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Abstract Small-x resummation has been proven recently
to be a crucial ingredient for describing small-x HERA data,
and the inclusion of small-x resummation in parton distribu-
tion function (PDF) determination has a sizeable effect on the
PDFs even at the electroweak scale. In this work we explore
the implications of small-x resummation at the large hadron
collider (LHC) and at a future circular collider (FCC). We
construct the theoretical machinery for resumming physical
inclusive observables at hadron colliders, and describe its
implementation in the public code HELL 3.0. We focus on
Higgs production in gluon fusion as a prototypical example,
both because it is sensitive to small-x gluons and because of
its importance for the LHC physics programme. We find that
adding small-x resummation to the N3LO Higgs production
cross section can lead to an increase of up to 10% at FCC,
while the effect is smaller (+1%) at LHC but still important
to achieve a high level of precision.
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1 Introduction

With the discovery of the Higgs boson, the Standard Model
(SM) has been established as a successful theory of parti-
cle physics. While the SM cannot be the definitive theory,
direct evidence of physics beyond the SM has not (yet) been
observed at the LHC. The search for new phenomena beyond
the SM at hadron colliders may be pursued by testing the SM
to high precision, which is becoming possible thanks to the
huge amount and excellent quality of the data collected by
the LHC. To keep up, theoretical predictions must reach and
possibly surpass the precision of the measurements. On the
one hand, this requires refined theoretical predictions for the
partonic cross sections for the processes of interest, which
may be obtained by higher order computations, e.g. next-to-
next-to-leading order (NNLO) or even next-to-next-to-next-
to-leading order (N3LO) in some cases, and by the all-order
resummation of important classes of logarithmic contribu-
tions. On the other hand, accurate and precise theoretical
predictions for LHC processes require high-quality parton
distribution functions (PDFs).

Recently, an important step forward towards improved
determination of PDFs has been achieved in Refs. [1,2],
where the resummation of small-x (high-energy) logarithms
at next-to-leading logarithmic (NLL) accuracy as imple-
mented in the public code HELL [3,4] has been included
in PDF evolution and in the theoretical predictions of DIS
observables. Small-x resummation has the important role of
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stabilizing the behaviour of DGLAP splitting functions at
small x , which otherwise is compromised by powers of log 1

x .
In particular, the first manifest instability appears at NNLO,
and thus PDFs determined with NNLO theory are rather dif-
ferent to those determined with NNLO theory improved by
NLL small-x resummation. This difference, determined at
low Q2 where the small-x HERA data lie, persists and is
actually enlarged by DGLAP evolution at larger scales. As
a result, resummed PDFs at the electroweak scale are very
different from the NNLO ones at small x .

This raises an important question: how does this large
effect impact LHC precision phenomenology? To properly
answer, we need to compare fixed-order prediction with
fixed-order (NNLO) PDFs to resummed predictions with
resummed (NNLO + NLL) PDFs. While NNLO + NLL PDFs
are now available, resummed predictions for LHC observ-
ables did not exist, or at least not in a format which makes
them immediately usable for phenomenology. It is the goal
of this paper to provide the theoretical setup to perform this
resummation for inclusive observables with the public code
HELL. The resummation of differential observables with
HELL is left to future work.

As a first example of application of this setup, we will
consider Higgs production in gluon fusion. Being initiated
by two initial-state gluons, this process is very sensitive to
the gluon PDF. Moreover, it is known that the inclusive Higgs
cross section is dominated by contributions close to partonic
threshold, which in turn implies that the gluon PDF con-
tributes mostly at small x . In addition, the inclusive Higgs
cross section in gluon fusion is known to N3LO [5–8], so
we will provide all the ingredients to properly match small-x
resummation of a physical process to N3LO for the first time.
We then investigate the phenomenological implications of
small-x resummation in Higgs production at the LHC, and
to enlarge the sensitivity to the PDFs at small x also at higher-
energy colliders, namely high-energy LHC (HE-LHC) and a
future circular hadron-hadron collider (FCC-hh).

The structure of the paper is the following. In Sect. 2 we
derive the formalism for small-x resummation of inclusive
cross sections with two hadrons in the initial state. We dis-
cuss its implementation in the HELL code, and compare it
to the original formulation [9] in the Altarelli–Ball–Forte
(ABF) formalism [10–15]. We provide all the ingredients for
matching small-x resummation in the partonic coefficient
functions to N3LO. In Sect. 3 we move to Higgs production,
and present first how the fixed-order cross section can be
constructed to treat correctly the small-x behaviour at NNLO
and N3LO, and then the effect of adding small-x resumma-
tion both at parton level and at the level of the physical cross
section. We then draw our conclusions in Sect. 4, and collect
technical details in Appendix A. This work represents a fol-
low up of Refs. [1,3,4,16], and provides the foundations of
Ref. [17].

2 Hadron-hadron collider processes at high-energy

The resummation of small-x logarithms in physical processes
requires both using PDFs which include small-x resumma-
tion in their determination and evolution, and resumming to
all orders the log 1

x contributions in the partonic coefficient
functions. The latter resummation, which is the subject of this
section, is based on the so-called kt factorization theorem,
where the non-perturbative proton dynamics is factorized in
parton distribution functions which depend on both the longi-
tudinal momentum fraction x of the parton and its transverse
momentum kt [18–23]. Relating this kt-dependent PDFs to
the usual collinear PDFs it is possible to resum the leading
non-vanishing tower of small-x logarithms to all orders in
the collinearly factorized partonic coefficient functions.

Another important ingredient for a stable small-x resum-
mation is the inclusion to all orders of a class of subleading
contributions originating from the running of the strong cou-
pling αs [9,15]. In Ref. [3] the approach of Refs. [9,15] has
been rederived and reformulated in a simpler and more gen-
eral way, and proven to be identical to the original formula-
tion under specific assumptions. The new formulation of Ref.
[3] has been implemented in the computer code HELL [3,4],
and it is very convenient from the analytical and numerical
points of view, making the resummation of new processes
and their inclusion in HELL rather straightforward. In Ref.
[3], and subsequently in Ref. [4], this new formalism has been
presented and used only for processes with a single hadron in
the initial state, and specifically the deep inelastic scattering
(DIS) process. In this section we extend the formulation to
processes with two hadrons in the initial state, relevant for
hadron-hadron colliders such as the LHC. This extension was
already presented in the original formulation in Refs. [9,24];
in this section we will also show that our formulation, which
is more general, reduces to the original one under the same
assumptions considered for the single-hadron case.

2.1 Resummation formalism with two incoming gluon legs

We consider a hadron-collider process which is gluon-gluon
initiated. The typical and cleanest example, which we will
consider in greater detail later in Sect. 3, is Higgs production
in gluon fusion, whose leading order diagram is depicted in
Fig. 1. Other examples for which the results of this section
will be relevant are, e.g., top-pair production and jet produc-
tion.

We will assume that there are no collinear singularities to
be subtracted at resummed level. Namely, the lowest order
diagram with two gluons in the initial state must be finite
without any collinear subtraction. Indeed, in order for a
collinear singularity to be present, at least one of the gluons
must split into a pair of quarks, one of which participates to
the hard interaction. In other words, it must be possible to cut

123

http://www.ge.infn.it/~bonvini/hell


Eur. Phys. J. C (2018) 78 :834 Page 3 of 31 834

Fig. 1 Leading order diagram for Higgs production in gluon fusion at
hadron-hadron colliders. The quark running in the loop is predominantly
a top

a quark line such that the diagram factorizes into a gluon split-
ting to quarks and a gluon-quark initiated subgraph. There-
fore, in presence of collinear singularities in a gg initiated
diagram, there must exist a lower order diagram which is gq
initiated. But if this is the case, the resummation of the gg
initiated process is subleading logarithmic with respect to
the resummation of the gq initiated process, due to the extra
power of αs and no logarithm in the g → qq̄ splitting. Thus,
at the leading non-vanishing logarithmic accuracy, contri-
bution with two initial state gluons which require collinear
subtractions do not contribute. This is the case for instance
of Drell–Yan production, where indeed at lowest logarith-
mic order only the gq (and qq) channels contribute [24].
Of course, it is well possible that such gq channel contains
itself a collinear singularity (as it happens in the Drell–Yan
case). However, this process has a single gluon in the initial
state, and the treatment is identical to the DIS case already
discussed in Ref. [3].

Let us then focus on the cross section σ of a gluon-gluon
initiated (at lowest order) process without collinear singulari-
ties, such as Higgs production, in hadron-hadron collision. In
order to simplify the treatment, we take the Mellin transform
of the cross section as

σ(N , Q2) =
∫ 1

0
dτ τ N σ(τ, Q2), (2.1)

where τ = Q2/s, with Q the hard scale of the process (e.g.,
the Higgs mass) and

√
s the collider center-of-mass energy.

The cross section in collinear factorization can be written in
Mellin N space as the sum over partonic channels of simple
products,

σ(N , Q2) = σ0(N , Q2)
∑

i, j=g,q

Ci j

(
N , αs,

μ2
F

Q2

)

× fi (N , μ2
F) f j (N , μ2

F), (2.2)

where Ci j are the collinearly factorized coefficient functions
and fk the collinear PDFs, which depend on the factorization
scale μF ∼ Q. The strong coupling αs is in general evaluated

at the renormalization scale μR, which implies that there are
logarithms of μR/Q in the coefficient function to compensate
its dependence; however, at the leading logarithmic accuracy
we will consider, the μR dependence is subleading, and we
therefore omit it to simplify the notation. The factor σ0 is
chosen such that the coefficients functions are dimensionless,
and normalized to 1 at LO in the dominant channel (supposed
to be the gg channel in our case). In the high-energy limit,
there is no need to distinguish the individual quarks, as they
always contribute in the singlet combination. Thus, in this
section, we will assume that the index q refers to the whole
singlet PDF.1

In the high-energy limit, the cross section can be also writ-
ten according to the kt factorization theorem, which gives

σ(N , Q2) = σ0(N , Q2)

∫
dk2

t1 dk
2
t2 C

(
N ,

k2
t1

Q2 ,
k2

t2

Q2 , αs

)

×Fg(N , k2
t1)Fg(N , k2

t2).

(2.3)

Here,Fg is the kt-dependent gluon PDF, and C is the partonic
coefficient function computed with two off-shell incoming
gluons, the off-shellness being k2

t . Obviously, the off-shell
coefficient function is symmetric for the exchange of the two
virtualities, k2

t1 ↔ k2
t2. The kt-dependent gluon PDF can be

related to the collinear PDFs through the relation [3,23,24]

Fg(N , k2
t ) = U

(
N , k2

t , μ2
F

)
fg(N , μ2

F)

+CF

CA

[
U

(
N , k2

t , μ2
F

)
− δ(k2

t )
]
fq(N , μ2

F),

(2.4)

where U is a function which is factorization scheme depen-
dent.2 In the Q0MS scheme [21,23,25,26] usually consid-
ered in the high-energy regime, and adopted also here, it is
given by

UQ0MS

(
N , k2

t , μ2
F

)
= d

dk2
t
U (N , k2

t , μ2
F), (2.5)

with [3]

U (N , k2
t , μ2

F) = exp
∫ k2

t

μ2
F

dμ2

μ2 γ+
(
N , αs(μ

2)
)

, (2.6)

1 With this assumption Eq. (2.2) is incomplete as it misses non-singlet
contributions; however, this is irrelevant for the present discussion,
which is focussed on the high-energy limit.
2 We observe that in Ref. [3] the same equation was written in terms of
the “plus” eigenvector PDF, see Eq. (3.3) there. However, that expres-
sion misses a contribution +δ(k2

t ) f−(N , Q2) in terms of the “minus”
eigenvector PDF, which produces the δ(k2

t ) term in Eq. (2.4). The results
of Ref. [3] are unaffected; the only effect of that deficiency is that C−
appearing in Eq. (3.26) of that reference could be written in terms of
the off-shell coefficient function. However, that contribution is purely
NLO, and could thus be extracted from the fixed-order computation.
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where γ+ is the (small-x resummed) eigenvalue of the
anomalous dimension singlet matrix which is singular at
small x . With respect to Ref. [3], we are slightly changing
the notation for the evolution function U , to extend it to the
case in which μF is different from the hard scale Q. More
details on the actual form of the evolution function U and
on the anomalous dimension used in its definition are given
later in Sect. 2.2.

Plugging Eq. (2.4) into Eq. (2.3) and comparing with
Eq. (2.2), we find a relation between the coefficient func-
tions in collinear factorization and the off-shell coefficient
functions,

Cgg

(
N , αs,

μ2
F

Q2

)
=

∫
dξ1 dξ2 C (N , ξ1, ξ2, αs)

× d

dξ1
U (N , Q2ξ1, μ

2
F)

× d

dξ2
U (N , Q2ξ2, μ

2
F), (2.7a)

Cqg

(
N , αs,

μ2
F

Q2

)
= CF

CA

∫
dξ1 dξ2 C (N , ξ1, ξ2, αs)

× d

dξ1
U (N , Q2ξ1, μ

2
F)

×
[

d

dξ2
U (N , Q2ξ2, μ

2
F) − δ(ξ2)

]
,

(2.7b)

Cqq

(
N , αs,

μ2
F

Q2

)
=

(
CF

CA

)2 ∫
dξ1 dξ2 C (N , ξ1, ξ2, αs)

×
[

d

dξ1
U (N , Q2ξ1, μ

2
F) − δ(ξ1)

]

×
[

d

dξ2
U (N , Q2ξ2, μ

2
F) − δ(ξ2)

]
,

(2.7c)

where we have introduced the dimensionless variables

ξ = k2
t

Q2 . (2.8)

Introducing the “auxiliary” coefficient function

Caux

(
N , αs,

μ2
F

Q2

)
= −

∫
dξ1 dξ2 C (N , ξ1, ξ2, αs)

× d

dξ1
U (N , Q2ξ1, μ

2
F) δ(ξ2)

= −
∫

dξ C (N , ξ, 0, αs)

× d

dξ
U (N , Q2ξ, μ2

F), (2.9)

we can rewrite the quark coefficient functions as

Cqg

(
N , αs,

μ2
F

Q2

)
= CF

CA

[
Cgg

(
N , αs,

μ2
F

Q2

)

+Caux

(
N , αs,

μ2
F

Q2

)]
, (2.10a)

Cqq

(
N , αs,

μ2
F

Q2

)
=

(
CF

CA

)2 [
Cgg

(
N , αs,

μ2
F

Q2

)

+2Caux

(
N , αs ,

μ2
F

Q2

)
+ C (N , 0, 0, αs)

]
.

(2.10b)

These expressions, already derived e.g. in Ref. [27], allow
us to express both quark coefficient functions in terms of the
gluon one and of the auxiliary function. Thus, from now on
we will focus on the functions Cgg , Eq. (2.7a), and Caux,
Eq. (2.9).

2.2 The evolution function

The evolution functionU , Eq. (2.6), is a key object for small-
x resummation in partonic coefficient functions. Indeed
Eqs. (2.7) encode small-x resummation thanks to the form
of U , which contains the leading small-x logarithms to all
orders, provided the anomalous dimension in there is itself
accurate at least at LL. We thus now recall here some prop-
erties of this function already presented in Refs. [3,4], with
particular focus on its μF dependence that we are now includ-
ing.

