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Abstract We study the evolution of cosmological pertur-
bations around a homogeneous and isotropic background in
the framework of the non-minimal torsion-matter coupling
extension of f (T ) gravity. We are concerned with the effects
of the non-minimal coupling term on the growth of mat-
ter overdensities. Under the quasi-static approximation, we
derive the equation which governs the evolution of matter
density perturbations, and it is shown that the effective grav-
itational coupling ‘constant’ acquires an additional contribu-
tion due to the non-minimal matter-torsion coupling term.
In this way, this result generalizes those previously obtained
for the growth of matter overdensities in the case of minimal
f (T ) gravity. In order to get a feeling of our results we apply
them to the important case of a power-law coupling function,
which we assume to be the responsible for the late-time accel-
erated expansion in the dark energy regime. Thereby, analytic
solutions for the matter density perturbation equation in the
regime of dark matter dominance and the dark energy epoch
are obtained, along with a complete numerical integration of
this equation. In particular, we show that this model predicts
a growth index larger than those obtained for ΛCDM model,
indicating therefore a smaller growth rate. Concomitantly,
we show that the model at hand is potentially capable in
alleviating the existing σ8-tension, being that it can provide
us a f σ8 prediction which is ∼ 4–5% below the respective
prediction of concordance model.

1 Introduction

Dark energy is one of the most amazing findings in modern
cosmology [1–4]. This dark component is responsible by the
accelerated expansion of the Universe and its nature is still
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one of the great mysteries of the Big Bang [5–7]. Further-
more, dark energy together with dark matter, another mysteri-
ous component [8,9], constitute 68% and 27%, respectively,
of the total mass-energy of the present Universe, remaining
only 5% for the normal baryonic matter [10,11]. There are
two principal ways to proceed in the study of the nature and
properties of this dark energy entity. The first one is consid-
ering it as a new modified matter source which is described
for example through a scalar field such as quintessence [12–
15], tachyon field [16–20], k-essence [21–23], or, dilatonic
ghost condensate [24–26], etc, being that in all these models,
the scalar field contributes with a negative pressure which
drives the accelerated expansion. On the other hand, the sec-
ond one alternative is represented by modified gravity the-
ories, which are mainly based on quantum corrections to
the Einstein-Hilbert action of General Relativity (GR), in
the form of additional higher curvature terms such as f (R)

gravity theories [27–32]. In this last approach, one may iden-
tify in the modified Friedmann equations an effective dark
energy density and its corresponding pressure density, which
comes to have an origin in quantum corrections to GR, and
therefore it becomes conceptually different from a modified
matter model [10,11].

It is well known that gravity can be described in terms of
curvature, as is usually done in GR and f (R) gravity theo-
ries, or through torsion, in which case we have the so-called
teleparallel equivalent of GR or simply Teleparallel Gravity
(TG) [33–40]. In TG the dynamical variables are the tetrad
fields instead of the metric tensor gμν , and the usual tor-
sionless Levi–Civita connection of GR is replaced by the
Weitzenböck connection, which has torsion but no curvature
[41–43]. So, TG is a classical gauge theory for gravitation
based in the translation group, that due to existence of “sol-
dering” between the Minkowski tangent space (fiber) and the
spacetime (base space), it becomes a non-standard gauge the-
ory, keeping nevertheless a remarkable similarity to electro-
magnetism, also a gauge theory for an abelian group [41,44].
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It is worth noting that, the Lagrangian density of GR, the
scalar curvature R, and the Lagrangian density of TG, the
scalar torsion T , only differ in a total derivative term, and
despite being conceptually speaking different theories they
are equivalent in the level of field equations [41].

In the context of modified gravity theories one may also
start to introduce modifications to gravity from this torsion-
based formulation, in a similar fashion to the curvature-based
one. Thus, in a close analogy with the f (R), the f (T ) grav-
ity theory is obtained by extending the Lagrangian density of
TG, that is to say, the scalar torsion T , to an arbitrary function
of the same scalar T [45,46]. Although GR and TG are equiv-
alent theories, the f (R) and f (T ) gravity represent different
modified gravity theories. In comparison with f (R), whose
field equations are of fourth-order, the f (T ) gravity has the
advantage that its dynamics is given by second-order differ-
ential equations [47]. This remarkable characteristic, added
to the fact that f (T ) gravity allow us to explain the currently
observed accelerated expansion of the Universe, has given
rise to a fair number of papers on these gravity theories, in
which several features of f (T ) gravity have been examined,
including observational solar system constraints [48–50],
cosmological constraints [51–55], dynamical behavior [56],
cosmological perturbations [57–65], spherically symmetric
solutions [66–68], the existence of relativistic stars [69], cos-
mographic constraints [70], energy conditions bounds [71],
homogeneous Gödel-type solutions [72,73] and gravitational
waves (GWs) constraints [74,75]. For an excellent review
on f (T ) gravity see Ref. [63] and for some others impor-
tant aspects on it such as Local Lorentz invariance, see Refs.
[76,77].

A very important generalization of f (T ) gravity is
obtained by allowing a non-minimal coupling between tor-
sion and matter [78–81]. This non-minimal coupling arises in
a close analogy with the curvature-matter coupling in f (R)

gravity [82–95], whose origin can have several motivations. It
is well known for example that non-minimal coupling terms
acting as counterterms are required when quantizing a self-
interacting scalar field in curved spacetime [96]. Thus, one
may be tempted to relate the need for this non-minimal cou-
pling between gravity and matter to the existence of scalar-
tensor theories and the low-energy limit of string theory [97].
In Ref. [80] the authors have proposed a new extension of
the f (T ) gravity by including the coupling with an arbi-
trary function of the scalar tensor T to the matter Lagrangian
density. For the Friedmann-Robertson-Walker (FRW) back-
ground geometry, they have shown that this novel theory
allows us to obtain an effective dark energy sector whose
equation-of-state (EOS) parameter can be quintessence- or
phantom-like, or exhibit the phantom-divide crossing, being
that for a large range of the model parameters the Universe
undergoes a de Sitter, dark-energy-dominated, accelerating
phase. Furthermore, it can provide an early-time inflation-

ary solution too, and hence, it is also possible an unified
description of the history of cosmological expansion. On the
other hand, in Ref. [81] has been studied the cosmological
applications for this model from the perspective of dynam-
ical systems by extracting the fixed points corresponding
either to dark-matter-dominated, scaling decelerated solu-
tions, or to dark-energy-dominated accelerated solutions, and
thus studying their cosmological properties.

