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Abstract In this paper, we discuss the effective thermody-
namic quantities of higher dimensional electrically charged
hairy black holes in de Sitter spacetime, considering the cor-
relation between the black hole horizon and the cosmological
horizon. Our results show that, the interaction term deter-
mined by the position of the two horizons could significantly
contribute to the total entropy of de Sitter spacetime. More-
over, different from the case in AdS spacetime, we find both
zero-order and second-order phase transitions under certain
conditions, with the absence of first-order phase transition
in the electrically charged hairy black holes. These results
are strongly supported by the classification of phase transi-
tion in Ehrenfest’s equations. More interestingly, our anal-
ysis demonstrates the validity of the Ehrenfest equations at
the critical point, and futhermore indicates the similarity of
Prigogine–Defay (PD) ratio between ECBH spacetime and
AdS spacetime.

1 Introduction

For over forty years, the discussion of the black holes and
Anti de Sitter (AdS) spacetime has remained an active field
of inquiry in modern theoretical physics [1–4]. Of particu-
lar interest are the thermodynamic properties of AdS black
holes, which, through the generalized first law of black hole
thermodynamics, can be derived from the correspondence
between the cosmological constant in the AdS spacetime
and the pressure in the common thermodynamic system.
Later investigations include the comparison between the state
parameter of black holes and the van der Waals equation,
the critical phenomena at the critical point, as well as the
phase transitions with different spacetime parameters [5–8].
Recently, there has also been flourishing interest in the sub-
ject of dark energy (DE) [9–15], which has opened up an
interesting possibility to deeply understand the quasi-de Sit-
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ter spacetime in the early inflation period [16–19]. On the
other hand, the inclusion of cosmological constant (or vac-
uum energy density) in the study of de Sitter spacetime is
very similar to the case of dark energy in modern cosmol-
ogy. In particular, if the simplest candidate for the uniformly
distributed dark energy is considered to be in the form of cos-
mological constant, our universe will naturally evolve into a
new de Sitter phase. Therefore, in order to construct the over-
all evolution history of the Universe, it is necessary to better
understand the classical and quantum properties of de Sitter
spacetime.

In the paradigm of de Sitter spacetime, the black hole hori-
zon and the cosmological horizon are always considered to
be different thermodynamic systems with different radiation
temperatures [20–22]. However, under such circumstance,
de Sitter spacetime does not satisfy the requirements of ther-
modynamic equilibrium stability, which makes it difficult to
investigate the thermodynamics of Anti de Sitter (AdS) black
holes. Moreover, in initial works it was always assumed that
the entropy of de Sitter spacetime is the sum of the entropy
of the black hole horizon and the cosmological horizon [23],
on the base of which the effective temperature and pressure
can be derived from the first law of thermodynamics [24–
30]. However, recent development on the thermodynamics
of AdS black holes shows that the interaction between the
two horizons could bring a multitude of interesting possibili-
ties. More specifically, when the state parameters of charged
AdS black holes satisfy certain conditions, the radiation tem-
perature (as well as the effective temperature) of two horizons
will be equal to each other [31–33]. Such constraint condi-
tion was extensively discussed in the recent analysis of luke-
warm black holes [34], with certain conditions satisfied by the
charge of spacetime. On the other hand, as is well known, the
parameters describing the charged AdS black hole thermody-
namic system are not only related to the state parameters, but
also electromagnetic parameters like the charge and electric
potential. For instance, due to the additional hair parameters
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in higher dimensional hairy black holes, Refs. [35,36] pro-
posed that the hairy black hole solutions become far richer
than those predicted in General Relativity. Extensions of this
work to the thermodynamic properties of AdS hairy black
hole with negative cosmological constant (Λ < 0) have
yielded more exotic results [2,37–44], i.e., the hair parame-
ters can have significant effects on the phase transition, while
Van der Waals-like phase transition could also exist in AdS
hairy black holes. Motivated by such recent developments
of black hole thermodynamics, several questions arise: Con-
sidering the interaction between the black hole horizon and
the cosmological horizon, does the Van der Waals-like phase
transition still exist in AdS hairy black holes? More impor-
tantly, is it possible to quantify the effects of hair parameter
q on the phase transition? The investigation of the above two
problems is the main motivation of our analysis.

In this paper, concentrating on the correlation between the
state parameters of the black hole’s horizon and the cosmo-
logical horizon, we will study the thermodynamic proper-
ties of de Sitter spacetime, and provide the effective ther-
modynamic quantity of electrically charged hairy black hole
(ECBH) spacetime. Then we obtain the entropy correction
term and the corresponding effective thermodynamic quan-
tity caused by the interaction between the state parameters
of the two horizons. Finally, in the framework of the well-
known Ehrenfest method, we summarize the classification
of phase transition in de Sitter spacetime, discuss the condi-
tions on which the stability and phase transition of de Sitter
spacetime could take place, and try to quantify the effects
of hair parameter q on the phase transition. The units of
G = h = kB = c = 1 are used throughout this work.