First, we observe that the anomalous dimension in
Eq. (2.6) is integrated between μF and kt , and kt is integrated
in Eq. (2.7) over all accessible values. This means that the
resummed anomalous dimension would be needed at all pos-
sible values of αs between zero and infinity, which represents
a big numerical challenge. In order to avoid this problem,
an approximation of the αs dependence of the anomalous
dimension was proposed in Ref. [3], where

γ+(N , αs(μ
2)) � γ+(N , αs(μ

2
F))

1 + r(N , αs(μ
2
F)) log(μ2/μ2

F)
,

r(N , αs) = α2
s β0

d

dαs
log

[
γ+(N , αs)

]
, (2.11)

with β0 the one-loop coefficient of the QCD β-function.
Under this assumption, the evolution function becomes

U (N , Q2ξ, μ2
F) � UABF

(
N ,

Q2

μ2
F

ξ

)
, (2.12)

having defined

UABF(N , ζ ) =
(

1 + r(N , αs) log ζ
)γ+(N ,αs )/r(N ,αs )

.

(2.13)
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Note that αs in Eq. (2.13) is in principle αs(μ
2
F); however,

since the scale dependence of αs is subleading with respect
to the leading logarithmic accuracy of the resummed coeffi-
cient functions, αs can be computed at any renormalization
scale μR without compensating for this change. The name
ABF in Eq. (2.13) comes from the fact that with this approx-
imated evolution function the approach of Refs. [9,15] is
recovered, as proven in Ref. [3] for DIS. We will show in the
next Sect. 2.3 that this is the case also for processes with two
incoming gluons.

A second observation is related to the region of ξ accessi-
ble in the integrals Eqs. (2.7) and (2.9). As the strong coupling
is running, the integration cannot extend beyond the position
of the Landau pole 
, identified by the equation

1 + αs(μ
2)β0 log


2

μ2 = 0, (2.14)

where μ is in principle any scale. Solving the equation, we
find that the smallest accessible value of ξ is

ξ0 = 
2

Q2 = exp
−1

β0αs(Q2)
= μ2

F

Q2 exp
−1

β0αs(μ
2
F)

, (2.15)

where we have written ξ0 both in terms of μ = Q and of μ =
μF. In particular, since the approximation Eq. (2.13) assumes
αs to be computed at μF, the last form is more adequate. Note
that when ξ = ξ0 the approximate evolution factor reduces
to

U (N , Q2ξ0, μ
2
F) � UABF

(
N ,

Q2

μ2
F

ξ0

)

=
(

1 − r(N , αs)

β0αs

)γ+(N ,αs )/r(N ,αs )

,

(2.16)

with αs = αs(μ
2
F). This expression is in general finite; how-

ever, from general considerations (see Ref. [4]), we expect
the evolution function to vanish in ξ0, at least at LL. The
vanishing of U in ξ0 is a property which turns out to be par-
ticularly useful, especially from a numerical point of view.
Thus, to force the evolution function to vanish in ξ = ξ0,
a non-perturbative higher-twist damping function was intro-
duced in Ref. [4],

Dhigher-twist(ξ) =
⎧⎨
⎩

[
1 − (−αsβ0 log ξ)

1+ 1
αsβ0

]
ξ < 1

1 ξ > 1,

(2.17)

such that the final approximated expression for the evolution
function is

U (N , Q2ξ, μ2
F) � U ht

ABF

(
N ,

Q2

μ2
F

ξ

)

≡ Dhigher-twist

(
Q2

μ2
F

ξ

)
UABF

(
N ,

Q2

μ2
F

ξ

)
.

(2.18)

This expression, used throughout this paper, also allows to
integrate by parts Eq. (2.7) without producing any boundary
term.

Finally, we recall that in Ref. [3] a dedicated anoma-
lous dimension, denoted LL′, was constructed specifically
for its usage in the evolution function U . This LL′ anoma-
lous dimension is essentially a LL anomalous dimension, but
its dominant small-x singularity is the one of the NLL result.
However, in the recent work of Ref. [16] it has been sug-
gested that this hybrid anomalous dimension may give rise
to instabilities when expanded in powers of αs , as needed
for the matching of resummed results to fixed order (we will
comment on this in Sect. 2.5). Since the numerical limitations
that led to the introduction of the LL′ anomalous dimensions
have been overcome in Ref. [4], it has thus been proposed in
Ref. [16] to use directly the full NLL anomalous dimension,
which also corresponds to the original approach of Ref. [15].
In this work we will consider both options later in Sect. 3,
and we will provide further support to the suggestion of Ref.
[16] of using the NLL anomalous dimension in the evolu-
tion function U . Thus, the new release of HELL, version
3.0, performs the resummation using the NLL anomalous
dimension in U as default.

To conclude, we report the actual expressions that we will
use for the resummation of coefficient functions, as imple-
mented in the code HELL. On top of using the approximated
evolution function Eq. (2.18), we integrate by parts so that
the derivatives act on the off-shell coefficient function, and
we compute the latter in N = 0, as its N dependence is
subleading. The results are

Cgg

(
N , αs,

μ2
F

Q2

)
=

∫ ∞

ξ0

dξ1dξ2
∂2C (0, ξ1, ξ2, αs)

∂ξ1∂ξ2

×Uht
ABF

(
N ,

Q2

μ2
F

ξ1

)
Uht

ABF

(
N ,

Q2

μ2
F

ξ2

)
,

(2.19a)

Caux

(
N , αs,

μ2
F

Q2

)
=

∫ ∞

ξ0

dξ
∂C (0, ξ, 0, αs)

∂ξ

×Uht
ABF

(
N ,

Q2

μ2
F

ξ

)
. (2.19b)

The second expression is equivalent to the result in the case of
a single hadron in the initial state, such as DIS. The first equa-
tion is a new result. The actual numerical implementation of
the first equation further requires (for numerical stability) a
change of variables, as discussed in Appendix A.1.
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2.3 Equivalence to the impact factor formulation

In this section, we show that Eq. (2.19a) leads formally to
the same results as the formulation of Ref. [9]. The argument
follows closely the one given in Sect. 3.3 of Ref. [3], extend-
ing it to the case of two initial gluons. We first introduce the
so-called impact factor

C̃
(
N , M1, M2, αs ,

μ2
F

Q2

)
=

∫
dξ1 dξ2 ξ

M1
1 ξ

M2
2

×∂2C (N , ξ1, ξ2, αs)

∂ξ1∂ξ2

(
Q2

μ2
F

)M1+M2

,

(2.20)

which is simply the double Mellin transform with respect to
each k2

t of the off-shell coefficient function. For later con-
venience, we have introduced in the definition of the impact
factor a μF-dependent term. Because by assumptions there
are no collinear singularities, this function is analytic in
M1,2 = 0, and thus admits an expansion

C̃
(
N , M1, M2, αs,

μ2
F

Q2

)

=
∑
k, j≥0

C̃k j
(
N , αs,

μ2
F

Q2

)
Mk

1 M j
2 . (2.21)

Because of the symmetry of the off-shell cross section for the
exchange of the virtualities, the coefficients of this expansion
are symmetric for the exchange of the indices, C̃k j = C̃ jk .
Now, we write again the off-shell cross section as the dou-
ble inverse Mellin transform of Eq. (2.20), expanded as in
Eq. (2.21),

∂2C (N , ξ1, ξ2, αs)

∂ξ1∂ξ2
=

∫
dM1

2π i

dM2

2π i

(
Q2

μ2
F

ξ1

)−M1

×
(
Q2

μ2
F

ξ2

)−M2

C̃(N , M1, M2, αs)

=
∑
k, j≥0

C̃k j
(
N , αs,

μ2
F

Q2

)

×
[
∂kν δ

(
ν − log

(
Q2

μ2
F

ξ1

))]
ν=0

×
[
∂ j
ν δ

(
ν − log

(
Q2

μ2
F

ξ2

))]
ν=0

,

(2.22)

where we have used the identity

∫
dM

2π i
ξ−M Mk =

[
∂kν δ(ν − log ξ)

]
ν=0

, k ≥ 0. (2.23)

We can now plug Eq. (2.22) into Eq. (2.19a) and get3

Cgg

(
N , αs,

μ2
F

Q2

)

=
∑
k, j≥0

C̃k j
(

0, αs,
μ2

F

Q2

) [
∂kνU

ht
ABF

(
N , eν

)]
ν=0

×
[
∂ j
νU

ht
ABF

(
N , eν

)]
ν=0

. (2.24)

This expression, computed at central scale μF = Q, repro-
duces exactly the result of Ref. [9]. Indeed, the derivatives of
the evolution function, due to its form Eq. (2.13), satisfy the
recursion4

[
∂k+1
ν U ht

ABF

(
N , eν

)]
ν=0

=
(
γ+(N , αs) − k r(N , αs)

) [
∂kνU

ht
ABF

(
N , eν

)]
ν=0

,

(2.25)

which, together with the initial k = 0 condition[
U ht

ABF (N , eν)
]
ν=0 = 1, give rise to what is sometimes

denoted
[
γ k+

]
with squared brackets [3,15,28]. In this nota-

tion the resummed result is written as

Cgg

(
N , αs,

μ2
F

Q2

)

=
∑
k, j≥0

C̃k j
(

0, αs,
μ2

F

Q2

) [
γ k+(N , αs)

] [
γ

j
+(N , αs)

]
,

(2.26)

which is a straightforward extension of the analogous resum-
mation in the single-hadron case. Note that while using
Eq. (2.26) is numerically challenging and necessarily approx-
imate (the infinite series cannot be treated exactly in a numer-
ical code), and its implementation cannot compete with the
straightforward integral representation Eq. (2.19a), this form
is quite useful for the expansion of the resummed result to
fixed order, as we shall now see.

2.4 Expansion and matching to fixed order

The resummed results Eq. (2.19), which contains the leading
small-x contributions to all orders, are usually matched to a
fixed-order contribution. To do so, we need to subtract from
the resummed result its expansion in αs up to the fixed-order
k considered,

3 Note that the μF dependence is fully included in the coefficients of the
expansion. If we hadn’t included the μF-dependent term in Eq. (2.20),
then the μF dependence would be contained in the evolution functions.
4 Note that the higher-twist term does not play any role in this expan-
sion.
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�kC

(
N , αs,

μ2
F

Q2

)

= C

(
N , αs,

μ2
F

Q2

)
−

k∑
j=0

α
j
s C

( j)
(
N ,

μ2
F

Q2

)
, (2.27)

where the last sum is the truncated αs-expansion of the first
(resummed) coefficient C . Then, this �kC contribution is of
O(αk+1

s ), and can be safely added to the fixed NkLO result.
In this work, we consider the matching up to N3LO, which
is the highest fixed-order accuracy available for Higgs pro-
duction in gluon fusion. Thus, we need the expansion of the
resummation up to O(α3

s ).
The construction of this expansion is obtained in a simple

way using the impact-factor formulation, Eq. (2.26). To use
it, we first write explicitly

[
γ k+

]
up to k = 3 (omitting the

arguments for ease of notation),

[
γ 0+

]
= 1,[

γ 1+
]

= γ+,[
γ 2+

]
= γ+ (γ+ − r) ,[

γ 3+
]

= γ+ (γ+ − r) (γ+ − 2r) , (2.28)

where r is given in Eq. (2.11). To proceed, we now need to
expand in powers of αs both γ+ and r . However, before doing
so, we recall that in Refs. [3,4] a variant of the resummation,
used to estimate the uncertainty from subleading contribu-
tions, was introduced in which r is replaced with αsβ0, i.e.
the αs-dependence of the anomalous dimension is treated as
if it was justO(αs), in line with the approximation Eq. (2.11).
To cover both cases, up to N3LO it is sufficient to introduce
a single parameter T , which equals 2 in the default case, and
equals 1 in the limit r = αsβ0. Introducing the expansion of
the anomalous dimension

γ+ = αsγ0 + α2
s γ1 + α3

s γ2 + O(α4
s ) (2.29)

we can indeed write

r = αsβ0

[
1 + (T − 1)αs

γ1

γ0
+ O(α2

s )

]
. (2.30)

With these expressions we can expand Eq. (2.28) as

[
γ 0+

]
= 1,[

γ 1+
]

= αsγ0 + α2
s γ1 + α3

s γ2 + O(α4
s ),[

γ 2+
]

= α2
s γ0 (γ0 − β0) + α3

s γ1 (2γ0 − Tβ0) + O(α4
s ),[

γ 3+
]

= α3
s γ0 (γ0 − β0) (γ0 − 2β0) + O(α4

s ), (2.31)

which can be now used in Eq. (2.26) to get the αs-expansion
of the gg coefficient function:

Cgg = C̃00 + αs2C̃10γ0

+ α2
s

[
2C̃10γ1 + 2C̃20γ0 (γ0 − β0) + C̃11γ

2
0

]

+ α3
s

[
2C̃10γ2 + 2C̃20γ1 (2γ0 − Tβ0)

+ 2C̃11γ0γ1 + 2C̃30γ0 (γ0 − β0) (γ0 − 2β0)

+ 2C̃21γ
2
0 (γ0 − β0)

]
+ O(α4

s ). (2.32)

Depending on the anomalous dimension used in the evolution
function U (see discussion in Sect. 2.2), which determines
the actual form of γ0,1,2, this expression provides the first
few orders of the resummed coefficient function needed to
construct the resummed contribution �kCgg up to k = 3.

To construct the expansion of the resummed coefficient
functions for the other partonic channels, we need to expand
the auxiliary function Eq. (2.19b). Straightforwardly, its
impact-factor form can be derived from Eq. (2.26) by keeping
only the j = 0 part of the sum, and flipping the sign

Caux

(
N , αs,

μ2
F

Q2

)
=−

∑
k≥0

C̃k0

(
0, αs,

μ2
F

Q2

) [
γ k+(N , αs)

]
.

