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Abstract The recent detection of gravitational waves from
a neutron star merger was a significant step towards con-
straining the nuclear matter equation of state by using the tidal
Love numbers (TLNs) of the merging neutron stars. Measur-
ing or constraining the neutron star TLNs allows us in prin-
ciple to exclude or constraint many equations of state. This
approach, however, has the drawback that many modified the-
ories of gravity could produce deviations from General Rela-
tivity similar to the deviations coming from the uncertainties
in the equation of state. The first and the most natural step in
resolving the mentioned problem is to quantify the effects on
the TLNs from the modifications of General Relativity. With
this motivation in mind, in the present paper we calculate
the TLNs of (non-rotating) neutron stars in R2-gravity. More
precisely, by solving numerically the perturbation equations,
we calculate explicitly the polar and the axial l = 2 TLNs
for three characteristic realistic equations of state and com-
pare the results to General Relativity. Our results show that
while the polar TLNs are slightly influenced by the R2 mod-
ification of General Relativity, the axial TLNs can be several
times larger (in terms of the absolute value) compared to the
general relativistic case.

1 Introduction

The first detection of binary neutron star mergers [1] con-
tributed in several ways to the efforts of constraining the
nuclear matter equation of state (EOS) [2–9]. Perhaps one of
the most elegant and straightforward constraint comes from
the measurement of the tidal Love numbers (TLNs) of the
merging neutron stars. On its basis one can already exclude
a large number of modern equations of state. This approach,
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though, have the drawback that many alternative theories of
gravity would produce deviations from pure general rela-
tivity (GR) similar in magnitude and characteristics to the
uncertainties in the EOS.1 Thus, it is difficult to determine
the EOS from the current and forthcoming gravitational wave
observations in a theory of gravity independent way. The first
step in solving this problem is to quantify the effects from
modification of general relativity on the TLNs.

The TLNs characterize the response (deformability) of a
body to an external tidal force [17,18]. They encode infor-
mation about the internal structure of the body and the strong
field regime of gravity and most importantly – the tidal Love
numbers can be determined through the gravitational wave
emission of merging neutron stars [19–28]. TLNs in alter-
native theories of gravity were studied only in few cases
[29]: the dynamical Chern–Simons (dCS) gravity [10,11],
the Eddington-Inspired Born-Infeld (EiBI) gravity [30] and
in massless scalar-tensor theories (STT) of gravity [31]. One
should note that in the dCS gravity the polar TLNs, that give
the dominant contribution to the gravitational wave signal,
are the same as in GR up to a leading order and for EiBI
gravity the standard GR framework for calculating the TLNs,
using an apparent EOS formulation, can be employed. On the
other hand in [31] the perturbation equations for general STT
were derived and the TLNs were calculated for the case of
massless scalar field. The TLNs of different exotic compact
objects and for BHs in some alternative theories of gravity
(having nonzero TLNs in contrast to pure GR) were exam-
ined in [32].

The interest in different modifications of GR on the other
hand is growing in the last decade. The reason steams from
the fact that from one hand there are phenomena such as
the accelerated expansion of the Universe, that can not be
explained well within Einstein’s theory of gravity without

1 En escape from this problem can be offered for example by the uni-
versal, i.e. equation of state independent relations (see e.g. [10–16]).
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requiring fine-tuning or other problems appearing. From the
other hand there are purely theoretical arguments coming
from the theories trying to unify all the interactions, the
quantum corrections to the GR Lagrangian, or the attempt
to quantize gravity [33].

Thus a natural step is to calculate the TLN of neutron stars
in a broader class of alternative theories of gravity. A signifi-
cant complication comes from the fact that the exterior solu-
tion of the perturbations equations is not known analytically
in the general case, in contrast with pure general relativity. A
way to circumvent this problem is to consider an alternative
theory of gravity with finite range scalar forces (see for exam-
ple [32]). In this way the analytical GR solution can be used
in the far region from the star where the effective scalar field
drops off exponentially and is practically zero. As a particular
example of such generalized theories of gravity we consider
the f (R) theories and more precisely – R2-gravity having
a Lagrangian of the form f (R) = R + aR2 where a is a
free parameter. The motivation comes on one hand from the
fact that this is one of the most popular and widely used the-
ory possessing an effective finite range scalar force (the R2

gravity is mathematically equivalent to a particular class of
scalar-tensor theories with massive scalar filed). Moreover,
the natural application of TLN is connected with the inspiral
phase of binary neutron star merger. Currently the only stud-
ies of mergers in a theory with effective finite range scalar
force are done exactly in R2 gravity [34] and that is why it
is natural to consider the same case.

