� in the asymptotic expansion of

the field ̃(i). Inserting the solutions (5.4) into (5.5), we obtain

〈O(�=1)〉HR = − N 2

3
√

2π2λ
ψ̃

(1)
1 = N 2β3μ0

6π
√

λ
,

〈O(�=2)〉HR = N 2

3
√

2π2λ
ψ̃

(2)
2 =− N 2

6π
√

λ

(
4β3

2 +β2
3 −β2β4

)
μ2

0.

(5.6)

The normalization factors N1,2 of the CPOs defined in (3.9) and
(3.10) are determined from (5.6).5 For the CPO of conformal
dimension � = 1, the vev (3.13) of the mABJM theory in the
large N limit can be read as [9,10]

〈O(�=1)〉m = N1Tr
(
Y 1Y †

1 + Y 2Y †
2 − Y 3Y †

3 − Y 4Y †
4

) ∣∣∣
Y A=Y A

0

= 2N1N 2β3μ0

3π
√

λ
, (5.7)

where 〈· · · 〉m represents the vev of an operator in the mABJM
theory. Comparing the vev in terms of the holographic renormal-
ization in (5.6) with that of the mABJM theory in (5.7), we fix
the normalization factor of O(1) as N1 = 1

4 . Thus the definition

5 As we see in (5.1), we used the overall normalization 1/(16πG4)

defined in (5.2) for the scalar field action. Due this normalizaton, one
can drive the GKP-W relation in (5.5). However, there exists still an
ambiguity in the definition of the one-point function, which comes from
the definition of the source term in the generating functional of the n-
point functions. In order to fix this ambiguity denoted as N1,2 in our
case, one has to compare the values of the one point functions in the field
theory and those in the supergravity. For the detailed discussion for this
issue, for instance, see (5.19)–(5.21) in [11], where the normalization
factors were fixed from the values of two point correlation functions.

of O(1) in this paper has a factor of 1√
2

difference from that of
the previous paper [9,10,16].

In order to fix the normalization factor N2 in (3.10), we con-
sider a symmetric droplet case with k �= 1. The corresponding
droplet and Young diagram representations in the LLM geome-
tries are depicted in Fig.1. In this case, we set k = a

n , N = na,
and A = kN = a2. Then by fixing the coordinate of the Fermi
level as x̃2 = x̃F = 0,6 we obtain

C1 = C3 = 0, C2 = C4 = 2. (5.8)

Using these values in the second line of (5.6), we obtain

〈O(�=2)〉HR = − 2N 2

3π
√

λ
μ2

0. (5.9)

Now we try to calculate the corresponding vev in the field
theory side. For the symmetric droplet case, one can also assign
the discrete torsions as

(l0, l1, · · · , ln−1) =
(
a

n
,
a

n
, · · · ,

a

n

)
,

(l ′0, l ′1, · · · , l ′n−1) =
(
a

n
,
a

n
, · · · ,

a

n

)
. (5.10)

Other values of discrete torsions are vanishing. Identifying the
discrete torsions {ln, l ′n} with the occupation numbers of GRVV
matrices {Nn, N ′

n}, we calculate the vev of O(�=2) in (3.10) in
the large N limit,

〈O(�=2)〉m = 2kμ2
0N2N 2

π2 + O(N ), (5.11)

where we have used the relations

6 For the details of the droplet and Young diagram representations in
the LLM geometries, see [8–10].
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Fig. 2 Validity of the holographic renormalization for the CPO of con-
formal dimension � = 2 in the square-shaped Young diagram of the

LLM geometries at large N . The vertical axis is K (N ) = 〈O(�=2)〉m
〈O(�=2)〉HR

with N = 4, 9, 16, · · · , 225

Tr

(
4∑

A=1

Y AY †
AY

AY †
A

) ∣∣∣∣
Y A=Y A

0

= 4kμ2
0N

2

3π2 + O(N ),

Tr
(
Y 1Y †

1 Y
2Y †

2 + Y †
1 Y

1Y †
2 Y

2 + Y 3Y †
3 Y

4Y †
4

+Y †
3 Y

3Y †
4 Y

4
) ∣∣∣∣

Y A=Y A
0

= 2kμ2
0N

2

3π2 + O(N ). (5.12)

Other combinations of the traces in (3.10) are vanishing
due to the gauge choice of the vacuum solutions in [5]. Com-
paring the vev in the field theory side with that in gravity
theory side, we fix the normalization factor in (3.10) as

N2 = − π

3
√
kN

. (5.13)

We examine validity of the holographic renormalization (5.9)
at large N in Fig. 2. We expect that this normalization factor
can be used in the calculation ofn-point correlation functions.