2 Higher dimensional hairy black holes

A number of analytic solutions of Einstein–Maxwell-Λ the-
ory conformally coupled to a scalar field in higher dimensions
were discussed in Refs. [45–48]. In what follows we focus
on the exact solution of electrically charged hairy black hole
in five dimensions, the action of which is given by

I = 1

k

∫
d5y

√−g

[
R − 2Λ − 1

4
F2 + kLm(φ,∇φ)

]
(1)

where

Lm = b0φ
15 + b1φ

7Sμν
μν + b2φ

−1(Sμγ
μγ Sνδ

νδ

− 4Sμγ
νγ Sνδ

μδ + Sμν
γ δSνμ

γ δ)
(2)

with the coupling constants of conformal field theory
(b0, b1, b2) and

Sμν
γ δ = φ2Rμν

γ δ − 12δ
[γ
[μδ

δ]
ν]∇ρφ∇ρφ

− 48φδ
[γ
[μ∇ν]∇δ]φ + 18δ

[γ
[μ∇ν]φ∇δ]φ

(3)

The five-dimensional solution to Eq. (1) is given by [49]

ds2 = − f (r)dt2 + f −1(r)dr2 + r2dΩ2
(k)3 (4)

where the metric function is obtained as follows

f (r) = k − m

r2 − q

r3 + e2

r4 − Λ

6
r2 (5)

and dΩ2
(k)3 is the line element on a three-dimensional sur-

face of constant positive, zero, or negative curvature. The
constant k characterizes the geometric property of hypersur-
face, which takes values k = 0 for flat, k = −1 for negative
curvature, and k = 1 for positive curvature, respectively.
Moreover, e represents the electric charge, m denotes the
mass parameter of the solution, and Λ is the cosmological
constant. Note that q is given in terms of coupling constants
of the scalar field [50,51]

q = 64π

5
εkb1

(−18kb1

5b0

)3/2

(6)

where ε = −1, 0, 1 and there exists an additional con-
straint to ensure the existence of this black hole solution
(10b0b2 = 9b2

1). Therefore, one can straightforwardly obtain
the value of q as 0,± |q|. Now we should make some com-
ments on the physical meaning of the parameter q. At first
sight an expectation would be that it represents the scalar
charges in the first law of thermodynamics, especially for
hairy black holes in AdS spacetime [52,53]. The new inter-
pretation of the role of scalar charges played in the first law
of thermodynamics can also be found in Refs. [35,40,54].
However, it should be noted that the hair parameter q is
not defined as the conserved charge corresponding to some
symmetry—its value may vary with the scalar field coupling
parameters [50]. More specifically, in order to develop the
consistency between the first law of black hole thermody-
namics and the Smarr relation [51], the coupling parameters
should be treated as dynamical variables, which means that
q is extended to be a continuous and real parameter in the
Smarr relation.

In addition, the scalar field configuration takes the form
of

φ(r) = n

r1/3 , n = ε

(
−18kb1

5b0

)1/6

(7)

and the Maxwell gauge potential reads

Aμ = √
3
e

r2 δ0
μ (8)

where the field strength is obtained as Fμν = ∂μAν − ∂ν Aμ.
When Λ > 0 , the positions of black hole horizon r+ and
cosmic horizon rc are determined with f (r) = 0.
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Fig. 1 The characteristic behavior of f (r) as a function of x for m =
0.5, 0.8, 1.0. The other parameters are fixed at Λ = 1, k = 1 ,e = 0.2,
and q = −0.2
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Fig. 2 The same as Fig. 1, but with different value of e (the other
parameters are fixed at Λ = 1, k = 1, m = 1, and q = −0.2)

Based on the above equations, the f (r)−r diagrams could
be derived by taking different value of m, q, and e. Firstly
we consider the spherical case (i.e., k = +1 and Λ= 1)
which are explicitly illustrated in Figs. 1, 2, and 3. We find
that, when the parameters characterizing the ECBH space-
time satisfy certain conditions, the spacetime will exhibit the
black hole horizon and the cosmological horizon, i.e., there
exit three real roots for the equation f (r) = 0: the largest
one is the cosmological horizon (CEH) at rc, followed by the
outer horizon (BEH) of black hole at r = r+, and the smallest
is the inner (Cauchy) horizon of the black hole. More impor-
tantly, the difference between the the cosmological horizon
and the outer horizon of black hole (|rc − r+|) will signifi-
cantly increase with the value of q, which demonstrates the
non-negligible effect of this hair parameter in Fig. 3. Now
one interesting question arises: considering the possible exis-
tence of planar hairy black holes [38,55] and first-order phase
transitions in AdS spacetime [42] once the ground state is cor-
rectly identified, is it possible to study the thermodynamic
behavior of hairy dS black holes with k = 0? To answer this
question, we have studied the behavior of the metric func-
tion for planar black holes with k = 0 and hyperbolic black
holes with k = −1. The final results show that, only in the
spherical case both of the black hole horizon and the cosmo-
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Fig. 3 The same as Fig. 1, but with different value of q (the other
parameters are fixed at Λ = 1, k = 1, e = 0.2, and m = 1)