The f (R) theories, though, are explored mainly on cos-
mological scales because of the connection to the dark energy
problem and compact objects in these theories are more
scarcely studied. Non-perturbative models of neutron stars
were constructed in the static case in these theories in [35–38]
and they were later extended to the slowly [39] and rapidly
rotating [40] cases. Binary neutron star mergers in R2 grav-
ity were examined in [34]. The results in this paper show
that the future gravitational wave observations of merging
neutron stars can impose strong constraints on R2-gravity.

The goal of the present paper is to calculate the TLN of
neutron stars in R2-gravity. The current observational con-
straints on astrophysical scales impose the following upper
bound a � 1011m2 [41] based on the satellite mission Grav-
ity Probe B, which leaves space for significant deviations
from pure GR. As far as merger observations are concerned,
only the neutron star mergers can impose serious constraint
on f (R) theories because of the presence of no-hair theo-
rems for black holes. Due to the still limited accuracy in these
observations and the fact that only one neutron star merger
is detected [1], no serious constraint on the parameter a are
imposed yet.

Even though we concentrate on f (R) theories, the gen-
eral framework for calculating TLN developed in the paper is
valid for a much larger class of alternative theories of grav-

ity, the massive scalar-tensor theories (as we have already
commented the TLNs in massless scalar-tensor theories have
already been calculated in [31]). The reason comes from the
fact that f (R) theories are mathematically equivalent to a
particular class of scalar-tensor theory with nonzero scalar
field potential. Even more, we use this equivalence explicitly
in the present paper in order to simplify the calculations.

The paper is organized as follows. The mathematical
framework behind the R2-gravity and the way of constructing
equilibrium neutron star solutions is examined in Sect. 1. In
Sect. 2 the formulas for the calculation of the TLN, both polar
and axial, are derived. Section 3 is devoted on the numerical
results and the comparison with pure GR. The paper ends
with Conclusions.

2 f(R) theories and equivalence to scalar-tensor theories

The essence of f (R) theories is that the Ricci scalar R in the
action is substituted by a function of this scalar f (R):

S = 1

16πG

∫
d4x

√−g f (R) + Smatter(gμν, χ). (1)

Here R is the Ricci scalar with respect to the spacetime metric
gμν and Smatter is the action of the matter where the matter
fields are denoted by χ . If we want the theory to be well
posed, i.e. to be free of tachyonic instabilities and ghosts,
the following inequalities should be fulfilled d2 f/dR2 ≥ 0
and d f/dR > 0. We will work in a particular class of f (R)

theories, the so-called R2 gravity where

f (R) = R + aR2, (2)

where a is a parameter and in order to satisfy the above given
inequalities one should require that a ≥ 0.

A very common approach is to work not with the original
form of the action but transform it to another one by substi-
tuting � = d f (R)

dR and U (�) = R d f
dR − f (R). In this way we

obtain an action that is equivalent to the Brans-Dicke theory
[42,43] with a parameter ωBD = 0:

S = 1

16πG

∫
d4x

√−g [�R −U (�)] + Smatter(gμν, χ). (3)

In the case of R2 gravity the potential takes the form

U (�) = 1

4a
(� − 1)2, (4)

and therefore the scalar field is massive with

m� = 1√
6a

. (5)

It is mathematically equivalent to work either with the
original form of the action (1) or with its scalar-tensor rep-
resentation (3) and this was explicitly shown also in [44] for
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the case of neutron star solutions. Moreover, it is evident that
f (R) theories belong to the class of modified gravity with
finite range scalar forces, that would be very important later
when calculating the TLN of neutron stars.