The investigation of small fluctuations around the FRW
background in the framework of cosmological perturbation
theory has become a cornerstone of modern cosmology. It
allows us to confront any cosmological model with obser-
vations of cosmic microwave background (CMB) and large-
scale structure (LSS) [10]. Thereby, in order to reveal the full
scope and predictive power of theory at hand, one must go
beyond the background and enter in the perturbative level.
The main goal of the present paper is to study the evolution
of cosmological perturbations for this non-minimal matter-
torsion coupling model [80,81] in the FRW background. In
particular, we are interested in the evolution of scalar pertur-
bations and the growth of matter overdensities.

The paper is organized as follows. In Sect. 2, we introduce
the non-minimal matter-torsion coupling theories together
with the effective dark energy sector in the FRW background.
In Sect. 3 we define the perturbed tetrad field and obtain
the corresponding linearised field equations along with the
evolution equations for the matter density perturbations. In
Sect. 4 we study the growth of matter overdensities under the
quasi-static approximation for sub-horizon scales and for a
power-law coupling function. Finally, in Sect. 5, we summa-
rize our findings and present our main conclusions and final
remarks.

2 Non-minimal torsion-matter coupling theories

2.1 Field equations

In f (T ) theories the dynamical variables are the tetrad fields,
eA(xμ), corresponding to a set of four (A = 0, . . . , 3) vector
fields that define a local orthonormal Lorentz frame at every
point xμ of the spacetime manifold. They connect the space-
time metric (base space) gμν and the tangent space metric
(fiber) ηAB thorough the following local relation

gμν = eAμ eBν ηAB, (1)

where eAμ are the tetrad components in a coordinate base
and they satisfy the orthogonality conditions eAμe

ν
A = δν

μ

and eAμe
μ
B = δAB , being that the e μ

B are the respective
inverse components. The tangent space metric, ηAB and
ηAB , lowering and raising the Lorentz indices (Latin upper-
case letters) is defined as the Minkowski metric ηAB =
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diag (1,− 1,− 1,− 1). On the other hand, the spacetime
indices (Greek letters) vary from 0 to 3 and they are low-
ered and raised by the spacetime metric gμν and gμν .

Instead of the Levi–Civita connection, one uses the
Weitzenböck connection which is given by

Γ ρ
νμ = e ρ

A

(
∂μe

A
ν + ωA

Bμe
B
ν

)
, (2)

where the coefficient ωA
Bμ is the spin connection. This is a

connection with zero curvature, but, nonzero torsion, and in
components it is given by [41]

T A
μν ≡ ∂μe

A
ν − ∂νe

A
μ + ωA

Bμ eBν − ωA
Bν e

B
μ. (3)

Now, if one further defines the so-called super-potential

S μν
A ≡ 1

2

(
Kμν

A + e μ
A T θν

θ − e ν
A T θμ

θ

)
, (4)

where

Kμν
A ≡ −1

2

(
Tμν

A − T νμ
A − T μν

A

)
(5)

is the contorsion tensor, we can define the torsion scalar

T ≡ S μν
A T A

μν. (6)

In the simplest case the gravitational Lagrangian density
is built by using this scalar torsion T such that the relevant
action is written as

S =
∫

d4xe [κ f (T ) + Lm] , (7)

where κ = 1/(16πG), e =det(eAμ) = √−g, f (T ) is an
arbitrary function of T , and Lm is the matter Lagrangian
density of matter. These are the so-called f (T ) gravity theo-
ries whose cosmological dynamics has been studied both at
background level [45–47,63], as well at perturbations level
in Refs. [60,61,75]. The above action can also be general-
ized by including a non-minimal coupling between torsion
and matter in the following way [80,81]

S =
∫

d4x e [κ f1(T ) + f2(T )Lm] , (8)

where fi (T ) (with i = 1, 2) are arbitrary functions of the
torsion scalar T .

Varying this action with respect to the tetrad field eAμ one
obtains the field equation equations

F
[
e−1∂ν(ee

α
A Sα

μν) − e α
A T λ

ραSλ
ρμ + ωB

Aρe
σ
B Sσ

ρμ
]

+ ∂νFe
α
A Sα

μν + 1

4
κ f1e

μ
A = 1

4
f2e

α
AT

μ
α , (9)

where we have defined F ≡ κ f ′
1 + f ′

2Lm and prime denotes
differentiation with respect to T . Here, we also have assumed
that the Lagrangian matter density does not depend on deriva-
tives of the tetrad, and the symmetric energy–momentum
tensor of matter is defined as

T μ
α = eAα

[
−1

e

δSm
δeAμ

]
, (10)

with Sm = ∫
d4xeLm the action of matter. Clearly, when

f2(T ) = 1, Eq. (9) reduces to the field equations of f (T )

gravity [75]. On the other hand, GR is recovered when
f1(T ) = T and f2(T ) = 1 [41].

We can rewrite the above field equations in a covariant
form by contracting them with the tetrad field eAα as follows

FG μ
ν + ∂λFS

μλ
ν + 1

4
[κ f1 − T F] δμ

ν = 1

4
f2T

μ
ν , (11)

where

G μ
ν = e−1eAν∂λ(ee

α
A Sα

μλ) − T λ
σνSλ

σμ

+ eAνω
B
Aσ e

λ
B Sλ

σμ + 1

4
δμ
ν T, (12)

is a symmetric tensor equivalent to the Einstein tensor. The
right hand side of field equations (11) is symmetric, but the
left hand side is not symmetric because of the local Lorentz
violation in f (T ) gravity theories [76]. Thus, we have an
additional constraint coming from the antisymmetric part of
this equation which gives
(
S λ
νμ − S λ

μν

) [
F ′∂λT + f ′

2∂λLm
] = 0. (13)

Clearly, in the linear case f1(T ) = T and f2(T ) = 1
the above constraint vanishes identically, and we obtain the
teleparallel equivalent of GR. Nonetheless, in the most gen-
eral case, for f (T ) gravity and non-minimal torsion-matter
coupling theories, this constraint does not vanish identically
and we obtain 6 additional equations for 6 additional degrees
of freedom [60].