(2.33)

Thus, its αs expansion is given by

Caux = −C̃00 − αs C̃10γ0 − α2
s

[
C̃10γ1 + C̃20γ0 (γ0 − β0)

]

− α3
s

[
C̃10γ2 + C̃20γ1 (2γ0 − Tβ0)

+ C̃30γ0 (γ0 − β0) (γ0 − 2β0)
]

+ O(α4
s ). (2.34)

Form Eqs. (2.32) and (2.34) we can construct the expansions
of the quark coefficient functions, according to Eq. (2.10),

Cqg = CF

CA

[
αs C̃10γ0 + α2

s

[
C̃10γ1 + C̃20γ0 (γ0 − β0) + C̃11γ

2
0

]

+ α3
s

[C̃10γ2 + C̃20γ1 (2γ0 − Tβ0) + 2C̃11γ0γ1

+C̃30γ0 (γ0 − β0) (γ0 − 2β0) + 2C̃21γ
2
0 (γ0 − β0)

]
+ O(α4

s )

]
,

(2.35)

Cqq =
(
CF

CA

)2 [
α2
s C̃11γ

2
0 + α3

s

[
2C̃11γ0γ1

+2C̃21γ
2
0 (γ0 − β0)

]
+ O(α4

s )

]
. (2.36)

With these expressions it is then possible to construct also
the resummed contributions �kCqg and �kCqq for the quark
coefficient functions up to k = 3. All together, these expres-
sions allow to match resummed results to N3LO. The com-
putation of the C̃i j coefficients, needed for the expansions
presented here, is detailed in Appendix A.2.
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2.5 The first few orders of the anomalous dimension at LL′
and NLL

To conclude the section, we now present the analytic expres-
sions of the O(α

1,2,3
s ) anomalous dimensions γ0,1,2 needed

for the matching of the resummed coefficient function to fixed
order up to N3LO, Eqs. (2.32), (2.35) and (2.36). We treat
both the case in which the anomalous dimension used is the
LL′ introduced in Ref. [3] and the case in which the full NLL
anomalous dimension is used, as suggested in Refs. [15,16],
see discussion in Sect. 2.2. These expressions are obtained
by expanding the purely resummed LL′ or NLL anomalous
dimension, and have been already computed and presented
in Refs. [3,4,16]. Thus, here we only report the final results
[16]. For LL′ resummation we have

γ LL′
0 = a11

N
+ a10

N + 1
, (2.37)

γ LL′
1 = β0a11

(
21

8
ζ3 − 4 log 2

) (
1

N
− 4N

(N + 1)2

)
(2.38)

γ LL′
2 = λ2

N 2 + λ1

N
− (λ2 + λ1)

4N

(N + 1)2

+
(
a11

N 2 + 2(a11 + a10)

(N + 1)2

)

×
[

a11a10

(1 + N )2 − a11a10

4

4N

(N + 1)2

+ a11

(
a11

N
+ a10 − 2(a11 + a10)N

N + 1

)

× [ψ1(1 + N ) − ζ2]

]
, (2.39)

while for NLL resummation the results are

γ NLL
0 = a11

N
+ a10

N + 1
, (2.40)

γ NLL
1 = a21

N
− 2a21

N + 1
, (2.41)

γ NLL
2 = 7

4
β2

0a11ζ3

(
1

N
− 4N

(N + 1)2

)

+
(
a11

N 2 + 2(a11 + a10)

(N + 1)2

)

×
[
ρ + a21

1 + N
+ a11a10

(1 + N )2

−
(
ρ + a21

2
+ a11a10

4
− β0a11

) 4N

(N + 1)2

+ a11

(
a11

N
+ a10 − 2(a11 + a10)N

N + 1
+ β0

)

× [ψ1(1 + N ) − ζ2]

]
. (2.42)

The coefficients appearing above are

a11 = CA

π
, (2.43a)

a21 = n f
26CF − 23CA

36π2 , (2.43b)

a10 = −11CA + 2n f (1 − 2CF/CA)

12π
, (2.43c)

and

λ2 = 1.26717 + 0.110072n f , (2.44a)

λ1 =
{

−60.6782 + 3.53857n f + 0.00841828n2
f (default)

−30.3568 + 1.77143n f + 0.00414421n2
f (variant),

(2.44b)

ρ = 1

π2

[
C2

A

(
−74

27
+ 11

12
ζ2 + 5

2
ζ3

)

+ n f CA

(
4

27
+ 1

6
ζ2

)
+ n f CF

(
7

27
− 1

3
ζ2

)]
. (2.44c)

The two values of λ1, Eq. (2.44b), come from another variant
of the resummation, used in the construction of γ+, which
affects only the LL′ anomalous dimension at this order. More
details can be found in Appendix A of Ref. [16]. All these
expressions are implemented in HELL 3.0.

Before moving on, we would like to comment on a par-
ticular feature of these expansions. We recall that, due to
accidental cancellations, the expected leading singularities of
the NLO and NNLO anomalous dimensions are zero. Since
both LL′ and NLL anomalous dimension are accurate at LL,
the leading terms 1/N 2 in γ1 and 1/N 3 in γ2 are correctly
absent. As a consequence, the highest singularity in γ1 and
γ2 is the NLL one, which is correct only in the NLL anoma-
lous dimension. Instead, the dominant singularity (and any
other subleading term) of these two orders in the LL′ result
is not correct. Thus, while the all-order LL′ and NLL anoma-
lous dimensions may be in good agreement (and indeed they
are), their O(α2

s ) and O(α3
s ) expansions may be very differ-

ent (and indeed they differ substantially at O(α3
s )). For this

reason, resummed results which depend explicitly on γ LL′
1

and γ LL′
2 (such as resummed results matched to NNLO and

beyond) may differ substantially from those obtained with the
NLL anomalous dimension, and when this is the case results
obtained in the NLL case have to be favoured. It has been
noticed in Ref. [16] (and we will see it also here in Sect. 3)
that when matching to N3LO resummed results based on LL′
behave pathologically at medium/large values of x , which is
a consequence of a similar behaviour in the inverse Mellin
transform of γ LL′

2 . This is the main motivation that induced
Ref. [16] to propose the use of the NLL anomalous dimension
as default.
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3 Resummed Higgs cross section at the LHC and
beyond

We now turn our attention to a hadron-hadron collider process
which is of great interest for LHC phenomenology: Higgs
production in gluon fusion (ggH for short). Of course, Higgs
physics is very interesting because the Higgs sector can be
sensitive to new physics beyond the Standard Model. The
inclusive Higgs cross section, which we are going to con-
sider, is for instance sensitive to heavy particles coupling to
gluons, which may then run in the loop of Fig. 1 and alter the
production rate at the LHC.

Moreover, from a theoretical point of view, Higgs pro-
duction is an interesting process because fixed-order per-
turbative QCD corrections are very large, with NLO being
about twice the LO, and NNLO adding another ∼ 40% of
the LO to the cross section. This motivated various stud-
ies to go beyond NNLO [28–34], culminating in the com-
putation of this production process to N3LO [5–8] in the
large top-mass limit.5 It has been demonstrated in various
ways that such large corrections mostly originate from soft-
virtual contributions [28,30,33,34,38], dominant at large x ,
and can be resummed to all orders by means of threshold
resummation techniques [29,39–41], reaching N3LL accu-
racy [42–46].6 N3LO+N3LL predictions are very close to
N3LO ones, thus suggesting that perturbative expansion is
apparently converging, and giving some confidence that cur-
rent theoretical predictions, such as the one recommended
by the LHC Higgs Cross Section Working Group (HXSWG)
[51], are sufficiently accurate for precision phenomenology.

In this work we investigate the effect of the all-order
resummation of the small-x logarithms, i.e. those important
in the opposite limit with respect to the one largely studied
for this process. Indeed, Higgs production in gluon fusion is
also one of the LHC processes which is expected to be most
sensitive to small-x logarithmic enhancement, due to the fact
that it is gluon-gluon initiated at lowest order, and the gluon
PDF is the most sensitive to small-x resummation effects.
We will show that the consistent inclusion of small-x resum-
mation has a sizeable effect. In the Q0MS scheme that we
adopt, most of this effect comes from the use of resummed
PDF instead of fixed-order ones, while the effect of resumma-
tion in the coefficient function is much milder. The effect of
resummation gets progressively larger as the collider energy

5 A consistent N3LO calculation would also require PDFs fitted and
evolved with N3LO theory. However, the four-loop DGLAP splitting
functions are not yet fully known, though recently there has been impres-
sive progress towards their computation [35–37]. Thus, at the moment
all N3LO predictions use NNLO PDFs.
6 To be precise, all contributions that are relevant for N3LL are known
[29,31,47,48], with the exception of the four-loop cusp anomalous
dimension (see [49,50] for recent progress), which is thought to have a
negligible impact.

is increased, since smaller and smaller values of x become
accessible and increasingly important. Therefore, the inclu-
sion of resummation becomes more crucial at higher-energy
colliders, such as the high-energy phase of the LHC, with√
s = 27 TeV, and even more at a future circular hadron

collider (FCC-hh) of
√
s = 100 TeV.

Before presenting resummed results, we recall that many
results in the computation of the Higgs production cross
section in gluon fusion are obtained within the so-called
large top-mass effective field theory (EFT henceforth), where
the top-quark is integrated out of the theory and its effect
included as corrections in powers of m2

H/m2
t . However, in

this theory the small-x region cannot be predicted correctly,
as the x → 0 limit does not commute with the mt → ∞
limit of the EFT. Therefore, the correct inclusion of small-x
resummation also requires a correct treatment of the small-x
region at fixed order. In Sect. 3.1, we then first revisit how
top mass dependence is included in fixed-order result and
how the correct small-x logarithms can be included at fixed
order. Then, in Sects. 3.2 and 3.3 we will show the impact of
small-x resummation at parton level and on the cross section,
respectively.

This section provides a detailed explanation of the small-
x resummed results presented in Ref. [17] in the context of
a double small-x plus large-x resummation.

3.1 Construction of the fixed-order result at small x with
top mass dependence

The LO diagram for ggH production, Fig. 1, is a one-loop
diagram with a massive internal particle. The NLO correction
to this process has been carried out exactly [52,53]. However,
from NNLO onward, the exact computation would require
the evaluation of three-loop (or higher) diagrams with mas-
sive internal lines, which are out of reach of the current com-
putational technology.

However, in the limit in which the partonic center-of-mass
energy

√
ŝ is (much) smaller than twice the top mass mt , one

can construct an effective field theory (EFT) in which the
top loop shrinks to a point, leading to a pointlike interaction
described by operators. The operator with the lower dimen-
sionality does not depend explicitly on the top mass, except
for a logarithmic dependence appearing in its Wilson coeffi-
cient. Operators with higher dimensionality will give rise to
corrections suppressed by increasing powers of 1/m2

t .
Within this EFT it has been possible to push the compu-

tation of the ggH cross section at NNLO (both at the lead-
ing power level [54–56] and including a few corrections in
1/m2

t [27,57,58]) and even at N3LO [5–8] (at leading power).
Because the expansion parameter of the EFT is

ŝ

4m2
t

= m2
H

4zm2
t
, (3.1)
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where z = m2
H/ŝ and ŝ the partonic center-of-mass energy,

the limits mt → ∞ and z → 0 do not commute.7 Thus,
the EFT cannot describe the small-z region correctly. For
this reason, computations within the EFT can be (and have
been) carried out as threshold expansions about z = 1, i.e. as
power series in (1 − z), e.g. in Refs. [7,57]. Indeed, at large
and medium z this expansion converges to the exact result,
while at small z it is wrong anyway.

The goal of this subsection is to provide a way to supple-
ment computations in the EFT with the exact small-z loga-
rithms, which can be predicted from the resummation. Let’s
consider the generic coefficient function with perturbative
expansion (omitting all unnecessary arguments and indices
for simplicity)

C

(
z, αs,

m2
H

m2
t

)
=

∞∑
k=0

αk
s C

(k)

(
z,

m2
H

m2
t

)
. (3.2)

As we already stated, from NNLO onwards the exactmH/mt

dependence is unknown. At NNLO, mH/mt effects have
been computed as an expansion in

ρt = m2
H

m2
t

(3.3)

up to the order pmax = 3 [27,57,58],

C (2) (z, ρt ) �
pmax∑
p=0

ρ
p
t C

(2)
p (z), (3.4)

while at N3LO only the first term is known (pmax = 0) [5–8].
However, the expansion in mH/mt is not accurate at small
z, since the actual expansion parameter is the one given in
Eq. (3.1): in particular, the ρt expansion is supposed to break
down for z � ρt/4. Therefore, the small-z behaviour of the
mH/mt expansion is unstable,

C (k)(z, ρt ) =
pmax∑
p=0

ρ
p
t

p∑
j=0

2k−1∑
n=0

B(k)
p, j,n

logn z

z1+ j

+ O(z0) + O(ρ
pmax+1
t ), (3.5)

exhibiting double-logarithmic enhancement and higher pow-
ers of 1/z at each extra order in ρt , in contrast with the exact
small-z behaviour

C (k) (z, ρt ) =
k−1∑
n=0

A(k)
n (ρt )

logn z

z
+ O(z0), (3.6)

7 Note that the variable z is a scaling variable as x in DIS and in the
PDFs, and thus small-x resummation in the Higgs partonic coefficient
functions resums logarithms of z.

which is single-logarithmic enhanced and always contains a
single power of 1/z. The exact small-z behaviour, Eq. (3.6),
can be predicted (at least at LL, i.e. n = k − 1) from high-
energy resummation. Our goal is therefore to understand how
the exact Eq. (3.6) can be used to replace the wrong Eq. (3.5)
of the large mt EFT computation. We recall that two differ-
ent phenomenological solutions to this problem have been
already proposed in Refs. [27,57,58]. Here, we want to deal
with this problem in a systematic way.

As a first step, we need to understand whether the limit
pmax → ∞ converges to the exact result or not. At large z
and for sufficiently small ρt , the answer must be yes, or at
least asymptotically yes. On the other hand, at small z the
expansion clearly diverges, with new singularities appear-
ing at each order in ρt , Eq. (3.5). Thus, at small z, only the
all-order sum may make sense, but certainly not any finite
truncation of it. Therefore, in order to build up a sensible
result, we need to make sure first to get rid of the bad small-
z behaviour of the ρt expansion, and once this is done we
can add the exact small-z contribution, Eq. (3.6). The final
expression must be such that the limit pmax → ∞ tends to
the exact result.8 We will consider four possible approaches,
in turn.

Method of subtraction The first option that we consider con-
sists in subtracting from the ρt expansion the “wrong” small-
z behaviour, Eq. (3.5), replacing it with the exact small z,
Eq. (3.6). The resulting expression is

C(k) (z, ρt ) �
pmax∑
p=0

ρ
p
t

⎡
⎣C(k)

p (z) − d(z)
p∑

j=0

2k−1∑
n=0

B(k)
p, j,n

logn z

z1+ j

⎤
⎦

+ d(z)
k−1∑
n=0

A(k)
n (ρt )

logn z

z
, (3.7)

where we have further introduced a function d(z), which
represents a possible large-z damping to be uniformly applied
to the small-z parts of the result. The role of this damping
is to suppress the effect of the small-z contributions at large
z: indeed, the 1/z terms without logarithms contained in the
small-z contributions do not vanish at large z.

This method, despite its simplicity and naturalness, has
three important drawbacks. The first is that it requires the
exact EFT result, and not just its (simpler to compute) thresh-
old expansion, which, as we already mentioned, carries the
same correct information, and differs only in the region where
they are both wrong. At NNLO, the EFT small-z contribu-
tion is fully known for p = 0, 1, 2 [58], while the threshold
expansion is also known for p = 3 [27,57]. At N3LO, only
the leading term B(3)

0,0,5 was known until very recently, when

8 Possibly up to subleading power logarithmic contributions behaving
as log z without any 1/z enhancement.
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in Ref. [8] the exact leading EFT result (p = 0) has been com-
puted, thus allowing to use this method at N3LO as well. The
second is that the function in squared brackets in Eq. (3.7)
still contains double-logarithmic terms at O(z0) which are
not predicted correctly by the EFT expansion either, and can
thus potentially contaminate the result. (In principle these
logarithmic contributions could be subtracted as well, how-
ever their counterparts in the exact theory cannot be derived
from small-z resummation and thus they cannot be added
back.) The third and perhaps more severe issue is that the
result may strongly depend on the damping function used.
Indeed, ideally, the two small-z contributions should cancel
each other at large z. However, since the z → 1 limit of the
small-z contribution in the ρt expansion inherits its insta-
bility, there is no practical compensation at large z between
what is subtracted and what is added. And this must not hap-
pen, since the C (k)

p (z) terms are supposed to be reliable in
the z → 1 limit. Thus the damping becomes a necessity, but
its form is not prescribed by the procedure, leaving a degree
of arbitrariness which may contaminate the result.

Method of threshold expansion The expression in square
brackets in Eq. (3.7) does no longer contain divergent terms at
small z.9 Thus, there is no loss of information if it is replaced
with its threshold expansion, i.e. an expansion in powers of
(1 − z). Let us define

δC (k)
p (z) = C (k)

p (z) − d(z)
p∑

j=0

2k−1∑
n=0

B(k)
p, j,n

logn z

z1+ j
(3.8)

to be the function in square brackets in Eq. (3.7). Equa-
tion (3.8) can be expanded at large z as10

δC (k)
p (z) = za

[
δC (k)

p (z)

za

]

t.e.