The action (3) is written in the physical Jordan frame
where there is no direct coupling between the matter and
the scalar field in order to satisfy the weak equivalence prin-
ciple. One can further simplify the problem by introducing
the Einstein frame by making a conformal transformation of
the metric

g∗
μν = �gμν (6)

and redefining the scalar field and the potential

ϕ =
√

3

2
ln �, V = U (�)

�2 . (7)

Thus we arrive at the following Einstein frame action

S = 1

16πG

∫
d4x

√−g∗ [
R∗ − 2g∗μν∂μϕ∂νϕ − V (ϕ)

]

+Smatter(A
2(ϕ)g∗

μν, χ), (8)

where R∗ is the Ricci scalar curvature with respect to the
Einstein frame metric g∗

μν . As one can see, a direct couping
between the matter and the scalar field appears in the Einstein
frame through the coupling function A2(ϕ) = �−1(ϕ). In the
particular case of R2 gravity the coupling function and the
scalar field potential take the following form

A(ϕ) = e
− 1√

3
ϕ
, V (ϕ) = 1

4a

(
1 − e

− 2ϕ√
3

)2

. (9)

The field equations in the Einstein frame are much simpler
compared to the Jordan frame ones and that is why we will
employ this frame. Of course, the final quantities that we
obtain have to be transformed back to the physical Jordan
frame. In addition, the equation of state of the nuclear matter
that we use will be also only in the Jordan frame. A more
detailed discussion of the problem can be found in [36,39,
40].

We will consider nonrotating stars and thus the follow-
ing general ansatz for the static and spherically symmetric
Einstein frame metric can be used

ds2∗ = −e2ψdt2 + e2
dr2 + r2(dθ2 + sin2 θ dφ2), (10)

where all the metric functions depend on r only. The reduced
field equations take the following form

1

r2

d

dr

[
r(1 − e−2
)

]

= 8πGA4(ϕ)ρ + e−2


(
dϕ

dr

)2

+ 1

2
V (ϕ), (11)

2

r
e−2
 dψ

dr
− 1

r2 (1 − e−2
)

= 8πGA4(ϕ)p + e−2


(
dϕ

dr

)2

− 1

2
V (ϕ), (12)

d2ϕ

dr2 +
(
dψ

dr
− d


dr
+ 2

r

)
dϕ

dr

= 4πGα(ϕ)A4(ϕ)(ρ − 3p)e2
 + 1

4

dV (ϕ)

dϕ
e2
, (13)

dp

dr
= −(ρ + p)

(
dψ

dr
+ α(ϕ)

dϕ

dr

)
. (14)

Here the Jordan frame pressure p and energy density ρ are
used and they are connected to the Einstein frame ones (p∗
and ρ∗) via the following relations p∗ = A4(ϕ)p and ρ∗ =
A4(ϕ)ρ. The Jordan frame quantities ρ and p are naturally
connected via the equation of state (EOS) for the neutron star
matter p = p(ρ). In addition, we have to impose the standard
boundary conditions – regularity at the center of the star and
asymptotic flatness at infinity.

The radius of the star is calculated from the requirement of
vanishing of the pressure at the stellar surface and the mass is
taken from the asymptotic expansion of the metric functions
at infinity. It is important to note that for the considered R2

gravity the mass in the Einstein and the Jordan frame coin-
cide, while the physical Jordan frame radius of the star RS is
connected to the Einstein frame one rs in the following way

RS = A[ϕ(rS)]rS . (15)

Here we have presented the problem of calculating the
background equilibrium neutron star solutions very briefly.
More detailed explanations can be found in [36].

In what follows, we shall use the dimensionless parameter
a → a/R2

0, where R0 is one half of the solar gravitational
radius R0 = 1.47664 km.

3 Tidal love numbers

In order to compute the tidal Love numbers we have to con-
sider the stationary perturbations of the static and spherically
symmetric stars in R2-gravity . The perturbations of the met-
ric can be separated in polar and axial type. Here we present
the two cases separately and derive the tidal Love numbers
in both cases.