On the other hand, a characteristic common to non-
minimal torsion (curvature)-matter coupling theories is the
non-conservation of the energy–momentum tensor of matter.
In a purely space-time form, by using the Bianchi identities
of teleparallel gravity and the field equations (11) one obtains
the non-conservation law [81]

∇̄μT
μ

α = − f ′
2

f2

(
T μ

α + Lmδμ
α

)
∂μT

+ 4

f2
K ρ

μαS
μν

ρ ∂νF, (14)

where ∇̄μ is the covariant derivative in the Levi–Civita con-
nection [41]. Therefore, the coupling between the matter
and torsion describes an exchange of energy and momen-
tum between both.

2.2 Cosmological background

Proceeding forward, we impose the standard homogeneous
and isotropic geometry, that is, we consider

eAμ = diag(1, a, a, a), (15)
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which corresponds to a flat Friedmann-Robertson-Walker
(FRW) universe with metric

ds2 = dt2 − a2 δi j dx
i dx j , (16)

where a is the scale factor which is a function of the cosmic
time t . In relation to the matter sector, the Lagrangian density
of a perfect fluid is the energy scalar representing the energy
in a local rest frame for the fluid, and therefore a possible
natural choice for the matter Lagrangian density isLm = −ρ

[98]. So, it leads us to the usual expression for the energy–
momentum tensor of perfect fluid

Tμν = (ρ + p) uμuν − pgμν, (17)

which is in accordance with the symmetries of the FRW
spacetime defined in Eq. (16). From Eq. (14), it is straightfor-
ward to see that at background level the energy–momentum
tensor is again conserved, just like in teleparallel gravity or
f (T ) theories, leading to the usual continuity equation for
the matter energy density

ρ̇ + 3γmHρ = 0, (18)

where we have defined the parameter γm ≡ 1 + wm with
wm ≡ p/ρ the equation of state (EOS) parameter of matter.
By using the tetrad field (15) and the energy–momentum
tensor (17) into the field equations (9) we obtain the modified
Friedmann equations

12FH2 = f2ρ − κ f1, (19)

H Ḟ + F Ḣ = −1

4
γmρ f2. (20)

We also have used the useful relation T = − 6H2, which is
obtained from the Eq. (6) by using the tetrad field (15). In the
limit F = κ , that is, f1(T ) ≡ T , and f2(T ) ≡ 1, Eqs. (19)
and (20) reduce to the usual form of Friedmann equations in
GR. However, the generalized Friedmann equations (19) and
(20) can be rewritten in their standard form

3H2 = 1

2κ
(ρ + ρDE) , (21)

− 2Ḣ = 1

2κ
(ρ + p + ρDE + pDE) , (22)

whether one identifies the effective energy and pressure den-
sities for dark energy as follows [81]

ρDE = −12FH2

f2
− κ f1

f2
+ 6κH2, (23)

pDE = 4H Ḟ

f2
+ 4F Ḣ

f2
− 4κ Ḣ − ρDE . (24)

Thus, one can also verify that dark energy satisfies the con-
tinuity equation

ρ̇DE + 3γDEHρDE = 0, (25)

where we have introduced, in analogy with the matter fluid,
the parameter γDE ≡ 1 + wDE , being that wDE ≡ pDE/ρDE
is the EOS parameter of dark energy. Clearly, the Eq. (25) is
consistent with the Eqs. (14) and (18), indicating that only
the total energy density ρt = ρDE + ρ is conserved.

Here, some useful cosmological parameters are the frac-
tional densities of ρDE and ρ which are defined as ΩDE ≡
ρDE/(6κH2) and Ωm ≡ ρ/(6κH2). Thus, by using these
parameters the Friedmann equation (19) can be written as
ΩDE+Ωm = 1. Another important parameter is the effective
EOS parameter weff ≡ (p+ pDE)/(ρ+ρDE) which is related
to the deceleration parameter q ≡ − 1 − Ḣ/H2 through
the relation q = (1/2)

(
1 + 3weff

)
, such that the acceler-

ated expansion of the Universe occurs for weff < − 1/3, or,
equivalently, for q < 0.

3 Linear cosmological perturbations

Let us consider a perturbed tetrad field whose sector of scalar
perturbations is written as [60,61,75]

e0
μ = δ0

μ (1 + ψ) + aδiμ∂iχ, (26)

eaμ = aδaiδ
i
μ (1 − ϕ) + δ0

μδai∂
iχ. (27)

The additional degree of freedom χ arises from the violation
of local Lorentz symmetry in f (T ) gravity theories. This
perturbed tetrad field leads to the usual line element for the
scalar perturbations of the FRW spacetime in the longitudinal
gauge [10]

ds2 = (1 + 2ψ) dt2 − a2 (1 − 2ϕ) δi j dx
i dx j . (28)

In the matter sector we are going to consider the perturbed
energy–momentum tensor

T 0
0 = ρ + δρ, (29)

T 0
i = − γmρδui , (30)

T
j

i = −
(
p + c2

s δρ
)

δi j + ∂ i∂ jπ, (31)

where we have introduced the sound velocity, c2
s = δp

δρ
, δui

characterizes the velocity perturbations of the fluid and π is
the so-called anisotropic stress [10].