= za
∞∑
i=0

(1 − z)i

⎡
⎣c(k)

p,i (a, �) −
p∑

j=0

2k−1∑
n=0

B(k)
p, j,nb j,n,i (a)

⎤
⎦ ,

(3.9)

where a is a parameter, and the subscript “t.e.” (threshold
expansion) means that the function enclosed by those brack-
ets is expanded in powers of 1− z. In the equation above, the
expansion coefficients c(k)

p,i also depend in general on

� ≡ log(1 − z), (3.10)

9 Except for the aforementioned powers of log z without 1/z enhance-
ment, which are not predicted correctly either.
10 To simplify the following discussion, let us assume that for the gg
channel the coefficient function is defined as the “regular” part of the
decomposition C (k)

gg = [
C (k)
gg

]
distr + [

C (k)
gg

]
reg, where the distributional

part contains plus distributions and δ(1 − z) functions, and the regular
part everything else.

which is clearly not expandable in z = 1, and we have intro-
duced the coefficients b j,n,i (a) according to

d(z)
logn z

z1+ j+a
=

∞∑
i=0

(1 − z)i b j,n,i (a), (3.11)

which thus depend on the damping function d(z). The a
parameter is in principle free, since the result is indepen-
dent of a when the whole series in 1 − z is considered. Of
course, any finite truncation of the series to i = imax will
have a residual dependence on a, which can thus be used
e.g. to estimate the uncertainty due to missing terms in the
threshold expansion [7]. The coefficients C (k)

p (z) have been
computed in the first place as a threshold expansion at NNLO
[27,57] and N3LO [7], so the relevant c(k)

p,i are all known.
Let us comment on the choice of the parameter a. The

value a = −1 is the one adopted in Refs. [27,57] (as there
the partonic cross section zC(z) is expanded).11 This choice
is such that terms behaving as 1/z are generated in the thresh-
old expansion; however, these terms are not predicted cor-
rectly by the EFT, and indeed they have been subtracted in
Eq. (3.8), so producing them can be dangerous. On the con-
trary, we note that if we choose a ≥ 0 both terms in Eq. (3.8)
lead to a threshold expansion which does not grow at small
z. In particular, for a = 0 the threshold expansion goes to a
constant, while for larger a it vanishes in z = 0 (however a
cannot be too large, otherwise it would affect the coefficient
function in a region of medium z where the threshold expan-
sion is reliable). This means that choosing a ≥ 0 the resulting
coefficient function does not contain any leading small-z con-
tribution. Thus, the threshold expansion with a ≥ 0 provides
a natural and legitimate way of damping the EFT result at
small-z, thereby also removing the potential danger induced
by the EFT logarithmic terms at O(z0).

This observation may suggest that, as long as the coeffi-
cient function is threshold-expanded with a ≥ 0, the term
δC (k)

p (z), Eq. (3.8), appearing in Eq. (3.7) can be replaced

with just the full coefficient function C (k)
p (z), without sub-

tracting the small-z terms. Indeed, at large z the two objects
do not differ, due to the damping d(z) which suppresses the
subtraction terms, and at small z both objects do not contain
small-z contributions. Clearly, the subleading small-z terms
(those not enhanced by 1/z) may differ, but these are any-
way beyond our control, and certainly not predicted by the
last term of Eq. (3.7). Thus, we may conclude that an equally
good definition of the full result is

11 To be precise, in Refs. [27,57] also the distributional part in the gg
channel is multiplied by 1/z, thus changing the actual c(k)

p,i coefficients.
However, this difference is immaterial for the present discussion.
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C (k) (z, ρt ) � za
pmax∑
p=0

ρ
p
t

imax∑
i=0

(1 − z)i c(k)
p,i (a, �)

+ d(z)
k−1∑
n=0

A(k)
n (ρt )

logn z

z
, (3.12)

provided a ≥ 0. In fact, Eq. (3.12) can be obtained with no
approximations, by exploiting the dependence on the damp-
ing function d(z). Indeed, in this case, the damping function
is no longer fully free, but we have a guiding principle how
to choose its form. Namely, since at large z the first part
of Eq. (3.12) is reliable up to O (

(1 − z)imax
)
, the damping

function must be suppressed at least as

d(z) = (1 − z)imax+1, (3.13)

such that the exact small-z part does not spoil the accuracy
of the threshold expansion. With this choice for d(z), the
b j,n,i (a) coefficients are all zero for i ≤ imax: hence, up to
i = imax, the EFT small-z terms do vanish. Thus, when using
this damping function (or a more suppressed version of it),
the threshold expansion of Eq. (3.7) gives exactly Eq. (3.12).
Note that, because in Eq. (3.12) there is no subtraction of
small-z EFT contributions, this formulation is simpler and
very suitable for numerical implementation, both at NNLO
and at N3LO.

Method of double subtraction In Refs. [27,57] a different
construction was considered, where the exact small z is added
to the threshold expansion of C (k)

p (z) after having subtracted
from it its own threshold expansion, without applying any
damping. To derive this possible approach, let us start again
from Eq. (3.7), to which we replace the first part with its
threshold expansion, and where we add and subtract the
threshold expansion of the exact small z,

C (k) (z, ρt ) � za
imax∑
i=0

(1 − z)i

×
⎡
⎣

pmax∑
p=0

ρ
p
t

⎛
⎝c(k)

p,i (a, �) −
p∑

j=0

2k−1∑
n=0

B(k)
p, j,nb j,n,i (a)

⎞
⎠

+
k−1∑
n=0

A(k)
n (ρt )b0,n,i (a)

]
+

k−1∑
n=0

A(k)
n (ρt )

×
[
d(z)

logn z

z
− za

imax∑
i=0

(1 − z)i b0,n,i (a)

]
. (3.14)

As far as the exact small-z term is concerned, it is clear that the
damping function becomes unnecessary with this approach,
as the term in square brackets in the last line of Eq. (3.14)
is of O (

(1 − z)imax+1
)

irrespectively of the form of d(z). If
we choose the damping function as in Eq. (3.13) then we

recover exactly Eq. (3.12), since b j,n,i (a) = 0 for i ≤ imax.
However, following Refs. [27,57], we can now choose

d(z) = 1, (3.15)

thus fixing the form of the b j,n,i (a) coefficients according
to Eq. (3.11). The approach of Refs. [27,57] is obtained by
ignoring the second term of the second line and the first term
of the third line of the first line of Eq. (3.14), such that the
final result is

C (k) (z, ρt ) � za
pmax∑
p=0

ρ
p
t

imax∑
i=0

(1 − z)i c(k)
p,i (a, �)

+
k−1∑
n=0

A(k)
n (ρt )

[
logn z

z
− za

imax∑
i=0

(1 − z)i b0,n,i (a)

]
.

(3.16)

We notice immediately that this form is very similar to
Eq. (3.12), with the difference that the large-z behaviour of
the exact small-z contribution is subtracted rather than being
damped. The result is in both cases a small-z contribution
which starts at O (

(1 − z)imax+1
)
, and with the same small-z

behaviour: it should thus give similar results. This observa-
tion can be considered as an a posteriori argument to justify
neglecting the second and third terms of Eq. (3.14). The sum
of these terms isn’t necessarily small, and in fact for finite
pmax it may be sizeable. The theoretical argument behind
neglecting them could be that in the pmax → ∞ limit they
vanish. However, the limit is divergent, making such an argu-
ment hard to prove.

Method of generalized expansion The method of threshold
expansion, Eq. (3.12), can be straightforwardly generalized
by expanding about a generic z = z0,

C (k) (z, ρt ) � za
pmax∑
p=0

ρ
p
t

imax∑
i=0

(z0 − z)i c̃(k)
p,i (a, z0)

+ d(z)
k−1∑
n=0

A(k)
n (ρt )

logn z

z
, (3.17)

where this time the damping function must be of
O (

(z0 − z)imax+1
)
, in order to avoid spoiling the accuracy

of the expansion. Such a function can be

d(z) =
(

1 − z

z0

)imax+1

θ(z0 − z), (3.18)

where the functional form is such that in z → 0 the damping
is ineffective, and the theta function ensures that the small-
z contribution remains zero for values of z > z0 where it
is forced to vanish. Equations (3.17) and (3.18) reproduce
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exactly Eqs. (3.12) and (3.13) for z0 = 1.12 For z0 < 1,
the expansion about z0 cannot be valid in a region close to
z = 1, essentially because of the presence of logarithmic
terms diverging in z = 1 which force the convergence radius
to be strictly less than 1 − z0. However, this limitation can
be simply overcome by patching this result with a purely
threshold-expanded one at some z = z1, with z0 ≤ z1 < 1,
to be used for all z > z1.

The advantage of this approach is that the EFT result
is used in an extended region of z, while the contribution
from the exact small-z terms, which are only known at LL,
is relegated to a region of smaller z. The limitation of this
approach is that z0 cannot be too small. Indeed, the EFT
approach breaks down for z � ρt/4, so z0 must be suffi-
ciently larger than this value. For the physical Higgs and top
masses, ρt/4 � 0.13. An interesting value to consider is
z0 = 1/2, for two reasons. The first is that the EFT expan-
sion parameter, ρt/(4z), equals 0.26 in z = z0 = 1/2, which
is just twice as large as its value at threshold z = 1, and thus
hopefully still sufficiently small for the EFT to be reliable.
The second, more practical, is that the expansions coeffi-
cients of the leading EFT contribution (p = 0) have been
computed for z0 = 1/2 in the recent work of Ref. [8] up
to N3LO, making the implementation of this method rather
straightforward.

Conclusion The considerations above bring us to the con-
clusion that the method of threshold expansion, Eq. (3.12),
using the damping function Eq. (3.13) and a = 0 provides
the best way of implementing the correct small-z logarithms
in a EFT result, such as the NNLO and N3LO ones. We
have implemented this method in the public code ggHiggs,
version 4.0 onwards. The method of double subtraction,
Eq. (3.16), has also been implemented in the code to test the
sensitivity of the results on the method of including small-
z contributions (this method was already used in previous
versions of ggHiggs for the NNLO, with a = −1, as pre-
scribed in Refs. [27,57]). The method of generalized expan-
sion, Eq. (3.17), with z0 = 1/2 has been implemented at
N3LO to investigate the possibility of improving the descrip-
tion of the transition region 10−2 � z � 10−1, as we will
discuss below. Instead, the method of subtraction, Eq. (3.7),
due to its implementation difficulties and its arbitrariness,
will be discarded.

The actual numerical implementation of the exact small-
z logarithms has to face with the limitation that we know
from resummation only the leading contribution, A(k)

n with
n = k − 1, while the coefficients with n < k − 1 are

12 To be precise, for z0 = 1, the coefficients c̃(k)
p,i (a, z0)must be replaced

with c(k)
p,i (a, �) which depend on the logarithms � = log(1 − z), so the

limit z0 → 1 isn’t smooth.

unknown at NNLO and N3LO. Here we can follow two possi-
ble approaches: we can either include only the known A(k)

k−1,
setting to zero all the other coefficients, or we can guess their
values. Since the subleading logarithmic contributions are
likely more important than the leading one in a region of
medium-small z, keeping these coefficients certainly helps.
However, exactly because they may be relevant, their values
must be guessed wisely.

To do so, we follow the idea proposed in Ref. [28], namely
we include subleading contributions as predicted by the LL
resummation. To be precise, we use Eqs. (2.32), (2.35) and
(2.36) to construct the O(α2

s ) and O(α3
s ) contributions to the

coefficient functions in the various partonic channels in terms
of the coefficients C̃i j . The anomalous dimensions γ0,1,2

appearing in those equations are taken to be the expansion
terms of the exact “plus” eigenvalue of the singlet anoma-
lous dimension matrix, rather than the ones predicted by the
resummation, which is appropriate for a fixed-order predic-
tion. Finally, these expressions are expanded about N = 0
to identify the resulting A(k)

n coefficients. This procedure is
certainly not fully correct. However, in a NLL (or higher)
resummation, these contributions will be part of the full pre-
diction, which will also contain some additional correction
due e.g. to the impact factor at the next perturbative order.
The hope is that these corrections be less important that the
contributions that we include, such that the prediction is at
least reasonable.

It is clear, however, that such an implementation is not
fully satisfactory, especially at N3LO, where only one out of
three parameters is known, i.e. A(3)

2 is exact while A(3)
1 and

A(3)
0 are only guessed. Therefore, it is important to assess, at

least qualitatively, the effect of not knowing all the small-
x contributions. To do so, we can consider variations of
the unknown parameters. There are various ways in which
these could be done, none of them being particularly justi-
fied. Thus, we consider only a very simple variation, which
is obtained by setting to zero the coefficient of 1/z, A(k)

0 .
At NNLO, this is the only unknown coefficient, while at
N3LO it is the one that governs the contribution which has
the largest impact at medium z, and it is thus sufficient to infer
an uncertainty for those values of z relevant for LHC or FCC.
Incidentally, as we shall see, the resulting uncertainty covers
the difference between the two implementations Eqs. (3.12)
and (3.16), which is located in the medium/small-z region, as
well as the effect of changing a from 0 to 1 or −1. Thus, we
can take the uncertainty band obtained setting A(k)

0 = 0 as
a good representative of all the small-z uncertainties at fixed
order.

In Fig. 2 we show the partonic coefficient functions for
the gluon-gluon, gluon-quark and quark-antiquark partonic
channels for factorization and renormalization scales both
equal to half the Higgs mass (mH = 125 GeV), which is
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Fig. 2 Partonic coefficient functions for ggH production at fixed order
(upper plots: NLO; mid plots: NNLO; lower plots: N3LO) in solid
red and its EFT approximation in dashed black. In each row the three
plots correspond to the gg, qg and qq̄ partonic channels. From NNLO
onwards there are contributions also from other quark-quark partonic
channels, which however share the same small-z behaviour and are thus
not shown. Fixed-order results have an uncertainty band obtained setting

A(k)
0 = 0 and symmetrizing the variation. At NNLO some variants of the

construction based on both Eqs. (3.12) and (3.16) with a = −1, 0, 1
are shown in solid light blue. At N3LO the alternative implementa-
tion Eq. (3.17) is also shown in dot-dashed blue. The Higgs mass is
mH = 125 GeV, the top mass mt = 173 GeV, and the scales are
μF = μR = mH /2

nowadays the default central scale adopted by most groups
[51], and withmt = 173 GeV. In the gg case, only the regular
part of the coefficient function is shown, as defined in foot-
note 10. Results are presented in solid red (NLO in the upper
plots, NNLO in the mid plots, N3LO in the lower plots). At
NLO the result is exact [52], while beyond NLO it is con-
structed according to Eq. (3.12) with a = 0 and with damp-
ing function Eq. (3.13). Consequently, NNLO and N3LO
results are supplemented with an uncertainty band, obtained
as described above by setting A(2)

0 = 0 and A(3)
0 = 0 respec-

tively, and symmetrizing the variation with respect to our cen-
tral prediction. For each plot, the leading EFT approximation
(p = 0) is also shown in dashed black. At NNLO, we show
additional curves which correspond to the two constructions
Eqs. (3.12) and (3.16) with different values of a = −1, 0, 1.
At N3LO, the alternative implementation Eq. (3.17) is also
shown, together with its own uncertainty band, in dot-dashed
blue. Note that at N3LO the small-x contributions are differ-
ent depending on whether the MS or the Q0MS scheme is
used. Here we decide to use the Q0MS scheme also at fixed
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order, to match the scheme adopted in the resummed results
that we will consider in the next subsection.

Several comments are in order. First, it is apparent that
the EFT approximation has the wrong small-z behaviour,
as it exhibits double logarithmic enhancement (at leading
power) rather than the correct single logarithmic enhance-
ment. Indeed, as discussed before, the EFT is expected to
fail for z � ρt/4 � 0.13: this is apparent from the plots,
where the red and black curves behave differently for val-
ues of z smaller than about ρt/4. An exception is the qq̄
channel at NLO, where the contribution from the produced
s-channel gluon is resonant at the t t̄ threshold in z = ρt/4,
producing the peak which is clearly not present in the EFT
approximation. In this case, the agreement between the EFT
and exact result is restricted to a region of larger z. This effect
is expected to be diluted at higher orders, due to the richer
dynamics; nevertheless it also suggests that it is in general
dangerous to trust the EFT result in the vicinity of z = ρt/4.