3.1 Polar

For the polar perturbations the peturbed Einstein frame met-
ric in the Regger–Wheeler gauge can be written in the form
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H polar
μν =

⎛
⎜⎜⎝

−e2ψ0 H0(r) H1(r) 0 0
H1(r) e2
0 H2(r) 0 0

0 0 K (r)r2 0
0 0 0 K (r)r2 sin2 θ

⎞
⎟⎟⎠

× Ylm(θ, φ), (16)

where Ylm(θ, φ) are the spherical harmonics. The pertur-
bations of the scalar field, energy density and the pres-
sure can be decompose in the form δϕ = δϕ̃(r)Ylm(θ, φ),
δρ∗ = δρ̃(r)Ylm(θ, φ) and δp∗ = δ p̃(r)Ylm(θ, φ). After per-
turbing the Einstein frame field equations of the f (R) gravity
coupled to a perfect fluid it can be shown that H0 = −H2

and H1 = 0. Also K , δρ̃(r) and δ p̃(r) can be written as
functiond of H0 and δϕ̃. Finally we obtain two equations for
H0 = −H2 = H and δϕ̃ governing the stationary perturba-
tions of the static and sphereically symmetric stars in f (R)

gravity:

d2H

dr2 +
{

2

r
+ e2
0

[
1 − e−2
0

r
+ 4π(p∗

0 − ρ∗
0 )r

−1

2
V (ϕ0)r

]}
dH

dr
+

{
− l(l + 1)

r2 e2
0 + 4πe2
0
[
9p∗

0

+5ρ∗
0 + ρ∗

0 + p∗
0

c̃2
s

− 1

4π
V (ϕ0)

]
− 4ψ ′2

0

}
H

+e2
0

{
−4ϕ′

0r

[
1 − e−2
0

r2 + 8πp∗
0 + e−2
0ϕ′2

0

−1

2
V (ϕ0)

]
− 16π√

3

[
(ρ∗

0 − 3p∗
0) + (ρ∗

0 + p∗
0)

1 − 3c̃2
s

2c̃2
s

]

+V ′(ϕ0)

}
δϕ̃ = 0 (17)

d2δϕ̃

dr2 +
(

ψ ′
0 − 
′

0 + 2

r

)
dδϕ̃

dr

−e2
0

{
l(l + 1)

r2 + 4e−2
0ϕ′2
0 + 1

4
V ′′(ϕ0)

−8π

3

[
−2(ρ∗

0 − 3p∗
0) + (ρ∗

0 + p∗
0)

1 − 3c̃2
s

2c̃2
s

] }
δϕ̃

+e2
0

{
− 2e−2
0ψ ′

0ϕ
′
0 − 4π√

3

[
(ρ∗

0 − 3p∗
0)

+(ρ∗
0 + p∗

0)
1 − 3c̃2

s

2c̃2
s

]
+ 1

4
V ′(ϕ0)

}
H = 0 (18)

Here 
0, ψ0, ϕ0, p∗
0 and ρ∗

0 are the corresponding unper-
turbed variables taken from the background neutron star
solutions and c̃s is the Jordan frame sound speed defined
by c̃2

s = ∂p/∂ρ.
In the considered model the scalar field mass is nonzero

which means that both the background scalar field ϕ0 and its
perturbation δϕ̃ drop off exponentially at infinity. This means
that the corresponding scalar field tidal Love number is zero.

The asymptotic behavior of H at large r on the other hand
is

H = c1

rl+1 + O
(

1

rl+2

)
+ c2r

l + O(rl−1). (19)

The tidal Love number k2 is connected to the coefficients in
the above given expansion c1 and c2 in the following way:

k polarl = 1

2R2l+1
S

c1

c2
. (20)