Perturbing at first order the field equations (11) one obtains

δFG μ
ν + FδG μ

ν + ∂λδFS μλ
ν + ∂λFδS μλ

ν

− 1

4

(
f ′
2LmδT + T δF

)
δμ
ν

= 1

4

(
f ′
2δTT

μ
ν + f2δT

μ
ν

)
, (32)

where δF = F ′δT + f ′
2δLm andLm = −ρ. Thus, substitut-

ing the perturbed tetrad field (27) one obtains the following
perturbed field equations:
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F

[
3H (Hψ + ϕ̇) − �ϕ

a2

]
− 3H2δF = −1

4
f2δρ, (33)

F (ϕ̇ + Hψ) + Ḟϕ = −1

4
γm f2ρδu, (34)

F (ϕ̇ + Hψ) − HδF = −1

4
γm f2ρδu, (35)

F
(
ϕ̈ + H ψ̇

) + (
Ḟ + 3FH

)
ϕ̇ + F�(ψ − ϕ)

3a2 +
Ḟ�χ

3a
+

(
2H Ḟ + 2F Ḣ + 3FH2

)
ψ − Hδ Ḟ −

(
Ḣ + 3H2

)
δF = 1

4

[
f2c

2
s δρ + γmρ f ′

2δT
]
, (36)

where � = δi j∂i∂ j , and

δT = 12H ϕ̇ + 4H�χ

a
+ 12H2ψ. (37)

On the other hand, the zero anisotropic stress assumption
π = 0 allows us to obtain the relation

ϕ = aḞχ

F
+ ψ, (38)

and from Eq. (13) we find the following additional constraint

Ḟϕ + HδF = 0. (39)

The time and spatial components of the linear perturbed
equation associated with the non-conservation law (14) are
given by

δρ̇ + 3H(1 + c2
s )δρ = γmρ

(
3ϕ̇ − �δǔ

a

)
, (40)

δ ˙̌u + [
(4 − 3γm)H + Ψ̇c

]
δǔ

= −1

a

(
ψ + δΨc + c2

s δρ

γmρ

)
, (41)

where have introduced the definitions δu ≡ aδǔ, and Ψc ≡
log f2. In this last equation we also have used the constraint
(39). The pair of equations (40) and (41), together with the
perturbed field equations (33),(35), (34), (36), and, Eqs. (38)
and (39), constitute the complete set of perturbed cosmo-
logical equations which govern the dynamics of scalar lin-
ear perturbations in the longitudinal gauge. Henceforth, we
restrict ourselves to non-relativistic matter such that γm = 1
and c2

s = 0.

4 Growth of matter density perturbations

As usual, we will work in the Fourier space by expanding
all perturbed quantities in Fourier modes, i.e. X (r, t) ∼
eik·rX (t), with k = |k| being the wavenumber, and such
that �X = −k2X . In studying the growth of matter over-
densities we are interested in the sub-horizon scales with

k2/a2H2 � 1 [10] . Therefore, in order to obtain the equa-
tion of matter perturbations approximately, we use the quasi-
static approximation [28]

k2|X |/a2 � H2|X |, Ẋ � |HX |, (42)

with X = ψ , ϕ, α.
Under this approximation, from (37) we obtain

δT 	 − 4
k2

a2 χm, (43)

where we have defined χm ≡ aHχ . On the other hand, from
Eqs. (39) and (43), it is straightforward to see that

k2χm

a2 	 − f ′
2

4F ′ δρ. (44)

In this way, from the time-time equation (33), and by using
Eqs. (38), (39), and (44), one obtains

k2ψ

a2 = f2
4F

[
− 1 + f ′

2

f2

Ḟ

H F ′

]
δρ. (45)

Comparing this last equation with the Poisson equation for
modified gravity theories,

k2ψ

a2 	 − 4π G̃δρ, (46)

one can identify the modified gravitational coupling constant
G̃, which in this case becomes given by

G̃ 	 G f2
(F/κ)

[
1 − f ′

2

f2

Ḟ

H F ′

]
. (47)

By introducing the definition of the gauge-invariant matter
density perturbation δ ≡ δρ/ρ + 3Hδu, the equation for the
evolution of matter overdensities, in the quasi-static approx-
imation, is obtained from Eqs. (40) and (41) in the form

δ̈ + (
2H + Ψ̇c

)
δ̇ + k2

a2 [ψ + δΨc] 	 0. (48)

In the absence of coupling, the second term in the last equa-
tion, which is due only to the expansion rate of the Uni-
verse, has the effect of a frictional term slowing down the
growth rate matter density perturbations [10]. On the other
hand, in the presence of non-minimal coupling, it appears an
additional term Ψ̇c which acts to reinforce (or decrease) the
effect of the Hubble expansion rate [99]. Also, there is the
extra term δΨc in the third factor, which can be interpreted as
a potential, that analogously to ψ and ϕ in the sub-horizon
approximation, it satisfies a Poisson equation

k2

a2 δΨc 	 − 4πGcδρ, (49)

whereGc becomes a coupling ‘constant’ [90]. Thus, by using
Eqs. (43) and (44) on (49), one finds that

Gc = −4k2

a2

f ′
2

2G

f2 (F ′/κ)
. (50)
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Collecting the latest results expressed in Eqs. (47) and
(50), the evolution equation for matter overdensities (48)
takes the form

δ̈ + (
2H + Ψ̇c

)
δ̇ − 4πGeff ρδ 	 0, (51)

where Geff = G̃ + Gc is established as the effective or total
gravitational coupling given by

Geff 	 G f2
(F/κ)

[
1 −

(
f ′
2

f2

) (
F ′

F

)−1 (
Ḟ

H F
+ 4k2

a2

f ′
2

f2

)]
.

(52)

Clearly, for f2(T ) = 1, one finds Geff = G/(F/κ), and
hence, for f1(T ) = T , thus, Geff = G. This result general-
izes those previously obtained for f (T ) gravity theories in
Refs. [59,60], once that now the force of gravitational cou-
pling, and therefore, the growth rate of matter overdensities,
depends on both, the functions f1(T ) and f2(T ), and deriva-
tives. Following Ref. [90], the above expression for Geff can
be rewritten as

Geff

GΣ
− 1 	 2m2

m1

[
m1 (1 + q) + 3

2
m2ΩmΣ − 2k2m2

a2T

]
,

(53)

where it has been defined the parameters

Σ ≡ f2
(F/κ)

, (54)

m1 ≡ T F ′

F
, (55)

m2 ≡ T f ′
2

f2
, (56)

and we also have introduced the fractional energy density
of matter Ωm = ρ/(6κH2) and the deceleration parame-
ter q = − 1 − Ḣ/H2. The above expression for the effec-
tive gravitational coupling Geff is more convenient since it
shows an explicit dependence on the relevant cosmological
parameters as q and Ωm , and the new parameters Σ , m1 and
m2, which condensate all the information about the functions
f1(T ) and f2(T ).