The last comment is relevant when analysing the alterna-
tive implementation of the N3LO result based on Eqs. (3.17),
(3.18) with z0 = 1/2 and a = 0, blue curve (and band) in
the lower plots. Indeed, as expected, this construction agrees
with the EFT result down to lower values of z � 0.05, thus
also reducing the impact of the uncertainty from subleading
logarithms in the medium-z region. However, the considera-
tions above suggest that z ∼ 0.05 is dangerously outside the
region of reliability of the EFT (which is roughly speaking
z > 0.2), so the gain in precision (smaller uncertainty) of
this construction is compensated by a loss in accuracy (the
unknown exact result may lie outside the estimated uncer-
tainty). This suggests to discard the construction based on
Eq. (3.17), and use the safer construction based on Eq. (3.12).

To study the differences of the other possible alternative
constructions proposed earlier in this section, we have shown
in the NNLO plots some curves corresponding to variations
of the a parameter in our default approach Eq. (3.12), and the
variant approach Eq. (3.16), again with different values of the
a parameter. When a = −1 (which we consider the lowest
acceptable value, even though we favour larger values), in
both approaches the soft expansion produces terms which
behave as 1/z, and thus differ by a constant amount to our
default result in Fig. 2 at small z. This is exactly the form
of the subleading contributions used for our estimate of the
uncertainty band. For a ≥ 0, the difference is located in a
region of medium z, approximately between z ∼ 10−2 and
z ∼ 10−1. Larger values of a > 1 (not shown in the plots)
do not give any visible difference with respect to the results
with a = 1. Albeit non negligible, these variations are nicely
covered by our uncertainty band, as we anticipated.

Finally, at NNLO we observe a reduction of the uncer-
tainty band when going from gg to qg and to the purely
quark initiated channel. This reflects a relatively less impor-
tant contribution of the small-z logarithms in quark channels.

At N3LO the pattern is the same, but the uncertainty bands
are bigger, as appropriate due to the fact that the fraction of
known small-z terms at this order is smaller. We stress that,
in general, the displayed uncertainty is likely an overestimate
of the actual uncertainty, since the coefficient A(k)

0 is brutally
set to zero rather than varied in a reasonable range. Thus, the
uncertainty band will be useful only to visualize the potential
impact of subleading logarithmic contributions and to moti-
vate further work towards their computation, rather than for
computing an actual uncertainty on the cross section.

3.2 Impact of high-energy resummation at parton level

Having described how the exact small-z behaviour is included
in fixed-order computations performed within the large top-
mass EFT framework, we now investigate the effect of sup-
plementing the fixed-order computation with the all-order
resummation of small-z logarithms. At parton level, this is
implemented by adding to the fixed-order coefficient func-
tions the resummed contributions �kCi j defined in Sect. 2.4.
In this section we study the impact of resummation on par-
tonic coefficient functions, while the effect on the physical
cross section will be discussed in the next section.

In Fig. 3 we report the partonic coefficient functions in the
same format as Fig. 2. Results are presented at fixed order in
solid red, and with resummation (in the Q0MS scheme) in the
two implementations: using the NLL anomalous dimension
in dashed blue, and using the LL′ one in dot-dot-dashed yel-
low (see discussion in Sect. 2.2 and in Ref. [16]). The fixed-
order results are also supplemented by the band which rep-
resents a rough estimate of the potential impact of unknown
subleading logarithmic contributions, as described in the pre-
vious subsection. Similarly, the resummed results are supple-
mented by an uncertainty band, obtained varying subleading
logarithmic contributions related to running coupling effects
in the resummation procedure, as described in Refs. [4,16].13

At NLO and NNLO the two implementations of the resum-
mation give qualitatively similar results, deviating from the
fixed order for z � 10−1 at NLO and z � 10−2 ÷ 10−3 at
NNLO. The growth of the resummed contribution is slightly
stronger when the NLL anomalous dimension is used. The
uncertainty band of the LL′ variant is slightly larger than the
one of the NLL variant, and covers the latter result every-
where, making them fully compatible. At NNLO, we notice
that the resummed result lies within the fixed-order uncer-
tainty band for z � 10−4 ÷ 10−3, which is the region most
important for phenomenology. If the bands represented faith-
fully the uncertainty from unknown subleading logarithms

13 Specifically, we use the sum in quadrature of two independent vari-
ations, one obtained by letting r(N , αs) → αsβ0 in Eq. (2.11), and the
other obtained changing the way γ+ resums running coupling sublead-
ing contributions.
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Fig. 3 Partonic coefficient functions for ggH production at fixed order
in solid red and fixed order plus resummation in two different imple-
mentations: dashed blue is the new implementation that uses the NLL

anomalous dimension, and dot-dot-dashed yellow is the implementa-
tion using the LL′ anomalous dimension. The format and details are as
in Fig. 2

at fixed order, then the effect of resummation in the partonic
coefficient functions would be irrelevant compared to such
uncertainty.

At N3LO the general pattern is similar, with some impor-
tant differences. The resummed contribution, computed
using the NLL anomalous dimension, is a small correction
which lies entirely within the fixed-order uncertainty band for
the whole z range shown. However, this time the behaviour
of the resummed result with LL′ anomalous dimension is
rather different. In general, the effect is larger than the corre-
sponding one with NLL anomalous dimension, and no longer
fully compatible with it, even though the uncertainty band is
also increased. Moreover, in the gg and qg channels, there

is a sizeable contribution of the resummation in a region
of medium-large z, 10−2 � z � 0.2. This is entirely due
to the O(α3

s ) expansion of the LL′ anomalous dimension
γ LL′

2 , Eq. (2.39), as explained in Sect. 2.5, and is indeed
absent in the quark-quark channel which does not depend
on it, see Eq. (2.36). This large contribution is in a region
of z which cannot be considered to be dominated by small-z
logarithms, and therefore has to be interpreted as a spuri-
ous effect. Indeed, the all-order resummed results with NLL
and LL′ anomalous dimensions agreed in that z region when
matched to NLO and NNLO, so there is no physical underly-
ing reason for which they should give such different results
when matched to one order higher.
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Fig. 4 Partonic gg-channel coefficient functions for ggH production
in N space, at LO (solid purple), NLO (solid green), NNLO (solid blue)
and N3LO (solid orange) and with resummation at NLO+LL (dashed
green), NNLO+LL (dashed blue) and N3LO+LL (dashed orange). The
left plots shows the actual coefficient functions, while the right plot
shows their ratio to the highest-order result, N3LO+LL. Fixed-order
results are supplemented with the uncertainty band obtained setting

A(k)
0 = 0 and symmetrizing the variation; the band at N3LO is just

the one from the O(α3
s ) contribution and does not contain the contri-

bution from the previous order. Similarly, the uncertainty bands on the
resummed contributions (right plot only) are estimated as the difference
between the NLL and LL′ variants of the resummation. The scales are
μF = μR = mH /2

Our interpretation of the origin of this spurious behaviour
is the fact that while the LL′ anomalous dimension makes
perfect sense to all orders, its αs expansion may be unsta-
ble order by order, perhaps due to its hybrid nature, and to
the fact discussed in Sect. 2.5 that none of the non-vanishing
contributions at O(α2

s ) and O(α3
s ) is exact. This is not the

case for the NLL anomalous dimension, which has a well
behaved αs expansion, with the leading non-vanishing sin-
gularity correctly predicted at each order. This conclusion is
in agreement with the analysis of Ref. [16], and represents
another motivation for favouring the use of the NLL anoma-
lous dimension in place of the LL′ one in the computation
of resummed coefficient functions, in particular when these
are matched to N3LO or to a higher order. Nevertheless, we
must bear in mind that the resummed result based on the LL′
anomalous dimension differs from the NLL one by formally
subleading contributions. Therefore, the difference between
the two formulations probes unknown subleading logarithms.
We see that this difference is similar (slightly more conserva-
tive) than the uncertainty band on the NLL-based resummed
result when matched to NLO or NNLO, and could thus be
used as an alternative way of estimating subleading loga-
rithmic uncertainty. When matched to N3LO, this difference
is rather larger than the simple blue band, especially in the
medium-large z region, and using it as a subleading loga-
rithmic uncertainty would be rather conservative. However,
given that we do not really know how large these subleading
logarithms may actually be, we suggest to use this difference

as a measure of such uncertainty. As we will see in the next
section the resulting uncertainty at the physical cross section
level is very reasonable.

Another powerful way of visualizing the effect of resum-
mation at parton level is through the Mellin transform of
the coefficient functions. In Fig. 4 we show the dominant
one, Cgg , as a function of the Mellin variable N for positive
real N . This time we include the full coefficient function,
and not just the regular part, since the Mellin transform of
a distribution is an ordinary function. In fact, the distribu-
tional part of the coefficient function is responsible for the
growth of the coefficient function at large N [59]. More-
over, it is known [38,59,60] that a saddle point evaluation of
the Mellin inversion integral defining the full cross section
(i.e. including both the coefficient functions and the PDFs)
provides an excellent approximation to the exact result, thus
showing that the bulk of the contribution of the coefficient
function to the cross section is encoded in its value at the
saddle point N = Nsaddle. From Ref. [38] we know that
the saddle point for SM Higgs production varies from14

Nsaddle � 1.1 for LHC at
√
s = 7 TeV to Nsaddle � 0.9

for LHC at
√
s = 14 TeV and to Nsaddle � 0.7 for FCC at

14 Note that in the mentioned references a different, more standard def-
inition of the Mellin transform is used where the leading high-energy
singularity is in N = 1. In this work we use a different definition,
common in high-energy resummation literature, where the leading sin-
gularity is in N = 0. Thus the values of N read from those references
must be lowered by a unity.
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√
s = 100 TeV. Thus, the region of interest for phenomenol-

ogy in a vast range of hadron-hadron collider energies is all
located in a small range of N close to N = 1.

In the left plot of Fig. 4 the full LO, NLO, NNLO and
N3LO coefficient functions are shown, together with the
resummed NLO + LL, NNLO + LL and N3LO + LL coun-
terparts. Since the plot becomes busy in the small-N region,
we also plot in the right panel the ratio of each curve to the
highest order curve, N3LO + LL. We see that the resummed
results depart from the fixed order for N < 1, and they all
diverge at the same N = Npole > 0, which is determined by
the resummation. Thus, they all grow stronger than each fixed
order, which instead are singular in N = 0. Interestingly, the
N3LO + LL curve is very close to the N3LO curve even
at rather small N � 0.2, which is in line with the behaviour
found in the z-space plots, and shows that the effect of small-
z resummation on the N3LO coefficient function is expected
to be negligible, since the saddle point is in a region where
N3LO and N3LO + LL are almost identical. In particular, the
effect of subleading logarithms at fixed order, estimated by
the coloured filled bands in the plots, is likely more signifi-
cant than the effect of all-order resummation, both at NNLO
and N3LO. The fixed-order uncertainty bands also appear
to be larger than the uncertainty on the resummed contribu-
tions, estimated as the difference between the NLL and LL′
variants, and shown with a pattern. While we may hope, as
already discussed, that these bands be over conservative, it
seems important to take this observation as a strong motiva-
tion to work towards improving the knowledge of the small-z
behaviour of the Higgs partonic coefficient functions.

3.3 Impact of high-energy resummation on the cross
section

We now move to the physical cross section. It is defined
as the convolution of the partonic coefficient functions with
the PDFs, according to Eq. (2.2) which in momentum space
reads15

σ(N , Q2) = σ0(Q
2)

∑
i, j=g,q

∫ 1

τ

dz

z

× Ci j

(
z, αs(μ

2
R),

μ2
F

Q2 ,
μ2

R

Q2

)
Li j

(
τ

z
, μ2

F

)
,

(3.19)

Li j (x, μ
2
F) =

∫ 1

x

dy

y
fi (y, μ

2
F) f j

(
x

y
, μ2

F

)
, (3.20)

15 Note that in the case of the Higgs cross section σ0 is independent of N
in Mellin space, and thus it factors out also in the Mellin convolution in
momentum space. Additionally, the sum extends over all quark flavours
and not just the singlet combination.

with τ = m2
H/s and s che collider center-of-mass energy, and

we have restored the dependence on the renormalization scale
μR. Since high-energy resummation affects PDF evolution,
and PDFs at small-x are mostly determined by HERA data at
low Q2 which are thus very sensitive to resummation effects
and very “far” from the Higgs scale, it is crucial to use PDFs
which have been determined and evolved using resummed
theory when computing physical predictions which include
high-energy resummation.

Recently, such PDFs have been determined in the context
of the NNPDF methodology to PDF fitting [1]. Soon after, the
xFitter collaboration also performed an analogous determi-
nation [2], whose findings are in agreement with those of the
NNPDF study. In both cases, PDF sets have been fitted using
fixed-order theory (NLO or NNLO16) supplemented by high-
energy resummation at NLL in the Q0MS scheme provided
by the HELL code, version 2.0. To be precise, resumma-
tion in DGLAP evolution is really NLL, while resummation
in DIS coefficient functions is just formally NLL, since the
LL contribution vanishes. In this case, we would refer to
the accuracy of resummation in DIS as absolute NLL but
relative LL (for this notation, see Ref. [4]). In this respect,
Higgs resummation, which is relative LL, is consistent with
the PDF sets of Refs. [1,2].

In fact, since the Higgs cross section is known at fixed
order up to N3LO, a consistent computation would require
the use of PDFs obtained with N3LO theory, supplemented
by resummation when computing resummed cross sections.
However, this would require four-loop DGLAP splitting
functions, which are not known yet, even though recently
there has been some impressive progress towards their com-
putation [35–37]. Therefore, for the time being we can only
rely on NNLO (or NNLO+NLL) PDFs.

We will focus on the PDFs of Ref. [1], which are publicly
available. In that work, various families of PDF sets have been
obtained by using different datasets. The mainstream family
is based on a global dataset, which includes on top of DIS
data a large amount of “hadronic” data (mostly Drell–Yan, jet
and t t̄ production), selected in a region where resummation
effects in the coefficient functions are expected to be negligi-
ble, since for these observables resummation is not yet avail-
able in HELL. Another family is then obtained by including
only the DIS datasets in the fit, such that resummation is con-
sistently included for all datapoints. Three variants of these
DIS-only fits have been created by enlarging the dataset to
include pseudo-data from possible future DIS experiments,
namely the large hadron-electron collider (LHeC), the future
circular electron-hadron collider (FCC-eh), and both.

For each family, four fits have been performed, with NLO,
NLO + NLL, NNLO and NNLO + NLL theory (except for

16 The xFitter study [2] only considered NNLO theory, since the effects
of small-x resummaiton are more marked at that order.
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the LHeC and FCC families where only NNLO and NNLO
+ NLL is available). In all cases, the resummation makes use
of the LL′ anomalous dimension, which, as suggested in Ref.
[16] and confirmed in this work, is not the best choice. The
new version of HELL released with this work, 3.0, uses
the NLL anomalous dimension rather than the LL′ one as
default, so future fits including high-energy resummation will
be performed with this new setup. So far, only a single PDF
set with resummation at NNLO + NLL has been determined
using the NLL anomalous dimension, which has been used
in Ref. [1] to investigate the effect of subleading logarithms.
However, this set is based on the DIS-only dataset, and as
such it suffers from larger uncertainties and it is then not
suitable for phenomenology. Nevertheless, its existence will
be helpful to investigate the effect of computing consistently
the Higgs cross section with our favourite choice of NLL
anomalous dimension.