logical horizon can be derived. Therefore, we dedicate the
following sections to the exploration of the thermodynamic
behavior for spherical black holes with k = +1.

In what follows we will concentrate on the conserved
quantities at the black hole horizon and cosmological hori-
zon, which are derived with the counterterm method exten-
sively used both in de Sitter and Anti-de Sitter spacetime
[55–58]. We know that some thermodynamic quantities are
associated with the cosmological horizon as

M = 3ω3(k)

16π
m, Q = −ω3(k)

√
3

16π
e, P = − Λ

8π
,

Sc = ω3(k)

(
r3
c

4
− 5

8
q

)
, Vc = ω3(k)

4
r4
c ,

Tc = − 1

πr4
c

(
kr3

c

2
+ q

4
− e2

2rc
− Λ

6
r5
c

)
.

(9)

and the first law of thermodynamics for the cosmological
horizon following form [56,57]

dM = −TcdSc + VcdP + ΦcdQ + Kcdq (10)

where

Kc = −ω3(k)Λ

192r5
c

(
20r6

c − 12
r4
c
Λ

(5k − 3) − 30

Λ
qrc + 60e2

Λ

)

(11)

For the black hole horizon, the associated thermodynamic
quantities can be written as

S+ = ω3(k)

(
r3+
4

− 5

8
q

)
, V+ = ω3(k)

4
r4+,

T+ = 1

πr4+

(
kr3+

2
+ q

4
− e2

2r+
− Λ

6
r5+

) (12)
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while the thermodynamic quantities of black hole horizon
satisfy the first law of thermodynamics [55,58]

dM = T+dS+ + V+dP + Φ+dQ + K+dq (13)

where

K+ = −ω3(k)Λ

192r5+

(
20r6+ − 12

r4+
Λ

(5k − 3) − 30

Λ
qr+ + 60e2

Λ

)

(14)

It is fairly straightforward to show that there exits only the
black hole horizon in the case of P = − Λ

8π
> 0. In addi-

tion, the situation is significantly more interesting in the
case of q < 0. More recently, Refs. [50,51,51] studied the
second-order phase transition of hairy black holes in the AdS
spacetime, and furthermore derived the critical thermody-

namic quantities as: rc = (−5q)1/3, Tc = − 3(−5q)2/3

20πq , and

Pc = 9
200π

(−
√

5
9 )2/3, and the ratio of the critical values

10Pcrc = 3Tc. Therefore, compared with the well-known
thermodynamic properties in the charged case [1–4], the
parameter q plays a very similar role in the phase transi-
tion of hairy black holes, just as the electric charge Q in the
scenario of charged black holes.

Moreover, for f (r+,c) = 0 we can derive

m = kr2
c x

2

(1 + x2)
− q

rc

(1 − x5)

x(1 − x4)
+ e2

r2
c

(1 − x6)

x2(1 − x4)
(15)

Λ

6
= k

r2
c (1 + x2)

+ q

r5
c

1 − x

x(1 − x4)
− e2

r6
c

1

x2(1 + x2)
(16)

On the other hand, taking T = T+ = Tc, the combination of
Eqs. (9) and (12) will generate

Λ

6
= k

2r2
c x

+ q

4r5
c x

4

(1 + x4)

(1 + x)
− e2

2r6
c

(1 + x5)

x5 (1 + x)
(17)

where x = r+/rc. Thus, when the temperature of the black
hole horizon is equal to that of the cosmological horizon, the
electric charge of the system satisfies the following expres-
sion

e2

rc
= k

x4r3
c

(1 + x + 3x2 + x3 + x4)

+ q
x(1 + 2x + 4x2 + 2x3 + x4)

2 (1 + x) (1 + x + 3x2 + x3 + x4)

(18)

with the radiation temperature of the two horizons derived
from Eqs. (12)–(14):
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T x

Fig. 4 The T (x) − x diagram when the parameter q is fixed at
−0.1,−0.2, and −0.3, respectively

T = T+ = Tc

= (1 − x2)(1 + x)(1 + x2)

2π(1 + x2)(1 + x + 3x2 + x3 + x4)rc

×
(
k + q(2 − x + 3x2 − 3x3 + x4 − 2x5)

2xr3
c (1 + x)2(1 − x2)(1 + x2)

) (19)

In order to have a better illustration, the T (x)− x diagram
of the electrically charged hairy black holes was displayed
in Fig. 4 for the specific cases with rc = 1, which highlights
the salient features of the q parameter. We see that, the maxi-
mum value of T (x) and the allowed region of T (x) > 0 will
increase with the value of q, while the radiation temperature
in the spacetime will approach zero (T → 0) when the two
horizons coincide (x → 1).