4.1 Power-law coupling function

In order to study the evolution of matter overdensities for a
specific model we are going to consider the ansatz

f1(T ) = T, f2(T ) = 1 + (T/T ∗)n, (57)

where T ∗ is a characteristic torsion scale.
Introducing the number of e-folds, N = log a, the evolu-

tion equation (51) for the matter perturbation becomes,

δ′′ +
(

2 + H ′

H
+ Ψ ′

c

)
δ′ − 3

2

Geff

G
Ωmδ 	 0, (58)

where primes denote derivatives with respect to N . This is
the evolution equation of matter overdensities at sub-horizon
scales. Below, we study the dynamics of matter overdensi-
ties governed by Eq. (58) in two different physical regimes,
the dark matter-dominated era and for late times in the dark
energy dominance.

4.1.1 Matter-dominated era

During the dark-matter-dominated era, ΩDE � Ωm 	 1,
it is natural to assume that the coupling function f2(T ) =
1 + (T/T ∗)n should only present small deviations from 1,
that is, one would consider the condition (T/T ∗)n � 1, and
for this case, it can be seen that H ′/H 	 − 3/2 and q 	 1/2.
By using these assumptions in Eqs. (54), (55), and (56), we
find that

Σ 	 1 + (1 − n)

(
T

T ∗

)n

, (59)

m1 	 n (n − 1)

(
T

T ∗

)n

, (60)

m2 	 n

(
T

T ∗

)n

. (61)

In the same way, from Eq. (53), we obtain

Geff 	 G

[
1 + 4n

1 − n

(
k2

a2T

)(
T

T ∗

)n]
. (62)

Moreover, under these considerations one has that |Ψ ′
c | 	

|m2| � 1, implying that the evolution equation (58) must
assume the following form

f ′ + f 2 + 1

2
f − 3

2

[
1 + 4n

1 − n

(
k2

a2T

) (
T

T ∗

)n]
	 0,

(63)

where we also have introduced the growth rate of matter
fluctuations f ≡ δ′/δ [10]. Since for the matter-dominated
era one usually has that δ ∼ a, and therefore f ∼ 1, it
is natural to assume the approximation f ′ � f 2. Hence,
by integrating Eq. (63), it is straightforward to obtain the
growing mode

f 	 1 + 12

5

n

1 − n

(
k2

a2T

) (
T

T ∗

)n

, (64)

or equivalently

δ ∼ a
1+ 12n

5(1−n)(1−3n)

(
k2

a2T log a

)(
T
T∗

)n
. (65)

This result leads to the solution δ ∼ a for the standard
cold dark matter model when the first term in the power is
dominant and the second may be neglected, that is to say,
for

( T
T ∗

)n ∼ 0. From Eq. (65) one can see that the factor
12n

5(1−n)(1−3n)
works in attenuating or enhancing the growth

of matter overdensities. Although, for negative n the growth
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rate f is increased, the deviation with respect to the standard
matter model is very small and it becomes smaller yet for
|n| � 1.

4.1.2 Dark-energy-dominated era

During the dark-energy-dominated era Ωm � ΩDE it is
required that the coupling function is the dominant term such
that f2(T ) = 1 + (T/T ∗)n 	 (T/T ∗)n . Hence, the acceler-
ated expansion regime of the Universe should be driven by
this non-minimal coupling function. In this case, it can be
shown that H ′/H 	 − 1/p, and q 	 − 1 + 1/p, where
p = 2(1 − n)/3, and one has accelerated expansion for
p > 1, or, equivalently, for n < − 1/2. Thus, under these
considerations and by using Eqs. (54), (55), and (56), we
obtain that

Σ 	 1

nΩm
, (66)

m1 	 n − 1, (67)

m2 	 n, (68)

whereas that, from Eq. (52), it is also straightforward to see
that

Geff

G
	 4n

1 − n

(
k2

a2T

)
1

Ωm
. (69)

In terms of the growth rate f , and having in account that in
this case one has Ψc′ 	 −2n/p, the evolution equation (58)
takes the form

f ′ + f 2 +
[

2 − 3 (1 + 2n)

2 (1 − n)

]
f + 6n

n − 1

(
k2

a2T

)
	 0.

(70)

For the dark-energy-dominated era we retain the second and
fourth terms of this last equation, and thus the solution for
the growth mode is

f 	
√

6n

1 − n

(
k2

a2T

)
, (71)

and thus

δ ∼ a
2

(1+2n) log a

√
6n(1−n)

(
k2

a2T

)
, (72)

where we have the condition n < − 1/2, which guaran-
tees the accelerated expansion of the Universe, and T =
− 6H2 < 0. From Eq. (72), it can be seen that during the
dark-energy-dominated epoch with n < − 1/2 the growth of
matter perturbations is approximately frozen, such that the
growth rate decays as f ∼ a(1+2n)/(2(1−n)). We can indeed
find a relationship between the rate f and the ratio Geff /G
by using Eqs. (69) and (71), yielding

f 	
√

3

2
Ωm

(
Geff

G

)
, (73)

which implies that an effectively weakened gravitational cou-
pling, i.e. Geff /G < 1 produces that matter perturbations
grow slower than in ΛCDM. For a discussion of this issue in
the minimally coupled case, see e.g [59].

Until now we have studied the asymptotic behaviour of
matter density perturbations. However, for a further analysis
of the transition from dark matter to dark energy dominated
epochs for matter density perturbations at sub-horizon scales,
numerical solving is involved.