We have to warn the Reader that theHELL 2.0version of
the code [4] used for the aforementioned PDF fits was based
on an incorrect resummation formula, which produced spu-
rious NLL contributions to the Pgg splitting function beyond
O(α3

s ), and affected other splitting functions and coefficient
functions beyond their logarithmic accuracy. The issue has
been corrected in HELL 3.0 [16]. The effect of the correc-
tion at the level of splitting functions and coefficient functions
appears to be reasonably small [16], especially in the kine-
matic region of HERA, so we expect that the resulting PDFs
are not severely affected by the issue. We stress however
that the difference between the LL′ and NLL formulations of
the resummation matched to NLO or NNLO is significantly
reduced after the correction: therefore, the non-negligible dif-
ference in the PDFs [1] obtained with these two formulations
using the previous version of the code will likely be reduced
significantly in future PDF fits based on HELL 3.0.

The effect of including resummation in the theory used
for PDF determination is on the one hand an improvement
of the quality of the description of the data, and on the other
hand a rather different gluon and quark-singlet PDFs at small
x . Such effect is much larger when resummation is added on
top of the NNLO than on the NLO. The resulting gluon and
quark-singlet PDFs at NNLO + NLL are harder at small-x
than their NNLO counterparts. The shape of the resummed
PDFs is very similar in both Refs. [1,2], despite some impor-
tant differences in the fitting methodology, the dataset and
the treatment of the charm PDF. It is important to stress
that the data constraining the PDFs at small x are mostly
inclusive HERA data [61] which lie at a small energy scale
Q2. The effect of small-x resummation in the fit of PDFs is
thus induced by the modified description of the DIS struc-
ture functions at low x and Q2, which in turn determines
a different gluon and quark-singlet PDFs at low Q2, which
is then evolved to higher scales through DGLAP evolution
(using resummed splitting functions). Therefore, the effect

of resummation on PDFs at small x at the Higgs scale is
somewhat indirect (this is true also for fixed-order PDFs at
small x), though not less reliable. However, it would prove
very useful to include in future additional data at small x and
larger Q2, e.g. from forward Drell–Yan at LHCb, to further
constrain the small-x PDFs at a scale closer to the Higgs
scale. The resummation of such a process in HELL is work
in progress.

In the rest of this section we will proceed as follows. First,
we take the global PDF sets of Ref. [1] and compute predic-
tions for the resummed Higgs cross section. Then, we will
use the DIS-only PDFs to study the impact of subleading
terms, both at the level of PDFs and of the coefficient func-
tions. Additionally, in the context of the DIS-only sets we
will investigate the reduction of the PDF uncertainty on the
Higgs cross section that could be achieved with future DIS
experiments.

Let us start with the PDFs based on the global dataset.
We consider mH = 125 GeV (physical Higgs) and mt =
173 GeV, and compute the cross section as a function of
the collider center-of-mass energy

√
s. We set the scales to

μR = μF = mH/2, which is our default central choice.
In Fig. 5 (left plot) we show the cross section at N3LO and
N3LO + LL for a range of collider energies which spans from
a Tevatron-like17 energy of

√
s = 2 TeV to a FCC-hh energy

of
√
s = 100 TeV. Since the cross section changes signifi-

cantly over this large range of energies, we present the results
as ratios (K -factors) with respect to the fixed-order N3LO
prediction. For the fixed order (green) and resummed (red)
predictions we use the NNLO and NNLO + NLL global PDF
sets of Ref. [1], respectively. The uncertainty band shown rep-
resents the PDF uncertainty only. We see that the effect of
resummation is small and compatible within the PDF uncer-
tainty for small collider energies, up to the current LHC
energy of

√
s = 13 TeV. From this value onward the net

effect of the resummation is a significant increase of the cross
section with respect to the fixed-order prediction, reaching
up to +10% for FCC at

√
s = 100 TeV.

This huge effect may seem surprising, and thus deserves
a careful investigation. First of all, we note that basically the
whole effect comes from the use of resummed PDFs, while
the effect of the resummation in the coefficient function is
almost negligible. Indeed, in the same plot there is an addi-
tional curve (dashed blue) obtained by computing the fixed-
order N3LO cross section with the resummed PDFs: this
curve, which differs from the red one only by the resummed
contributions to the coefficient function, is basically identical
to it, except for a tiny deviation visible only at large collider

17 We are assuming that the collider is a proton-proton collider, so this
prediction is not really a Tevatron prediction. However, the difference
between proton and antiproton PDFs is limited to non-singlet PDFs,
which give a negligible contribution to the Higgs cross section.
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Fig. 5 Ratio of the N3LO Higgs cross section with and without resummation to the N3LO fixed-order cross section, as a function of the collider
center-of-mass energy. The PDFs used are from the global dataset of Ref. [1]

energies grater than
√
s ∼ 30 TeV. These observations nat-

urally raise the following questions. Why is the effect of
high-energy resummation in the PDFs and in the partonic
coefficient functions so unbalanced? Specifically, why is the
effect of resummation in the PDFs so large? And why is the
effect of resummation in the partonic coefficient functions so
small? We now answer these three questions in turn.

The unbalance between the effect of resummation in PDFs
and partonic coefficient functions is a characteristic feature of
the observable under consideration being an inclusive cross
section, and is due to the form of the convolution defining
the cross section, Eq. (3.19). In particular, given that in the
convolution when the coefficient functions are computed in
z the PDF luminosities are computed in x = τ/z, in the inte-
gration small-z coefficient functions multiply large-x PDFs
and vice versa. To illustrate why this generates an unbalance,
we show in Fig. 6 the luminosities xLi j (x, μ2

F) for x = τ/z,
as a function of the integration variable z, for i j = gg (left
plot), i j = qg (middle plot) and i j = qq̄ (right plot). These
functions are the weights to the coefficient functions in the
integral Eq. (3.19) defining the cross section. Since such func-
tions depend on τ = m2

H/s, we show both the case for current
LHC (

√
s = 13 TeV, first line) and FCC-hh (

√
s = 100 TeV,

second line). It is clear that when the integration variable
z is small, and thus the small-z logarithms are enhanced in
the coefficient functions, the parton luminosities (and thus
the PDFs) are computed at large values of their argument
x = τ/z (reported in the upper axis), where the PDFs van-
ish, giving a suppressed contribution to the integral. There-
fore, the region where small-z resummation has an effect in
the coefficient functions (roughly z � 10−2, from Fig. 3),
gives a tiny contribution to the convolution integral, i.e. to
the cross section. On the contrary, the large-z (threshold)
region (roughly speaking, the region z � 0.1) is enhanced
in the integrand by the larger value of the luminosities and

dominates the integral.18 In this region, the resummed coef-
ficient functions reduce to their fixed-order limit (Fig. 3) and
are thus insensitive to small-z resummation, but the PDFs
are computed at smaller values of their argument, and are
thus potentially sensitive to small-x logarithmic enhance-
ment. Since this region is enhanced by the larger values of
the luminosities, the effect of small-x resummation in PDFs,
if present, is enhanced with respect to the effect of small-
z resummation in coefficient functions. Indeed, in the plots
the luminosities are computed using both the NNLO (dashed
blue) and the NNLO + NLL (solid red) sets of PDFs of Ref.
[1], and it is apparent that in the FCC case, which probes
smaller values of x = τ/z, all the luminosities are very dif-
ferent at large z, giving the aforementioned 10% effect on
the cross section. In the LHC case, the discrepancy between
the two PDF sets is much less marked, but still sufficient to
give the 1% effect observed in Fig. 5.

Regarding the second question, we argue that the origin of
this huge difference between the predictions obtained with
either the NNLO or the NNLO + NLL PDFs is due to the
former being unreliable at small x , due to a perturbative insta-
bility in the splitting functions and DIS coefficient functions
at NNLO, in turn due to the unresummed small-x logarithms.
Indeed, in Ref. [1] it was observed that the behaviour of the
NNLO gluon PDF at small x is rather different from that
of the NLO PDF; the latter, in turn, is quite similar to both
the NLO + NLL and NNLO + NLL resummed gluon PDFs.
Namely, the perturbative progression of the PDFs is pertur-
batively stable at small x when resummation is included, but
unstable when resummation is not included, the instability

18 This enhancement of the large-z portion of the integrand due to the
PDF luminosities is a well known effect [33,38,62,63], and it is the
reason for which threshold (large-z) resummation is important for this
process.
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Fig. 6 The luminosities xLi j (x, μ2
F) for x = τ/z as a function of z,

for i j = gg (left plot), i j = qg (middle plot) and i j = qq̄ (right plot),
for Higgs production at LHC at

√
s = 13 TeV (top row) and FCC-hh

at
√
s = 100 TeV (bottom row). Values of x = τ/z are shown in the

upper horizontal axis. The factorization scale corresponds to the central
choice μF = mH /2. The PDFs used are from the global dataset of Ref.
[1]

starting to appear at NNLO. To understand how much of
this PDF behaviour is reflected on the Higgs cross section,
we show in Fig. 5 (right plot) the fixed-order and resummed
cross sections using NLO PDFs (dashed green), NNLO PDFs
(solid green), NLO + NLL PDFs (dashed red) and NNLO +
NLL PDFs (solid red). We observe indeed that at high collider
energies (which probe smaller x and are thus more sensitive to
small-x logarithms and their resummation) all curves except
the one with NNLO PDFs are grouped together, indicating
that the small-x instability of the NNLO is really the culprit
of the huge difference between fixed-order and resummed
results at high collider energies. Indeed, the resummed result
with NNLO + NLL PDFs is a reasonably small correction to
the results obtained with either NLO or NLO + NLL PDFs at
high energies. We conclude that the effect of small-x resum-
mation on the Higgs cross section is per se not surprisingly
large; however, using NNLO PDFs gives rise to unreliable
results at high energies, due to the instability at small-x ,
which is not even covered by the PDF uncertainty. This effect
is expected to be even more marked with N3LO PDFs, since
N3LO splitting functions suffer from stronger instabilities,
as demonstrated in Ref. [16]. Thus, contrary to the common
lore, using N3LO PDFs for a N3LO cross section such as the
Higgs cross section would produce results which are even

less reliable than those with lower order PDFs. Therefore,
at high energies precise and reliable predictions can only be
based on small-x resummed PDF sets.

We also observe that at small collider energies using
resummed NNLO + NLL PDFs gives a reduction of the
cross section, which seems to approach a constant value
of about −2%. Here the PDF uncertainties are large, and
with respect to them this effect is not significant. Moreover,
the Higgs cross section at these energies is so small to be
not phenomenologically relevant. Even so, it is interesting
to explain the origin of this effect. This reduction of the
cross section originates from a depletion of the gluon PDF
for 10−2 � x � 10−1 when resummation is included, see
e.g. Fig. 4.8 of Ref. [1]. While this effect is not genuinely
a small-x effect, its origin is indirectly due the inclusion of
small-x resummation through the constraint imposed in the
PDF fits by the momentum sum rule: the smaller gluon at
medium/large x compensates the larger gluon at small x . It
is then important to keep in mind that even though small-x
resummation has its largest effects at small x , the changes in
the theoretical ingredients of PDF fits also induce (smaller)
effects at medium and large x , which in turn may lead to
visible effects on some observables not directly sensitive to
the small-x region.
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Moving to the third question, we now return to the obser-
vation that the resummation in the coefficient function has
a tiny effect. This fact is partly due to the fact that we
are adding resummation in the Q0MS scheme on top of
the already rather precise N3LO prediction, and is in per-
fect agreement with the parton-level behaviour observed in
Sect. 3.2, together with the observation that the Higgs cross
section is threshold dominated, as clear from Fig. 6. However,
the size of small-z contributions to the coefficient functions
may be different when treating differently subleading con-
tributions, or in different factorization schemes. Indeed, we
have noted in Sect. 3.2 that the partonic behaviour is rather
different when N3LO is supplemented with the resummation
computed with the LL′ anomalous dimension. In that case,
the resummation has an effect also at larger z, and may then
survive the luminosity suppression. While we believe that
this effect is spurious, it is interesting to see how it affects
the physical cross section. This is also interesting because
the PDF sets of Ref. [1] have been obtained using resum-
mation based on the LL′ anomalous dimension.19 (However,
the instability of the LL′ anomalous dimension appears when
expanded to O(α3

s ), which is not the case for the NNLO
+ NLL resummation used in the PDFs, for which the use
of the LL′ formulation can be considered reliable.) Thus,
in the left plot of Fig. 5 we also show the LL′ version of
the resummed prediction (dot-dashed red). In this case, the
effect is rather large, even for small collider energies where
we expect resummation to have no effect: this is entirely due
to the sizeable contribution of the resummation at z ∼ 10−1

(see Fig. 3), and confirms the spurious nature of such effect.
(Interestingly, the effect is positive, i.e. it does not compen-
sate in any way the effect of the resummation in the PDFs,
which would be expected if the process were included in the
PDF fit.) However, it also points out that a different treat-
ment of subleading contributions may give sizeably different
results, so the smallness of the effect of resummation in the
coefficient functions is also due to the specific choice of using
the NLL anomalous dimension in the resummation.

While we have found strong motivations to discard the
resummation based on the LL′ anomalous dimension, we
have suggested in Sect. 3.2 to use the difference of the
resummed predictions obtained with NLL and LL′ anoma-
lous dimension as an uncertainty due to unknown subleading
logarithmic contributions. This choice is certainly conserva-
tive if one considers the effect on the coefficient function
alone. However, we shall not forget that subleading logarith-
mic contributions may have sizeable effects in the PDFs as
well, which are probably not taken into account by the PDF
uncertainty (see also discussion in Ref. [1]). Thus, this uncer-
tainty has the role to also account for subleading logarithms

19 We recall that the PDF set was obtained with the previous version of
HELL, and therefore the LL′ is not really consistent with those PDFs.

in PDFs, e.g. to compensate for the fact that these PDFs have
not been obtained using the NLL anomalous dimension.

It would be interesting to quantify how large the uncer-
tainty from subleading logarithmic contributions in the PDFs
can be. One way to do so is to use a PDF set which has
been determined using resummation implemented through
the NLL anomalous dimension. In such a PDF set both
the DGLAP evolution and the theory used to describe the
DIS data at small x (all of which lie at small Q2) differ by
subleading contributions with respect to the implementation
based on the LL′ anomalous dimension. Despite the fact that
the difference is subleading, and that when resummation is
matched to NNLO (as in the PDF fit) the difference between
the LL′ and NLL implementations is small, the effect on the
resulting PDFs may be sizeable, mostly because the relevant
DIS data lie at small Q2 where higher order corrections are
enhanced by large values of αs(Q2). As anticipated, in Ref.
[1] a single NNLO + NLL fit based on the NLL anomalous
dimension20 has been performed. As one can appreciate from
Fig. 4.4 of Ref. [1], the qualitative behaviour of the PDFs and
the significance of the effect of resummation is the same with
both choices for the anomalous dimension. Nevertheless, the
effect of subleading contributions gives a quantitatively dif-
ferent result, as one may expect from the argument above.
This effect is not covered by the PDF uncertainty, and thus
it is important to understand how it impacts a physical cross
section. However, this variant of the fit was performed just
in the context of the DIS-only dataset. Thus, to investigate
the effects of subleading contributions in a consistent man-
ner, we need to consider the DIS-only fits, which however
suffer from larger uncertainties and are thus not suitable for
phenomenological applications.