In general the normalization factors of operators in the
gauge/gravity duality are fixed in terms of two point functions
in conformal field theory, by comparing the quantities in field
theory side and the corresponding ones in gravity side [11].
However, in our case the forms of operators (for instance, see
(3.10)) are too complicated, and so, it is a non-trivial problem
to calculate the corresponding two point function in gravity
side. It will be interesting if one can calculate the two point
function for O(�=2) in gravity side in the future and check
the validity of the normalization factor in (5.13), which was
fixed by the calculation of the one-point function.

6 Conclusion

In this paper, we obtained the vevs of gauge invariant opera-
tors up to μ2

0-order in terms of the holographic renormaliza-

tion in the mABJM theory. We found that the vevs of gauge
invariant operators are vanishing up toμ2

0-order expect for the
case of the CPOs with conformal dimension � = 1, 2. For
the latter cases, the vevs were obtained using the KK holog-
raphy in the large N limit. In order to show validity of the
holographic relation, we compared the vevs from the super-
symmetric vacua of the mABJM theory with those from the
LLM solutions. Our results for the CPO of conformal dimen-
sion � = 2 are limited to the cases of the LLM solutions,
which are represented by a square-shaped Young diagrams.
We showed that the vevs obtained from the mABJM theory
with an appropriate normalization of the CPO of conformal
dimension � = 2 approach those obtained from the holo-
graphic renormalization at large N .

The result we obtained in this paper is a further con-
firmation of the claim in [9,10] about duality between the
mABJM theory and the 11-dimensional supergravity on the
LLM geometry. However, in the present case the procedure
is highly non-trivial. In order to read the vevs of the CPO
of conformal dimension � = 2 from the asymptotic expan-
sion of the LLM solutions, we need to carry out the KK
reduction of the 11-dimensional supergravity and then con-
struct a 4-dimensional gravity on the asymptotic AdS4 back-
ground. Unlike the case of the CPO of conformal dimen-
sion � = 1, we need to establish the KK maps in the
quadratic order between the 4-dimensional fields and the 11-
dimensional fields. The KK maps include the non-trivial field
redefinitions, which are required to absorb higher derivative
terms and result in the canonical equations of motion for
the 4-dimensional fields. Identifying the 4-dimensional fields
obtained from the KK maps with the fluctuations obtained
from the asymptotic expansion of the LLM solutions, we
read the asymptotically AdS4 solutions in the 4-dimensional
equations of motion. We read the vevs of the CPO of con-
formal dimension � = 2 from those asymptotic solutions in
4-dimensions. We also confirm that the vevs of other gauge
invariant operators which are not CPO as well as those of the
massive KK graviton modes are vanishing.

In the previous work [9,10], we showed that the vevs of
O(�=1) for any LLM solutions in the holographic renormal-
ization method are exactly the same as those of the mABJM
theory in the large N limit, i.e., 〈O(�=1)〉HR = 〈O(�=1)〉m .
This result heavily depends on the fact that the curvature
in the asymptotic limit (μ0z � 1) becomes weak for any
LLM solutions [32]. Since the vev 〈O(�=1)〉HR is completely
determined by the asymptotic expansion of the LLM solu-
tions in μ0-order [9,10], one can expect that the relation
〈O(�=1)〉HR = 〈O(�=1)〉m in the large N limit is satisfied
for all LLM solutions. However, by increasing the μ0z-value
in the LLM geometry, we notice that some LLM geometries,
which include short edges in the Young diagram representa-
tion, become strongly curved even in the large N limit [32].
Therefore, in order to obtain the correct holographic rela-
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tion (� �= 1) for LLM geometries including strongly curved
regions, one needs quantum corrections from the gravity side
in the large N limit,

〈O(�)〉m = 〈O(�)〉HR + quantum corrections. (6.1)

In other words, the LLM geometries with square-shaped
Young diagrams do not include any short edges in the large
N limit and thus these geometries are weakly curved over
all transverse regions. For these LLM geometries, we expect
that the holographic relation (6.1) is satisfied without quan-
tum corrections in the gravity side. In this paper, we examined
validity of the vevs of O(�=2) in the holographic renormal-
ization for the square-shaped Young-diagrams in the LLM
geometries, and showed that 〈O(�=2)〉HR is approaching the
value of 〈O(�=2)〉m in the field theory side by increasing N .
This result matches our expectation. It is also intriguing to
examine the relation (6.1) for other Young diagrams in the
LLM geometries.
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Appendix

A C I1=4 and C(�=2)

In this Appendix, we determine the coefficientsC I1=4
i1···i4 which

define the fourth scalar spherical harmonics on S7 and the
coefficients CA1A2

B1B2
which defines the CPO of conformal

dimension � = 2. To that end, we start from the definition
of the fourth scalar spherical harmonics on S7,