4.2 Numerical results

In order to solve numerically the complete evolution of matter
density perturbations for sub-horizon scales one must solve
simultaneity both the cosmological background equations
(21), (22), and the matter perturbation equation (58). Thus,
let us introduce the new dimensionless variable y = H/H∗.
In terms of this new variable and for the model (57), the
cosmological parameters Ωm , q, and wDE can be written as

Ωm(y(a)) = 1

(1 − 2n)y(a)2n + 1
, (74)

q(y(a)) = − 3

2
[

n
(2n−1)y(a)2n−1

+ n − 1
] − 1, (75)

wDE(y(a)) = n
[
1 − (2n − 1)y(a)2n

]

(n − 1)(2n − 1)y(a)2n + 1
. (76)

For the ansatz (57) one can easily see that the Eqs. (21), (22)
lead to the relation

a

y

dy

da
= 3

2
[

n
(2n−1)y2n−1

+ n − 1
] . (77)

Hence, by solving numerically Eq. (77) we obtain the evo-
lution of the cosmological parameters in Eqs. (74), (75)
and (76). For consistency with current observational data
it is required at the present time z = 0 that Ω

(0)
m ≈ 0.28,

Ω
(0)
DE ≈ 0.72, and w

(0)
DE = − 1.028 ± 0.032 [4]. In Fig. 1

we have depicted the cosmological behaviour of Ωm(a), that
satisfy the constraint Ωm(a) + ΩDE(a) = 1, and the decel-
eration parameter q(a), as functions of the scalar factor a.
On the other hand, in Fig. 2 we have depicted the evolu-
tion of wDE(a). For several values of the power n we have
shown the behaviour of these cosmological parameters. For
n = − 3 and n = − 5, one has that wDE(a = 1) ≈ − 0.949
and wDE(a = 1) ≈ − 1.09, and these values are outside
of the observational bound, whereas that for n = − 4, we
find wDE(a = 1) ≈ − 1.04, which is consistent with current
observations.

The effective EOS parameter weff is related to the frac-
tional dark energy density ΩDE through the equation weff =
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Fig. 1 Evolution of Ωm(a) and ΩDE(a) (upper graph) and the deceler-
ation parameter q(a) (lower graph) as functions of the scale factor a for
several different values of the parameter n. At the present time, a = 1
(z = 0), the fractional densities of dark matter and dark energy take the
values Ωm(a = 1) ≈ 0.28 and ΩDE(a = 1) ≈ 0.72, respectively. The
Universe enters in the acceleration phase for q(a) < 0 at a ≈ 0.56. We
also have added the ΛCDM predictions (red curve) in order to compare
with the model at hand

wm + ΩDE(wDE − wm). Once that ΩDE falls rapidly with
increasing redshift, the effective parameter weff tends to the
asymptotic value wm . In Fig. 1 (upper graph) we also depict
the behaviour of ΩDE(a) for the model (57), which becomes
very small at a ≤ 0.5 (z ≥ 1). Despite the dark energy
EOS parameter wDE takes large negative values at a ≤ 0.5
(Fig. 2), it is still guaranteed that ΩDEwDE � Ωmwm and
therefore weff ≈ wm , which is compatible with observations
[105].

The transition to acceleration phase is shown in Fig. 1
(lower graph), as described by the deceleration parameter
q(a). As it can be observed, for model (57) this transition
occurs at around of a ≈ 0.56 (z ≈ 0.8). This result is in
agreement with the predicted value by ΛCDM model and
that one obtained in Ref. [53] for the f (T ) cosmology.

The evolution equation of matter density perturbations
(58) takes the following form

Fig. 2 Evolution of the dark energy EOS parameter wDE(a) as a func-
tion of the scale factor. It is observed a phantom behaviour along of
the cosmic evolution, being that the deviation for higher negative val-
ues occurs in the subdominant phase of dark energy. At the present
epoch, when dark energy becomes the dominant component, wDE(a)

may take values which are consistent with observations. For n = − 4
one obtains wDE(a = 1) ≈ − 1.04 which is in accordance with obser-
vational data, whereas that for n = − 3 and n = − 5 one has that
wDE(a = 1) ≈ − 0.949 and wDE(a = 1) ≈ − 1.09, and these values
are outside of the observational bound. The red curve corresponds to
the ΛCDM model

a2 d
2δ

da2 = −a

[
3 + a

y
(1 + 2m2)

dy

da

]
dδ

da
+ 3

2

Geff

G
Ωmδ,

(78)

where Ωm(y(a)) is given by (74). From Eqs. (54), (55), (56)
one obtains

Σ(y(a)) = y(a)2n + 1

ny(a)2nΩm(a) + 1
, (79)

m1(y(a)) = n(n − 1)y(a)2nΩm

ny(a)2nΩm(a) + 1
, (80)

m2(y(a)) = ny(a)2n

y(a)2n + 1
, (81)

and therefore Geff (y(a)) is given by (53).
By simultaneously integrating the differential equations

(77) and (78), we obtain the evolution for the matter density
perturbation δ(a). Also, with the aim of comparison with
ΛCDM model, we introduce the growth index γ defined
by the relation f = Ωm(a)γ [100]. In the case of ΛCDM
model the growth index has been found to be γΛCDM =
6/11 	 0.55 [101–104]. In Fig. 3 we have depicted the
numerical solution for the matter overdensity δ (upper graph)
and for the growth index γ (lower graph), computed by
γ = ln f/ ln Ωm , for several different values of power n at a
scale k = 0.1h Mpc−1 of the linear regime. Being consistent
with the early standard matter era, from the upper graph, one
observes that for the three values of the power n, the matter
overdensity δ(a) grows linearly with the scale factor a dur-
ing the dark matter dominated epoch. Once that dark energy
comes to dominate the dynamics at late times, the growth of
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matter overdensity starts to slow down with the scale factor
as the power n increases. On the other hand, as it can be seen
from lower graph of Fig. 3, γ is found to be a decreasing func-
tion with the scale factor and as the power n decreases, the
curve approaches the curve corresponding to ΛCDM (solid
black line). Nevertheless, for values of the power n such that
n < − 4, the EOS parameter for dark energy wDE lies outside
the current observational bound, then our model predicts a
growth index larger than those obtained for ΛCDM model,
indicating therefore a smaller growth rate. Such a deviations
from ΛCDM have been already observed in a broad class of
viable f (T ) models in the minimally coupled case [57–65].
Hence observationally determining γ allows us to distinguish
between several f (T ) models.