In pure GR the ratio c1/c2 is usually determined after
matching at the stellar surface the numerical solution for H
inside the neutron star to the analytical solution outside it
[19–22]. Applying this approach directly to our problem is
not possible since the equations for H and δϕ̃ are coupled
and in the general case no analytical solution exist outside
the star. The fact that the scalar field is massive, though,
simplifies the problem considerably. Since both the scalar
field and its perturbation die out exponentially at distances
larger than the Compton wavelength of the scalar field λϕ =
2π/mϕ , far enough from the surface of the star the scalar
field and its perturbation are practically zero and we can use
the same analytical solution as in pure GR. This requires, of
course, a matching of the inner numerical and outer analytical
solutions to be done not at the surface of the star but far
enough from the stellar surface where the scalar field and
its perturbation are negligible. This large distance where we
match the two solutions will be denoted by rmatch. We have
also verified that matching the two solutions not at the stellar
surface but at rmatch, works very well and does not lead to
any numerical problems.

The perturbation equation for H far away from the cen-
ter of the star, where the scalar field and its perturbation are
negligible, can be obtained straightforward from Eq. (17)
after substituting p∗

0 = ρ∗
0 = ϕ0 = δϕ̃ = 0. This equa-

tion is the same as in pure GR and its analytical solution
can be expressed in terms of elementary functions [20]. As
commented, the value of k2 can be calculated after matching
the numerical and analytical solutions at large enough radial
distances rmatch. Since rmatch is connected to the Compton
wavelength of the scalar field, rmatch is not a constant but
increases with the increase of the parameter a. For the l = 2
case one obtains

k polar2 = 8C5
1

5
(1 − 2C)2 [2 + 2C(y − 1) − y]

×
{

2C(6 − 3y + 3C(5y − 8))

+4C3 [
13 − 11y + C(3y − 2) + 2C2(1 + y)

]

+3(1 − 2C)2
[
2 − y + 2C(y − 1)

]
log(1 − 2C)

}−1

(21)
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where y = r H ′/H , C1 = M/RS is the compactness of the
star and C = M/rmatch. The value of y is calculated after
solving numerically the coupled system of equations (17),
(18) from r = 0 to r = rmatch.

It is important to note, that the polar TLNs are the same
in the physical Jordan and the Einstein frame since the scalar
field drops off exponentially outside the star.

3.2 Axial

In the axial case the metric perturbations are given by

Haxial
μν =

⎛
⎜⎜⎜⎝

0 0 h(r)Slmθ (θ, φ) h(r)Slmφ (θ, φ)

0 0 h1(r)Slmθ (θ, φ) h1(r)Slmφ (θ, φ)

h(r)Slmθ (θ, φ) h1(r)Slmθ (θ, φ) 0 0
h(r)Slmφ (θ, φ) h1(r)Slmφ (θ, φ) 0 0

⎞
⎟⎟⎟⎠ , (22)

where

(Slmθ (θ, φ), Slmφ (θ, φ))

= (−∂φYlm(θ, φ)/ sin θ, sin θ∂θYlm(θ, φ)).

The perturbations of the scalar field, the energy density and
the pressure vanish. Using the perturbations of the field equa-
tions one can show that h1 = 0. We are left with only one
equation for the metric perturbation h:

d2h

dr2 −
[

4π(ρ∗
0 + p∗

0)e2
0 +
(
dϕ0

dr

)2
]
r
dh

dr

+
[

− (l − 1)(l + 2)

r2 e2
0 + 8π(ρ∗
0 + p∗

0)e2
0

+2

(
dϕ0

dr

)2

− 2

r2

]
h = 0 (23)

In this case we also do not have an analytical solution because
of the presence of scalar field terms. Similar to the polar case,
though, such solution can be found far outside the star where
the scalar field has died out exponentially and the solution
is the same as in pure GR. The asymptotic equation at such
large distances is
(

1 − 2M

r

)
d2h

dr2 +
[
− l(l + 1)

r2 + 4M

r3

]
h = 0 (24)

and it can be solved analytically for a given l [21,22]. The
function h has the following asymptotic:

h ≈ c1

rl
+ c2r

l+1 (25)

The tidal Love numbers for the axial perturbations kaxiall are
related to the coefficients c1 and c2 in the following way

kaxiall = − l

2(l + 1)

c1

c2

1

R2l+1
S

. (26)

The value of kaxiall can be found after matching the
numerical solution (obtained after integrating the perturba-
tion equation (24) from the center of the star to some large
distance rmatch were the scalar field is negligible) with the
analytical asymptotic solution. Thus, one can obtain the fol-
lowing relation for the l = 2 case2

kaxial2 = −8C5
1

5

2C(y − 2) − y + 3

2C
[
2C3(y + 1) + 2C2y + 3C(y − 1) − 3y + 9

] + 3 [2C(y − 2) − y + 3] log(1 − 2C)
(27)

where y = rh′/h, C1 = M/RS is the compactness of the
star and C = M/rmatch.