Y 4 = 1

L4

8∑
i, j,k,l=1

Ci jkl x
i x j xk xl (A.1)

with the R
8 coordinates xi ’s which are restricted to S7 as

follows,

x1 = L
(1 + τ

2

) 1
2

cos
(θ

2

)
cos

(φ + ψ

2

)
,

x2 = L
(1 + τ

2

) 1
2

cos
(θ

2

)
sin

(φ + ψ

2

)
,

x3 = −L
(1 + τ

2

) 1
2

sin
(θ

2

)
sin

(φ − ψ

2

)
,

x4 = L
(1 + τ

2

) 1
2

sin
(θ

2

)
cos

(φ − ψ

2

)
,

x5 = L
(1 − τ

2

) 1
2

cos
( θ̃

2

)
cos

( φ̃ + ψ̃

2

)
,

x6 = L
(1 − τ

2

) 1
2

cos
( θ̃

2

)
sin

( φ̃ + ψ̃

2

)
,

x7 = −L
(1 − τ

2

) 1
2

sin
( θ̃

2

)
sin

( φ̃ − ψ̃

2

)
,

x8 = L
(1 − τ

2

) 1
2

sin
( θ̃

2

)
cos

( φ̃ − ψ̃

2

)
. (A.2)

The coefficients Ci jkl are traceless under the contraction of
any two indices and also are totally symmetric. Here we
are interested in the scalar spherical harmonics on S7 with
SO(4) × SO(4) symmetry,

Y 4 = Ñ4

(
1 − 5τ 2

)
, (A.3)

where Ñ4 is a normalization factor. Subsequently inserting
(A.2) into (A.1), using the tracelessness and the symmetric
conditions, and comparing with (A.3), we obtain

3C1133 = 3C1144 = C3333 = C1111 = 4Ñ4,

3C5577 = 3C5588 = C7777 = C5555 = 4Ñ4,

C1166 = C1177 = C1188 = C3355 = C3366

= C3377 = C3388 = C1155 = −2Ñ4,

the others = 0. (A.4)

In order to determine the coefficients CA1A2
B1B2

of the CPO
of conformal dimension � = 2, we need to rewrite the
scalar spherical harmonics in terms of C4 coordinates yA =
x2A−1 + i x2A as

Y 4 = 1

L4

4∑
A,B,C,D=1

C̃ABCD y
Ay†

B y
C y†

D, (A.5)

The coefficients C̃ABCD satisfy the same conditions as Ci jkl

and the values of the former are determined from the values
of the later as follows

C̃1111 = 3

8
C1111 + 3

4
C1122 + 3

8
C2222 = C1111 = 4Ñ4,

C̃2222 = 3

8
C3333 + 3

4
C3344 + 3

8
C4444 = C1111 = 4Ñ4,

C̃3333 = 3

8
C5555 + 3

4
C5566 + 3

8
C6666 = C1111 = 4Ñ4,
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C̃4444 = 3

8
C7777 + 3

4
C7788 + 3

8
C8888 = C1111 = 4Ñ4,

C̃1122 = C̃1221 = 3

4
(C1133 + C1144 + C2233 + C2244)

= C1111 = 4Ñ4,

C̃3344 = C̃3443 = 3

4
(C5577 + C5588 + C6677 + C6688)

= C1111 = 4Ñ4,

C̃1133 = C̃1441 = 3

4
(C1155 + C1166 + C2255 + C2266)

= −3

2
C1111 = −6Ñ4,

C̃1144 = C̃1441 = 3

4
(C1177 + C1188 + C2277 + C2288)

= −3

2
C1111 = −6Ñ4,

C̃2233 = C̃2332 = 3

4
(C3355 + C3366 + C4455 + C4466)

= −3

2
C1111 = −6Ñ4,

C̃2244 = C̃2442 = 3

4
(C3377 + C3388 + C4477 + C44488)

= −3

2
C1111 = −6Ñ4,

the others = 0. (A.6)

Finally, we identify the coefficients C̃ABCD with the coeffi-
cients CA1A2

B1B2
of the CPO and thus can write

O(�=2)

=
4∑

A,B,C,D=1

C̃ABCDTr(Y AY †B YCY †
D),

= N2

⎡
⎣

2∑
A,B=1

Tr(Y AY †
AY

BY †
B) +

2∑
A,B=1

Tr(Y AY †
BY

BY †
A)

+
4∑

A,B=3

Tr(Y AY †
AY

BY †
B) +

4∑
A,B=3

Tr(Y AY †
BY

BY †
A)

−3
2∑

A=1

4∑
B=3

Tr(Y AY †
AY

BY †
B)

−3
2∑

A=1

4∑
B=3

Tr(Y AY †
BY

BY †
A)

]
, (A.7)

where N2 = 2Ñ4.
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