In direct comparison of this non-minimal extension of
f (T ) with its counterpart in f (R) gravity, in [90,91] the
authors studied the effects on the evolution of matter pertur-
bations of a curvature-matter coupling. In particular, they
considered a power-law coupling function, i.e. f2(R) =
1 + (R/R∗)n , with R∗ being a characteristic curvature scale.
It was found that, in consistency with current observational
constraints, negative values for the power n are favoured, as
n = − 4 and n = − 10, accordingly with [93]. However,
in the present work we have found that a consistency with
current observations requires that the power n lies in a small
range about n = − 4. It what concerns the value n = − 10,
it yields a growth index γ very close to those in ΛCDM, but
a present value for the EOS of dark energy being outside the
allowed current bound. In this sense, a non-minimal exten-
sion of f (T ) gravity becomes more constrained than those
in f (R) gravity.

4.3 Theoretical predictions of f σ8(z)

In order to compare further the predictions of our model
with observations we are going to introduce the observable
quantity f σ8(z) which is defined via the relation

f σ8(z) ≡ f (a) · σ(a) = σ8

δ(1)
aδ′(a), (82)

being that f (a) = d ln δ(a)/d log(a) is the growth rate
and σ(a) = σ8δ(a)/δ(1). The sigma function σ(a) is the
temporal evolution of the root mean square mass fluctua-
tion amplitude in spheres of size 8 h−1 Mpc (k ∼ kσ8 =
0.125 h Mpc−1) with σ8 = σ(1), whose value is strongly
depending on the physics of the late-time expansion and
therefore on the specific dark energy model [108].

Currently exist some significant and persist tensions
between data sets in the context of ΛCDM, which involve
relevant parameters such as the Hubble parameter H0 and σ8

[4,108–110]. The so-called σ8-tension has its origin in the
fact that the values f σ8 from LSS structure formation data
lie some ∼ 8% below the ΛCDM prediction. So, this seems

Fig. 3 In the upper graph we shown the evolution of matter density
perturbation δ(a) as a function of scale factor and for several different
values of the parameter n, at k = 0.1h Mpc−1. In lower graph it is
depicted the corresponding behaviour of the growth index γ (a). We
find a deviation with respect to the standard value γ = 0.55 for the
ΛCDM, being that our γ (a) assumes values larger than it, and therefore
implying a smaller growth rate

to indicate us that the predicted value for σ8 from ΛCDM it
is much bigger than it should be, for the same growth rate in
its present day value f (1) [111]. Nevertheless, it is clear that
the growth rate f (a) is also very dependent on the model
[28] and a lower growth rate also could generate a better fit
with LSS data.

An expression for the σ(a) function which captures all
the physical information encoded in it is given by σ(a)2 =
δ(a)2

∫
d3k/(2π)3P(k,p)W 2(k, R8), where W is a top-hat

smoothing function, P(k,p) = P0kns T 2(k,p) is the linear
matter power spectrum, P0 is its normalization factor, and
T (k,p) is the matter transfer function, withp being the vector
that contains the parameters of the model [108,111]. For our
purposes and in view of the fact that σ(a) ∼ δ(a) [109], from
Fig. 3 we estimate for model (57), with n = − 3,− 4,− 5,
the corresponding values σ8 	 0.81, 0.84, 0.85, whereas that
for ΛCDM model one obtains σ8 	 0.79, being that we have
kept the fixed values Ω

(0)
m 	 0.28 and Ω

(0)
DE 	 0.72. These

values become a good approximation in agreement with the
values presented in Refs. [4,108–112].
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Fig. 4 It is shown the evolution of the weighted growth rate f σ8(a)

for several different values of the parameter n and for ΛCDM model.
In the plot we have used the full RSD f σ8 dataset of Table II in Ref.
[109]. The prediction for n = − 3 lies some ∼ 5 per cent below the
ΛCDM prediction, and therefore alleviating the σ8-tension

In Fig. 4 we depict the theoretical curves for the weighted
linear growth rate f σ8(z) for each model. It can be observed
that the corresponding prediction for the f σ8(z) function in
the case of n = − 3 is below the respective prediction of the
ΛCDM scenario and therefore the model at hand is poten-
tially capable in alleviating the σ8-tension. In order to provide
a measure of this result, we introduce the exact relative dif-
ference Δ f σ8(z) ≡ 100 ( f σ8(z) |model − f σ8(z) |ΛCDM ) /

f σ8(z) |ΛCDM with respect to the concordance model [111].
In Fig. 4, for n = − 3 one obtains f σ8(0) ≈ 0.37, whereas
that for ΛCDM it is seen that f σ8(0) |ΛCDM≈ 0.39, which
gives the relative difference Δ f σ8(0) ≈ 5. Hence, the pre-
diction for n = − 3 lies some ∼ 5% below the ΛCDM
prediction. Also, it is worth noting that to accommodate the
observational limits of the dark energy EOS parameter at
the present time z = 0, one could take a value of n slightly
smaller than − 3, and one could still have a relative (per-
centage) difference in approximately ∼ 4–5% with respect
to ΛCDM. It can also be highlighted that this result improves
that one obtained for the so-called XCDM parametrization
in Ref. [111].

5 Concluding remarks

In studying the dark energy problem of cosmology a very
interesting class of modified gravity models are the so-called
f (T ) gravity theories [45–47], that generalize the teleparal-
lel equivalent of GR [33–40], in which gravity is described
through torsion and not curvature [41–44]. These torsion-
based modified gravity theories constitute a good alternative
to the conventional based-curvature modified gravity models
[63]. Furthermore, in the same spirit of non-minimal f (R)

gravity theories [82–95], one may think in an attractive gener-

alization of this framework, by allowing a non-minimal cou-
pling between matter and torsion [80]. This generalized the-
ory has proven to have very important features at background
level, providing an explanation for both late-time accelerated
expansion, and early-time inflationary phase, that in this way,
it also could lead to a possible unified description of the cos-
mological expansion history [81]. Additionally, it is funda-
mental a study of cosmological perturbations in order to com-
pare all the predictions and results obtained from the model
with the observational data of cosmic microwave background
(CMB) and large-scale structure (LSS) [10].