Similar to the polar case, the axial TLNs are the same in
the physical Jordan and the Einstein frame.

4 Numerical results

We will work with three modern realistic EOS that allow
for models with maximum mass above the two solar mass
barrier [45,46] and are in agreement with the constraints
coming from the observation of the tidal Love numbers of
merging neutron stars [1]. These are the APR4 EOS [47], the
SLy4 EOS [48] and the MPA1 EOS [49]. We should note,
though, that the MPA1 EOS actually do not fit well in the
current constrains coming from the electromagnetic obser-
vations [50,51] but we included it in our studies so that we
can cover a larger range of stiffness. In order to be able to
make a better comparison between the three EOS and judge
about the effect of R2 gravity on the background neutron
star models, the mass as a function of the radius is plotted
in Fig. 1 for these EOSs and for four indicative values of the
parameter a. The chosen values of a are the same as the ones
used in the calculations of the tidal Love numbers. Since a
is back-proportional to the mass of the scalar field (see eq.
(5)), a → ∞ corresponds to the massless scalar field case.

2 The definition of kaxial2 differs from the one in [22] by a constant
factor of 12.
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Fig. 1 The mass as a function of the radius for all three considered
EOSs and different values of the parameter a, including the pure GR
case

On the other hand the mass of the scalar field goes to infinity
when a → 0 which means that the Compton wavelength is
practically zero and the corresponding solutions tend to the
pure GR case. As one can see in Fig. 1 the differences of
the neutron star masses and radii with pure GR can reach
up to roughly 10% and they are comparable both qualita-
tively and quantitatively with the deviations due to the EOS
uncertainties.

Let us comment in more detail the particular values of a
that we have chosen. More precisely, we have worked with
a ≤ 100 because of the following reason. The parameter a
introduces a length-scale related to the Compton wavelength
of the scalar field, above which the scalar field drops off expo-
nentially and thus the scalar field has a finite range. 3 This is
a crucial ingredient in our calculations of the TLNs since we
use the pure GR solution of the perturbation equations out-
side this Compton radius. Thus, it is natural to require that
the Compton wavelength of the scalar field is smaller than the
orbital separation between the merging neutron stars at the
time when they can be observed by the ground base detec-
tors and the TLNs can be measured. Assuming that with the
current instruments we can detect the emitted gravitational
waves when the orbital separation drops down to roughly a
few hundreds of kilometers, we have chosen to work with
a ≤ 100 which leads to λϕ ≤ 226 km.

The polar (top panel) and the axial (bottom panel) TLNs as
functions of the neutron star compactness are plotted in Fig. 2
for four values of a and only for the APR4 EOS, in order to
have better visibility. The equation of state dependence of
the results is presented in Fig. 3. As one can see for a fixed

3 In terms of the original f (R) formulation of the theory, this is the
range beyond which the R2 type of modifications of general relativity
are negligible.

Fig. 2 The polar (top panel) and axial (bottom panel) tidal Love num-
bers as functions of the stellar compactness for the ARP4 EOS and
several values of the parameters a

equation of state the polar tidal Love number can vary up to
roughly 10% for the considered range of values of a while
the variation in the axial Love number is much larger – for
a = 100 it can differ approximately 4 times. These deviations
from the pure GR case can be larger for larger values of a, but
as we commented, we have limited our studies to a ≤ 100.