In Fig. 7 we show (left plot) the resummed cross section
(normalized to the N3LO one computed with NNLO PDFs)
with four different combinations of choices of subleading
contributions: using consistently the LL′ anomalous dimen-
sion in both PDFs and coefficient functions (dot-dashed red),
using the LL′ anomalous dimension in the PDFs and the NLL
one in the coefficient functions (solid red, our default), using
consistently the NLL anomalous dimension in both PDFs and
coefficient functions (solid blue), and using the NLL anoma-
lous dimension in the PDFs and the LL′ one in the coefficient
functions (dot-dashed blue). We restrict our attention to the
LHC–FCC energy range, and show on our default predic-
tion (solid red) the PDF uncertainty band (darker red area)
and the sum in quadrature of it with the “subleading log-
arithmic uncertainty” as defined above, namely by the dif-
ference between solid and dot-dashed red (lighter red area).

20 However, as already mentioned, also this fit was performed prior to
the correction in the resummation code, where the difference between
the LL′ and NLL variant was larger than in the bug-fixed version HELL
3.0.
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Fig. 7 Left plot: ratio of the N3LO + LL Higgs cross section to the
N3LO one as a function of the collider energy, using various combina-
tions for the implementation of resummation in the coefficient function
and in the (DIS-only) PDFs. Right plot: relative PDF uncertainty as a

function of the collider energy for the resummed cross section obtained
with the global, DIS-only and DIS-only + FCC-eh PDF sets of Ref. [1]

The solid blue curve is what we would consider the new
default prediction, as it uses consistently the NLL anoma-
lous dimension, as suggested in Ref. [16] and here. We note
that such prediction is smaller than our default one, reaching
“just” a 6% increase over the N3LO at FCC, and suggesting
that our current default prediction may overestimate the real
effect. Nevertheless, we see that our full uncertainty band
reasonably takes into account the difference between the two
predictions, even though the blue curve lies outside the band
for

√
s � 30 TeV. However, we need to keep in mind that

these PDFs are based on the previous version of HELL, where
the difference between LL′ and NLL formulations was larger
than in the new corrected version, as we commented before.
We may realistically expect that with the new version of the
code the PDF sets corresponding to the two variants of the
resummaiton be closer to each other, such that our uncertainty
band successfully covers such effect. A definitive answer can
only be obtained in future, when a (possibly global) PDF fit
will be performed with the new HELL 3.0 default, ide-
ally also including the resummation of hadron-hadron col-
lider observables, most importantly Drell–Yan cross sections,
which can directly constrain small-x PDFs at larger Q2 and
then reduce an unavoidable source of uncertainty coming
from the large portion of DGLAP evolution from the low-
Q2 HERA region (where the data which constrain the PDFs
at low x lie) to the ElectroWeak scale. In any case, it appears
clear that subleading contributions at small x are important,
and should be taken into account when computing the uncer-
tainty from missing higher orders in PDF determination.

In the context of DIS-only fits, in Ref. [1] it has been stud-
ied the impact of the inclusion of pseudo-data from possible
future DIS experiments at LHeC and FCC-eh. It is interesting

to use those results to study the benefits that the construction
of such experiments may give in the prediction of the Higgs
cross section. While this study is interesting also beyond the
business of small-x resummation, a striking feature of both
the LHeC and FCC-eh datasets is to provide a significant
reduction on the PDF uncertainty at small x , also due to the
extended sensitivity to smaller values of x than reached at
HERA, thus also enhancing the sensitivity to small-x resum-
mation effects [1]. Most of the uncertainty reduction is pro-
vided by the FCC-eh dataset, with the LHeC dataset pro-
viding only an extra little improvement. Being realistic (it
is unlikely that both facilities will be built) and also want-
ing to maximize the effect of the new data, we decide to
consider the PDFs obtained with the addition of the FCC-
eh dataset alone. In Fig. 7 (right plot) we show the relative
PDF uncertainty of the N3LO + LL result for the real DIS-
only fit (dashed blue) and the futuristic DIS-only fit including
FCC-eh pseudo-data (dot-dashed green). We see that indeed
the reduction is significant and important in the high-energy
region. However, it is way less dramatic than the analogous
reduction visible in the gluon PDF (see Ref. [1]). This is due
to the fact that we are considering an inclusive cross section,
which, according to Eq. (3.19), contains contributions from
all the regions of x from τ to 1. Thus, the strong uncertainty
reduction on the gluon at small x has only a limited benefit on
the full PDF uncertainty of the cross section even at rather
large collider energies. Indeed, for comparison, in the plot
the uncertainty obtained with the global dataset (and thus
without FCC-eh) is also shown (solid red): this uncertainty
is always smaller than the DIS-only with FCC-eh one, up to
the FCC-hh energy where they become comparable. Thus,
for the inclusive cross section, future DIS experiments may
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Fig. 8 Perturbative progression of the Higgs cross section for four
collider energies

√
s = {8, 13, 27, 100} TeV. In each plot the NLO,

NLO+LL, NNLO, NNLO+LL, N3LO and N3LO+LL results are shown.

The results are supplemented by uncertainty bands from PDF, sublead-
ing logarithms and scale uncertainties

lead to an increased precision at high energies, but also pre-
cise hadron collider data can, and only combining both of
them one can achieve a higher precision. When considering
differential observables, which are more directly sensitive to
the PDFs at specific values of the momentum fraction, the
uncertainty reduction provided by FCC-eh or LHeC may be
more substantial.

So far we have presented results (with and without resum-
mation) at N3LO. To complete the discussion, we present
some representative results at previous orders. In Fig. 8
we show the NLO, NNLO and N3LO cross sections, and
their counterparts with resummation, for four choices of
the collider energies, namely

√
s = 8 TeV (LHC Run 1),√

s = 13 TeV (LHC Run 2),
√
s = 27 TeV (HE-LHC), and√

s = 100 TeV (FCC-hh). We use the global NNLO PDF
set for all fixed-order predictions, and the global NNLO +
NLL PDFs for all resummed predictions. For each predic-
tion we show various uncertainties. At fixed-order, the PDF
uncertainty (blue) and its sum in quadrature with the (asym-
metric) scale uncertainty (envelope of the standard 7-point
scale variation, yellow). At resummed level, the PDF uncer-
tainty (blue), its sum in quadrature with the uncertainty from
subleading logarithms (salmon), and their sum in quadrature
with the scale uncertainty (yellow). We observe that since
most of the effect of the resummation is due to the PDFs, the
increase in the cross section is more or less independent of
the perturbative order. Therefore the perturbative progression
does not improve significantly when adding resummation,21

even though a marginal improvement is anyway visible – for
instance, at the FCC-hh the NLO full uncertainty band does
not cover the NNLO result, while the NLO + LL band does
cover the central NNLO + LL result. The scale uncertainty,
being it dominated by the μR dependence, is not improved

21 Threshold resummation, instead, has exactly the effect of predicting
most of the higher order contributions, and thus speeds up the pertur-
bative convergence, see Refs. [17,46].

either, again because most of the resummation effect is given
by the PDFs, which only depend on μF. It is interesting to
note that the uncertainty from subleading logarithmic contri-
butions is negligible at NLO + LL, small at NNLO + LL and
quite large (comparable with scale uncertainty for HE-LHC
and FCC-hh) at N3LO + LL. Because we compute this uncer-
tainty as the difference between using NLL and LL′ anoma-
lous dimensions in the resummation of coefficient functions,
this pattern shows that these two approaches give quantita-
tively similar results at NLO+LL and NNLO+LL, but as we
have already noted they differ significantly at N3LO+LL, in
agreement with the parton level results presented in Sect. 3.2.

We do not report explicit numerical results, as these have
been already presented in Ref. [17], where the contribution
from threshold resummation is also included, which is known
to stabilize the perturbative expansion of the Higgs cross sec-
tion, and additional corrections due to e.g. the bottom and
charm quark running in the loop are considered. Therefore,
the results of Ref. [17] are more appropriate for phenomeno-
logical applications.

We conclude the section with a final observation on the
importance of considering the effect of small-x resummation
for precision phenomenology. At the current LHC energy
including resummation leads to a 1% increase of the cross
section. This effect is covered by the estimate of the the-
ory uncertainty +1.4%

−3.6% from missing higher orders (in both
coefficient functions and PDFs) recommended by the LHC
HXSWG [7,51].22 However, when including additional cor-
rections at threshold [17], the overall effect of resummations
becomes an increase of 2% of the cross section, which is out-
side the LHC HXSWG uncertainty. This shows on the one
hand that such uncertainty is likely underestimated, and on
the other hand that the inclusion of resummation(s) is neces-

22 This uncertainty is the linear sum (as prescribed by Refs. [7,51])
of the uncertainty from scale variations (+0.2%

−2.4%) and the estimate of the
uncertainty from missing higher order corrections in the PDFs (±1.2%).
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sary to achieve the (few) percent accuracy goal. Moving to
higher collider energies, the effect of small-x resummation
becomes more substantial. For instance, we have seen that at
the FCC-hh the effect of resummation amounts to an increase
of the cross section of approximately 10%. This is well out-
side the analogous estimate of the theory uncertainty from
missing higher orders +3.5%

−4.6% presented in Ref. [63], mostly
due to the fact that this estimate [7] of the uncertainty from
missing higher orders in the PDFs is only based on the pertur-
bative progression at lower orders, and thus it does not take
into account the presence of logarithmically enhanced con-
tributions at small x , which are responsible for the sizeable
effect of small-x resummation to this cross section. There-
fore, the inclusion of small-x resummation is essential not
only to reach a higher precision, but also to avoid under-
estimating the potential effects of higher order corrections.
These considerations easily hold for other processes as well,
and in some cases (e.g. differential observables more directly
sensitive to small-x PDFs) these effects may be much more
relevant even at the LHC.

4 Conclusions

In this work we have extended the resummation formalism
for partonic coefficient functions originally developed for
deep inelastic scattering [3] to the case of two hadron in the
initial state, relevant for LHC. In particular, at the leading
logarithmic accuracy we considered, only processes which
are initiated by two gluons at LO, such as Higgs production
in gluon fusion, top-pair production, jet production, etc., are
non-trivial, while processes which are quark initiated like
Drell–Yan resum only through a single initial state leg at this
order, and are thus treated identically to the single-hadron
case. We have demonstrated the equivalence of our (more
general) approach with the original ABF approach of Ref. [9]
under specific assumptions, and provided all the ingredients
needed to match resummed results to fixed-order computa-
tions up to N3LO. This formalism has been implemented in
the new version of the public code HELL 3.0.

We then studied a specific hadron-hadron collider pro-
cess, namely Higgs production in gluon fusion. The partonic
coefficient functions with incoming off-shell gluons needed
for obtaining the resummed on-shell coefficient functions
for this process have been computed a while ago [64–66].
However, it was possible to obtain consistent resummed pre-
dictions only thanks to two recent developments. On the one
hand, the creation of the public codeHELLwhich implements
the formalism for resummation developed in Refs. [3,4] and
extended to the hadron-hadron collider case in this work. On
the other hand, the existence of PDF sets which have been
obtained using small-x resummation (from HELL) in their
determination and evolution [1,2].

Comparing the Higgs cross section at N3LO supple-
mented by small-x resummation using resummed NNLO
+ NLL PDFs with the (current standard according to the
LHC HXSWG) fixed-order N3LO prediction using NNLO
PDFs, we have found that the cross section increases mildly
(+1%) at current LHC energy, and increases more substan-
tially for larger collider energies, reaching +4% at HE-LHC
(
√
s = 27 TeV) and +10% at FCC-hh (

√
s = 100 TeV).

In the Q0MS scheme that we adopt, almost all of this effect
comes from the use of resummed PDFs, and in particular it
is due to the fact that NNLO PDFs are unstable at small-
x due to the presence in the three-loop splitting functions
of large unresummed logarithms of x [1]. The effect would
be potentially much larger if (yet unavailable) N3LO PDFs
were used, since four-loop splitting functions are even more
unstable due to larger powers of the logarithms at small-x
[16].

The main conclusion that we draw is that predictions
based on NNLO PDFs and in future on N3LO PDFs will
be unreliable for processes which are sensitive to small-x
PDFs, due to the bias induced by the perturbative instability
of the splitting functions and coefficient functions of pro-
cesses used for PDF determination, which is not accounted
for in the way PDF uncertainties are estimated. While for
the inclusive Higgs cross section this seems to be the case
only at future colliders, for differential observables which
are more directly sensitive to PDFs at a given momentum
fraction this conclusion may hold also at the LHC in spe-
cific kinematic configurations (e.g., large rapidities). In these
cases, a reassessment of the PDF uncertainties at small-x is
mandatory, for instance by comparing theoretical predictions
obtained with PDF sets with and without small-x resum-
mation. The most reliable theoretical predictions should,
in these cases, be based on small-x resummed computa-
tion.

At the moment, the main limitation of small-x resumma-
tion is its limited logarithmic accuracy. For DGLAP evolu-
tion, resummation is known at NLL, while for the coefficient
functions it is known only at LL. In this work we have also
studied the potential effect of subleading logarithmic con-
tributions to the Higgs cross section, by computing differ-
ent theoretical predictions which differ by subleading terms
both in the coefficient functions and in the PDFs. The effect
is potentially large, and while the qualitative conclusions
of this study remain unchanged, achieving high precision
requires the extension of the small-x resummation formal-
ism to higher logarithmic order. This ambitious goal is left
to future work.

The new 3.0 version of HELL which contains all these
new developments is publicly available for download at the
address

http://www.ge.infn.it/~bonvini/hell
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It also uses a new default for the implementation of the resum-
mation, as discusses in Ref. [16]. HELL 3.0 has been used
in Ref. [17] to obtain double-resummed predictions at thresh-
old (large x) and at high energy (small x) for the Higgs cross
section at LHC and beyond.
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Appendix A: Off-shell coefficient function for Higgs pro-
duction

In this appendix we report some expressions which are
needed for the actual computation of the resummed coeffi-
cient functions for ggH . In particular, we report the off-shell
coefficient function, we explain how one can conveniently
change variables for obtaining a reliable numerical integra-
tion, and we show how the M-expansion coefficient of the
Mellin transform of the off-shell coefficient function (needed
for the perturbative expansion of the resummed results) can
be constructed. We stress that all the details given in this
appendix, with the exception of the explicit expressions of
the off-shell coefficients, are very general and can be used for
other processes with two incoming off-shell gluons as well.