In the present paper we have studied the evolution of scalar
cosmological perturbations in these non-minimal torsion-
matter coupling theories. In particular, by using the quasi-
static approximation in sub-horizon scales we have obtained
the evolution equation for matter density perturbations as
written in Eq. (48). Thus, we have found an effective grav-
itational coupling constant Geff given by Eq. (52), which
carries an additional contribution Gc, as defined in Eq. (50),
whose origin is related to the non-minimal matter-torsion
coupling function. This result constitutes a generalization
of those previously obtained for the growth of matter over-
densities in minimal f (T ) gravity, since the strength of the
gravitational coupling, as given by Geff /G, now depends on
both functions, f1(T ) and f2(T ), and their derivatives. In Eq.
(53) we have rewritten Geff in terms of the relevant cosmo-
logical parameters, the deceleration parameter q and the frac-
tional matter density Ωm , and the new parameters Σ(T ) =
f2/(F/κ), m1(T ) = T F ′/F and m2(T ) = T f ′

2/ f2, which
encode all the information about the model in the functions
f1(T ) and f2(T ). Clearly, in order to decide something about
the behaviour of the ratio Geff /G, it is necessary to know the
specific functional form of this set of parameters.

By applying our results to a particular model, we have con-
sidered the important case of a power-law coupling function
f2(T ) = 1 + (T/T ∗)n , with n negative and T ∗ a character-
istic torsion scale, which we have assumed to be the dom-
inant term in late-times, and hence leading the accelerated
expansion of the Universe in the dark energy regime. Here,
to isolate the effects of the non-minimal coupling between
torsion and matter we have taken the pure gravitational sector
to have the teleparallel equivalent form of GR, that is to say,
f1(T ) = T . With these assumptions we have analytically
solved the evolution equation of matter overdensities in Eq
(58), in two different asymptotic regimes through cosmolog-
ical evolution, the dark matter-dominated era, (T/T ∗)n � 1,
and dark energy-dominated epoch, (T/T ∗)n � 1. We have
obtained the analytic solution for the matter overdensity
(65) validates for the dark matter-dominated regime, which
allows us to compare with the solution δ ∼ a for the stan-
dard cold dark matter era. Clearly, our solution (65) repro-
duces this linear growth with the scalar factor in the limit
(T/T ∗)n → 0, but more importantly, one can see that the fac-
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tor 12n/ [5 (1 − n) (1 − 3n)] works in attenuating or enhanc-
ing the growth of matter overdensities. However, although for
negative n the growth rate f = δ′/δ is increased, the devia-
tion with respect to the standard matter model is very small
and it becomes smaller yet for |n| � 1. On the other hand, for
the dark energy regime we have found the analytic solution
(72). This solution allows us to show that for n < − 1/2 the
growth of matter perturbations is approximately frozen, such
that the growth rate decays as f = δ′/δ ∼ a(1+2n)/(2(1−n)).
An interesting additional conclusion about this solution can
be obtained if one puts the growth rate f in terms of the ratio
Geff /G as in Eq. (73). This relation implies that an effectively
weakened gravitational coupling, i.e. Geff /G < 1, produces
a growth of matter overdensities slower than in ΛCDM, as it
has been further corroborated by our results in a subsequent
numerical analysis.

Since the transition between the dark matter and dark
energy-dominated eras is not included in the above analyti-
cal analysis, a complete numerical analysis is also required.
Thus, we have numerically solved the matter perturbation
equation (78). In this way, from the numerical solution for the
matter perturbation δ (Fig. 3, upper graph) we have computed
the growth index γ = ln f/ ln Ωm (Fig. 3, lower graph),
for several different values of power n at a scale k = 0.1h
Mpc−1 of the linear regime. From this numerical analysis we
have ratified all the results previously obtained in the analyt-
ical analysis. Also, we have found that our model predicts a
growth index larger than those obtained for ΛCDM model,
indicating therefore a smaller growth rate. In full agreement
with these results, we also have found that the model at hand is
potentially capable in relaxing the existing σ8-tension, once
that it can provide us a f σ8 prediction which is ∼ 4–5%
below the corresponding ΛCDM prediction. Furthermore,
after comparing with its counterpart in f (R) gravity, where
a non-minimally coupling of power-law form between matter
and curvature has been studied [90,91], we found that a non-
minimal power-law coupling between matter and torsion in
f (T ) gravity becomes more constrained than those in f (R)

gravity.
The explicit coupling between the torsion scalar and the

matter Lagrangian density has as consequence an energy
exchange between matter and gravity, which manifests itself
in the non-vanishing of the covariant divergence of the mat-
ter stress-energy tensor as it is shown in Eq. (14). This non-
conservation of energy can be interpreted as a failure of the
theory in relation to the so-called metric postulates [106],
as it could generate a non-geodesic motion of test bodies,
and therefore it also could imply a possible violation of
Einstein equivalence principle (EEP) [86]. Furthermore, in
Ref. [86] it was also suggested that for the parametrization
f2(R) = 1 + λ f̃2(R) of the non-minimal coupling function
between curvature and matter one could potentially tune the
parameter λ with the purpose of reducing the effects of such

violation below current experimental accuracy. Nevertheless,
as it has also been shown in Ref. [107], the metric postulates
or the non-conservation of energy do not themselves pro-
vide quantitative estimates of the deviations from the EEP.
So, in order to decide something with respect to the rela-
tionship between the values of the parameters n, and T ∗, for
the parametrization f2(T ) = 1 + (T/T ∗)n of non-minimal
torsion-matter coupling function, and the measured bounds
of the EEP, a more detailed study must be performed in this
direction. This necessary study lie beyond the scope of the
present work, and is left for a separate project.

Finally, it is important to highlight that due to the Local
Lorentz violation in f (T ) gravity, and its extensions, one has
an extra degree of freedom represented by the scalar pertur-
bation χ in the perturbative framework developed for these
theories [59–61,75]. As it also happens in the minimal case,
we have shown that in the non-minimal extension of f (T )

gravity, this additional scalar perturbation χ does not have a
significant contribution on the growth of matter overdensi-
ties at sub-horizon scales. However, as it has been shown in
Refs. [60,62] for the f (T ) gravity theory, it is expected that
at super-horizon scales this new scalar mode has an important
effect on the evolution of matter perturbation.
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