Clearly, the changes in the polar Love numbers due to R2-
gravity are within the current equation of state uncertainty.
Hence, the current generation of gravitational wave detectors
is unlikely to be able to set constraints on the parameter a.
The three EOSs, though, were chosen to be the ones allowed
by the measurement of the TLNs in the neutron star merger
[1]. If we take into account also the constraints from the elec-
tromagnetic observations [50,51] the picture might change
because then the MPA1 EOS is outside the allowed range of
masses and radii. Thus, if we consider only the APR4 and
Sly4 EOSs, the maximum deviation in R2-gravity is larger
than the difference between the two equations of state. A def-
inite answer whether this is an observable effect or not can
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Fig. 3 The polar (top panel) and axial (bottom panel) tidal Love num-
bers as functions of the stellar compactness for several EOS, and for
the pure GR case and a = 50

be given only after a detailed analysis of change in the phase
of the signal and such a study is underway.

On the other hand the electromagnetic observations are
rapidly advancing and the next generation of gravitational
wave detectors is already planned. That is why one can
expect that when we know the EOS with a better accuracy in
the future from the electromagnetic observations, and have
more accurate observations of the gravitational waveforms of
merging neutron stars, the R2-gravity effect will be impor-
tant, producing effects larger than the equation of state uncer-
tainties. Thus we should take them into account when extract-
ing the relevant parameters from the gravitational wave sig-
nal.

The axial TLNs, on the other hand, are significantly influ-
enced (for a ≤ 100) by the modifications of the theory of
gravity. Moreover, the absolute value of the axial tidal Love
numbers increase compared to the pure GR case. In pure GR
the contribution of the axial TLN to the gravitational wave
phase is roughly two orders of magnitude smaller that the

polar contribution and the contribution of the higher order
(higher l) polar TLN would be more important than the axial
one as far as the change of the phase in the gravitational
wave signal is concerned [22]. The very recent calculations,
though, show that the axial TLNs in pure GR would have
negligible effect even for the next generation of gravitational
wave detectors [52]. Thus, even though the absolute value of
the axial TLNs can increase significantly in R2 gravity, they
could be still hardly observed in practice.

5 Conclusion

In the present paper we have calculated the tidal Love num-
bers of neutron stars in alternative theories of gravity with
finite range scalar field. We have chosen to work with f (R)

theories, and more precisely R2-gravity, due to the fact that
the only studies of binary neutron stars mergers [34] in the-
ories with finite range scalar field are done exactly in R2-
gravity. The study is motivated by the fact that the recent
detection of gravitational waves from merging neutron stars
allowed us to measure their TLN and thus set constraints
on the EOS. Since very often there is a degeneracy between
effects coming from modifications of GR and uncertainties
of the nuclear matter EOS, an estimation of the influence of
alternative theories of gravity on the TLN is very important
for the proper interpretation of the observational data. As a
matter of fact the problem of calculating the TLN in modi-
fied gravity is not well studied, with the exceptions of dCS
gravity, EiBI gravity and massless scalar-tensor theories.

We have calculated both the axial and the polar TLN for
l = 2. The results show that while the polar TLN is only
slightly influenced by the modification of GR (the deviations
are within the EOS uncertainty is we consider a broader set of
EOSs), the axial TLN can be several times larger (in terms of
absolute value) compared to pure GR. These conclusions are
for values of the free parameter of the R2-gravity that fulfill
the requirement that the effective radius of action of the R2

term in the Lagrangian is smaller than the orbital separation
between the merging neutron stars when they enter inside the
detector sensitivity.

The question is whether such deviations from Einstein’s
theory can lead to observable effects. The problem is that the
quantity that can actually be measured with the current detec-
tors is the polar TLN, while the axial one is expected to give
much smaller (yet unmeasurable) contribution in the change
of the phase of the signal. The recent calculations suggest
that even taking into account that the absolute value of the
axial TLN can increase significantly in R2-gravity, they could
hardly have any measurable influence on the gravitational
wave signal even for the next generation of gravitational wave
detectors. On the other hand, when the nuclear matter EOS
is better constrained by the electromagnetic observations in
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the future, the deviations in the polar TLN might become
observationally important in order to be able to accurately
interpreted the detected signal.
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