A.1: Off-shell coefficient function in suitable variables

The lowest order off-shell coefficient function for ggH pro-
duction with both gluons off-shell has been computed in Ref.
[64]. Its form is

C (0, ξ1, ξ2, αs) = f1(ξ1, ξ2) + ξ1ξ2 f2(ξ1, ξ2) + O(αs),

(A.1)

with

f1(ξ1, ξ2) = |A1|2
4

∣∣1 − 1
4 (1 − 4/ρt )s2

0 (ρt )
∣∣2 , (A.2)

f2(ξ1, ξ2) = 2 |A3|2
4

∣∣1 − 1
4 (1 − 4/ρt )s2

0 (ρt )
∣∣2 , (A.3)

s0(ρt ) =
{

log 1−√
1−4/ρt

1+√
1−4/ρt

+ iπ ρt > 4

2i sin−1 √
ρt/4 ρt ≥ 4,

(A.4)

and we recall thatρt = m2
H/m2

t . The dimensionless form fac-
tors A1 and A3 have been computed in Refs. [65,66]. Before
presenting their form, we observe that numerical integration
of this function is problematic in the region ξ1 ∼ ξ2. Since
the off-shell cross section is symmetric under the exchange
of virtualities ξ1 ↔ ξ2, we suggest the change of variables

ξ1 = t (1 + y), ξ2 = t (1 − y). (A.5)

Thus, the integral over virtualities of a function F(ξ1, ξ2)

transforms as
∫ ∞

0
dξ1

∫ ∞

0
dξ2 F(ξ1, ξ2)

=
∫ 1

−1
dy

∫ ∞

0
dt 2t F(t (1 + y), t (1 − y))

= 2
∫ 1

0
dy

∫ ∞

0
dt 2t F(t (1 + y), t (1 − y)), (A.6)

where in the last line we have assumed F to be symmetric, so
that the problematic region ξ1 = ξ2 lies at the boundary of the
integration domain and can be better integrated numerically.
In terms of these variables, the form factors [65,66] have a
simpler form given by

A1(t, y) = C0(t, y)

�3

[
4(1 + 2t)

ρt
− (1 + 2t)2

+ 12
(1 + 2t)t2(1 − y2)

�3

]
+ 2

1 + 2t

�3

+ 2

�3

[
B0

( − t (1 + y)
) + B0

( − t (1 − y)
)

− 2B0(1)
] [

t − 6
t2(1 − y2)

�3

]

+ 2t y

�3

[
B0

( − t (1 + y)
) − B0

( − t (1 − y)
)]

×
[

1 + 12
t2(1 − y2)

�3

]
, (A.7)

A3(t, y) = C0(t, y)

�3

[
8

ρt
− 4 − 4t + 6

(1 + 2t)2

�3

]
+ 4

�3

+
[
B0

( − t (1 + y)
) + B0

( − t (1 − y)
) − 2B0(1)

]

× 2

�3

(
1 − 3

1 + 2t

�3

)

+
[
B0

( − t (1 + y)
) − B0

( − t (1 − y)
)]

× 12t y(1 + 2t)

�2
3

, (A.8)

with23

�3 = 1 + 4t + 4t2y2 (A.9)

23 We write C0 in the form given in Ref. [66], which turns out to be
numerically much more stable.
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B0(ζ ) = −
√

ζ − 4/ρt

ζ
log

√
ζ−4/ρt

ζ
+ 1√

ζ−4/ρt
ζ

− 1
, (A.10)

C0(t, y) = 1√
�3

[
κ(δ0, T0) + κ(δ+, T+) + κ(δ−, T−)

]
,

(A.11)

κ(δ, T ) = Li2

(
δ − 1

δ − T

)
+ Li2

(
δ − 1

δ + T

)

− Li2

(
δ + 1

δ − T

)
− Li2

(
δ + 1

δ + T

)
(A.12)

and

δ0 = 1 + 2t√
�3

T0 = √
1 − 4/ρt (A.13)

δ± = −1 ± 2t y√
�3

T± =
√

1 + 4/ρt

t (1 ± y)
. (A.14)

All these expressions have been coded in HELL 3.0. In
some particular limits, where some of the functions fail to
evaluate numerically (mostly due to the square root terms),
Taylor expansions are used to overcome this problem.

In the actual definition of the resummed coefficient func-
tions, Eqs. (2.19a) and (2.19b), the integration extends from
the position of the Landau pole ξ0 to infinity, and the off-shell
coefficient appears with derivatives with respect to ξ1 and ξ2.
The second fact is per se not a problem, except that these
derivatives must be computed analytically both for speed
reasons and to avoid proliferation of numerical errors. There-
fore, it is useful to limit as much as possible the number of
derivatives to be computed. To do so, we first observe that we
do not need to treat identically the contributions from f1 and
f2, Eq. (A.1). Indeed, in our numerical implementation we
use the expression in which the derivatives act on the coeffi-
cient function for the f1 contribution, while we use the one
with derivatives on the evolution functions for the f2 contri-
bution. Making the notation very schematic and omitting all
arguments except the virtualities, we write Eq. (2.19a) as

Cgg =
∫

dξ1

∫
dξ2

[
U (ξ1)U (ξ2)

∂2 f1 (ξ1, ξ2)

∂ξ1∂ξ2

+U ′(ξ1)U
′(ξ2)ξ1ξ2 f2 (ξ1, ξ2)

]
, (A.15)

where U is a shorthand for U ht
ABF, and U ′(ξ) is its the deriva-

tive with respect to ξ . The term proportional to f2 is then
treated as described above, namely by changing variables
according to Eq. (A.5) and using the symmetry to integrate
only for positive y’s. The contribution to Cgg from f1, which
we call C1 for simplicity, is instead manipulated as follows

C1 ≡
∫

dξ1

∫
dξ2 U (ξ1)U (ξ2)

∂2 f1 (ξ1, ξ2)

∂ξ1∂ξ2

= 1

2

∫
dy

∫
dt U+ U−

[
t
∂2 f1
∂t2 − 2y

∂2 f1
∂t∂y

− 1

t

∂

∂y

(
(1 − y2)

∂ f1
∂y

) ]

= −1

2

∫
dy

∫
dt U+ U−

[
2y

∂2 f1
∂t∂y

+
(

1 + t (1 + y)
U ′+
U+

+ t (1 − y)
U ′−
U−

)
∂ f1
∂t

−
(
U ′+
U+

− U ′−
U−

)
(1 − y2)

∂ f1
∂y

]
(A.16)

where we have defined

U± ≡ U (t (1 ± y)), (A.17)

and U ′± are still derivatives with respect to the full argument.
In the first step in Eq. (A.16) we have simply performed the
change of variables; in the second step we have integrated
by parts some contributions to remove double t and double
y derivatives (all boundary terms vanish). At this point one
can use the symmetry y → −y to restrict the integration to
positive y’s up to an overall factor of 2. Eq. (A.16) is what we
use in the code, and provides a stable numerical evaluation
of the integral, with the advantage of depending on a single
second derivative of the off-shell coefficient function.

The auxiliary function Eq. (2.19b) is instead much simpler
to treat. First, the f2 term proportional to |A3|2 does not
contribute, since it is multiplied by ξ1ξ2 and one of them is
zero (say, ξ2 = 0), so we have

Caux =
∫

dξ U (ξ)
∂ f1 (ξ, 0)

∂ξ
. (A.18)

Second, there is a single derivative, which can be directly
obtained from ∂ f1/∂t used above. In fact, the form factor
becomes much simpler in the limit ξ2 = 0, i.e. y = 1,

A1(t, 1) = C0(t, 1)

[
4/ρt

1 + 2t
− 1

]

+ 2

1 + 2t
+ 4t

(1 + 2t)2

[
B0(−2t) − B0(1)

]

(A.19)

with

C0(t, 1) = 1

1 + 2t

[
Li2

(
2

1 + T+

)
+ Li2

(
2

1 − T+

)

−Li2

(
2

1 + T0

)
− Li2

(
2

1 − T0

)]
, (A.20)

being now T+ = √
1 + 2/(ρt t). This analytical expression is

also useful for cross-checking numerically part of the results
used above in the Cgg case.

We can now discuss the implication of restricting the inte-
gration to ξ1,2 > ξ0 = exp −1

αsβ0
. Let us start with the one-

dimensional case, Caux, Eq. (A.18). The integrand is peaked
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at ξ ∼ μ2
F/Q

2 ∼ 1, and drops at large ξ as a negative power
of ξ (in this case, as 1/ξ3). Thus, we do not loose precision
if we approximate the integrand as
∫ ∞

ξ0

dξ F(ξ) �
∫ ξm+1

F ξ−m
0

ξ0

dξ F(ξ), ξF = μ2
F

Q2 , (A.21)

where m > 0 cuts off the large ξ region which gives a negli-
gible contribution to the integral, and F(ξ) is a generic name
for the integrand. In practice, we have noticed that m = 3
is sufficiently small to guarantee numerical stability and at
the same time sufficiently large to keep the important region
of the integral and cut away only negligible corrections. We
then split the integrand in two pieces, from ξ0 to ξF and
from ξF to ξm+1

F ξ−m
0 , and perform the change of variables

ξ = ξF exp(−u) and ξ = ξF exp(mu) respectively:

∫ ξm+1
F ξ−m

0

ξ0

dξ F(ξ) =
∫ log(ξF/ξ0)

0
du ξF

× [
e−u F(ξFe

−u) + memuF(ξFe
mu)

]
.

(A.22)

Then we can change variable again according to u =
v log(ξF/ξ0) = v

β0αs (μ
2
F)

, and get finally

∫ ∞

ξ0

dξ F(ξ) �
∫ 1

0

dv

αsβ0
ξF

[
e

−v
αsβ0 F

(
ξFe

−v
αsβ0

)

+me
mv

αsβ0 F
(
ξFe

mv
αsβ0

)]
, (A.23)

such that the integration region is in the unit hypercube (of
dimension 1 in this case), and thus directly usable in standard
numerical integration routines. This expression is what is
used in HELL for the one-dimensional case.

In the two-dimensional case, we need to convert the two
conditions ξ1 > ξ0 and ξ2 > ξ0 into a condition for the
y, t integration range. Assuming to integrate in y first, the
condition becomes

−
(

1 − ξ0

t

)
< y < 1 − ξ0

t
, t > ξ0. (A.24)

The integral of a generic function F(t, y), once the y integra-
tion is symmetrized, can be treated as in the one-dimensional
case, approximating the integral and performing subsequent
changes of variables,

∫ ∞

ξ0

dt
∫ 1−ξ0/t

0
dy F(t, y)

�
∫ ξm+1

F ξ−m
0

ξ0

dt
∫ 1−ξ0/t

0
dy F(t, y)

=
∫ log(ξF /ξ0)

0
du ξF

[
e−u

∫ 1− ξ0
ξF

eu

0
dy F(ξFe

−u, y)

+ memu
∫ 1− ξ0

ξF
e−mu

0
dy F(ξFe

mu, y)

]

=
∫ 1

0

dv

αsβ0

∫ 1

0
dw ξF

[
e

−v
αsβ0

(
1 − e

v−1
αsβ0

)

× F

(
ξFe

−v
αsβ0 ,

(
1 − e

v−1
αsβ0

)
w

)

+ me
mv

αsβ0

(
1 − e

−mv−1
αsβ0

)
F

(
ξFe

mv
αsβ0 ,

(
1 − e

−mv−1
αsβ0

)
w

) ]
,

(A.25)

where in the last step we first changed variable y = (1 −
euξ0/ξF )w in the first y integral and y = (1−e−muξ0/ξF )w

in the second y integral, and then we used again u =
v log(ξF/ξ0). As before, the final result is integrated in the
unit hypercube (of dimension 2 in this case), and thus imme-
diately usable for numerical integration. This expression is
implemented in HELL for the two-dimensional case.

A.2: Impact factor and its expansion coefficients

We now move to the computation of the coefficients of the
M1,2 expansion of the Mellin transform of the off-shell coef-
ficient function, Eq. (2.20). Such Mellin transform is equiv-
alent to Eq. (A.15) after replacing

U (ξi ) →
(
Q2

μ2
F

ξi

)Mi

, i = 1, 2 (A.26)

and letting ξ0 → 0. We can thus start from Eq. (A.16) and,
after integrating by parts in t the last term, we arrive at (again
omitting all non-crucial arguments)24

C̃(M1, M2) = −1

2

∫ 1

−1
dy

×
∫ ∞

0
dt

(
Q2

μ2
F

t

)M1+M2

(1 + y)M1(1 − y)M2

×
[
y
∂2 f1
∂t∂y

+ (1 + M1 + M2)
∂ f1
∂t

+M1 − M2

M1 + M2

∂2 f1
∂t∂y

− 4M1M2t f2

]
. (A.27)

Our goal is now to expand this expression in powers of M1

and M2, to construct the coefficients C̃k j , Eq. (2.21). We
observe however that there is a term in Eq. (A.27) which
seems to give rise to negative powers of M1,2, namely the
one with M1 + M2 in the denominator. When expanding
(t Q2/μ2

F)
M1+M2 in powers of M1 + M2 all terms except the

zeroth order term will compensate the denominator. Thus,
the only term which is potentially dangerous is the zeroth

24 Note that the integrand is no longer symmetric for y → −y, unless
M1 and M2 (which keep reference to the incoming gluon legs) are
swapped simultaneously.
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order one, which reads

− 1

2

∫ 1

−1
dy (1 + y)M1(1 − y)M2

M1 − M2

M1 + M2

∫ ∞

0
dt

∂2 f1
∂t∂y

.

(A.28)

But this term vanishes, since
∫ ∞

0
dt

∂2 f1
∂t∂y

= − ∂ f1
∂y

∣∣∣∣
t=0

= 0, (A.29)

because f1 in t = 0 is independent of y. This proves that only
non-negative powers of M1,2 are produced in the expansion
of Eq. (A.27), as it must. To compute the coefficients of such
an expansion in a systematic way, we find it convenient to
introduce the variables

M± = M1 ± M2

2
, (A.30)

in terms of which Eq. (A.27) becomes

C̃(M1, M2) = −1

2

∫ 1

−1
dy

∫ ∞

0
dt

×
(
Q2

μ2
F

t

)2M+
(1 − y2)M+

(
1 + y

1 − y

)M−

×
[

∂

∂y

(
y
∂ f1
∂t

)
+ 2M+

∂ f1
∂t

+ M−
M+

∂2 f1
∂t∂y

−4(M2+ − M2−)t f2

]

= −1

2

∫ 1

0
dy

∫ ∞

0
dt

(
Q2

μ2
F

t

)2M+
(1 − y2)M+

×
{[(

1 + y

1 − y

)M−
+

(
1 − y

1 + y

)M−
]

×
[

∂

∂y

(
y
∂ f1
∂t

)
+ 2M+

∂ f1
∂t

− 4(M2+ − M2−)t f2

]

+
[(

1 + y

1 − y

)M−
−

(
1 − y

1 + y

)M−
]
M−
M+

∂2 f1
∂t∂y

}
,

(A.31)

where in the second step we have symmetrized the integration
in y and restricted it to positive y’s. Defining

L+ = log
[
t2(1 − y2)

]
+ 2 log

Q2

μ2
F

,

L− = log

(
1 + y

1 − y

)
, (A.32)

we can expand Eq. (A.31) as

C̃(M1, M2) = −
∫ 1

0
dy

∫ ∞

0
dt

×
∞∑
a=0

Ma+
a! La+

∞∑
b=0

Mb−
b! Lb−

1 + (−1)b

2

×
{

∂

∂y

(
y
∂ f1
∂t

)
+ 2M+

∂ f1
∂t

+ b

M+L−
∂2 f1
∂t∂y

− 4(M2+ − M2−)t f2

}

=
∞∑
a=0

∞∑
b=0
b even

Ma+Mb−ca,b, (A.33)

where the coefficients ca,b of the M± expansion are given by

ca,b = 1

a!b!
∫ 1

0
dy

∫ ∞

0
dt

{
− La+Lb−

∂

∂y

(
y
∂ f1
∂t

)

− 2aLa−1+ Lb−
∂ f1
∂t

− b

a + 1
La+1+ Lb−1−

∂2 f1
∂t∂y

+ 4a(a − 1)La−2+ Lb−t f2

− 4b(b − 1)La+Lb−2− t f2

}
. (A.34)

Once these coefficients are known, they can be converted to
the desired coefficients C̃k j , Eq. (2.21), through the relation

C̃k, j = 1

2k+ j

k+ j∑
b=0
b even

ck+ j−b,b

×
min(b,k)∑

i=max(0,b− j)

(−1)i
(
b

i

)(
k + j − b

k − i

)
. (A.35)

The integrals defining the coefficients Eq. (A.34) are suit-
able for numerical evaluation. We stress that a straightfor-
ward expansion in powers of M1,2 of Eq. (A.15) after the
replacement Eq. (A.26) suffers from a definition of the coef-
ficients C̃k j in terms of integrals that are not easy to perform
numerically and give rise to large numerical errors. There-
fore, our construction, despite being somewhat involved, has
the big advantage of reducing the numerical error signifi-
cantly, which was possible by exploiting the symmetry of
the off-shell coefficient function. We add that the construc-
tion presented in this subsection was actually already used for
computing these coefficients for Ref. [28], but it is presented
in this detail here for the first time.
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