3 The effective thermodynamic quantity of spacetime

Now, considering the interaction between the black hole hori-
zon and the cosmological horizon, we can derive the effective
thermodynamic quantities and the corresponding first law of
black hole thermodynamics as [59]

dM = Teff dS − Peff dV + φeff dQ + Keff dq (20)

with the thermodynamic volume defined as [16]

V = Vc − V+ = ω3(k)

4
r4
c (1 − x4) (21)

Note that the entropy S is an explicit function of the horizon
position. In particular, when x approaches zero (x → 0),
there exits only the cosmological horizon with the corre-

sponding entropy Sc = ω3(k)(
r3
c
4 − 5

8q), while with the
absence of cosmological constant (Λ = 0), there exits only

the black hole horizon with the entropy of S+ = ω3(k)(
r3+
4 −

5
8q). In this analysis, considering the interaction between the
two spacetime horizons and the external entropy generated
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Fig. 5 The same as Fig. 4, but for the metric function f (x) and entropy S(x)

by such interaction (Sex ), the entropy of ECBH spacetime
can be written as

S = S+ + Sc + Sex = ω3(k)r
3
c (1 + x3 + f (x)) − 5ω3(k)

4
q

(22)

where the undefined function f (x) represents the extra con-
tribution from the correlation between the two horizons [60].

Inserting Eq. (15) into Eqs. (20)–(22), the effective tem-
perature of ECBH spacetime is obtained as

Teff = 3

2πr4
c A(x)

[
q

(1 − 4x4 + 4x5 − x9)

2x2(1 − x4)

+kr3
c x

(1 − x2 + x4)

(1 + x2)
− e2

rc

(1 − 2x4 + 2x6 − x10)

x3(1 − x4)

]

(23)

where

A(x) =
[
(3x2 + f ′(x))(1 − x4) + 3x3(1 + x3 + f (x))

]

(24)

and the combination of Eqs. (18) and (23) will lead to the
effective temperature of ECBH spacetime

T̄eff = 3(1 − x2)x2(1 + x)(1 + x5)

2π(1 − x4)(1 + x + 3x2 + x3 + x4)r4
c A(x)

[
kr3

c + q

(2 − x + 3x2 − 3x3 + x4 − x6 + 3x7 − 3x8 + x9 − 2x10)

2x(1 + x)2(1 + x5)(1 − x2)(1 + x2)

]

(25)

One should note that, when the radiation temperature of the
black hole horizon is equal to that of the cosmological hori-
zon, the effective temperature T̄eff of ECBH spacetime should
be the same as the radiation temperature, i.e.,

T̄eff = T (26)

The radiation temperature can be rewritten as

T = (1 − x2)(1 + x)

2π(1 + x + 3x2 + x3 + x4)r4
c

[
kr3

c

+ q(2 − x + 3x2 − 3x3 + x4 − x6 + 3x7 − 3x8 + x9 − 2x10)

2x(1 − x2)(1 + x)2(1 + x2)(1 + x5)

]

(27)

Then we can calculate the expression of A(x) from Eq. (25)
and find it to be

A(x) = 3x2(1 + x5)

(1 − x4)
(28)

Now the combination of Eqs. (24) and (28) will generate

f ′(x) + 3x3

1 − x4 f (x) = −3x3(1 − x3 − 2x4)

(1 − x4)
2 (29)

with the corresponding solution of

f (x) = 11

7
(1 − x4)3/4 − 11 − x(11 + 3x3)(1 + x3)

7(1 − x4)
(30)

In Fig. 5 we display the behavior of f (x) and S(x) with
different value of q parameter.

Furthermore, we get the effective temperature of ECBH
spacetime from Eqs. (23) and (28)

Teff = 1

2πrcx2(1 + x5)

[
kx(1 − x2)(1 − x2 + x4)

+ q

r3
c

(1 − 4x4 + 4x5 − x9)

2x2 − e2

r4
c

(1 − 2x4 + 2x6 − x10)

x3

]

(31)
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Fig. 6 The behavior of the effective temperature as a function of x . a For different e (q is fixed at − 0.2), b for different q (e is fixed at 0.2)

Table 1 Summary of the highest effective temperature T c
eff and the

corresponding x for different curves in Fig. 6

e T c
eff xc x0

q = −0.2 0.1 0.030477 0.696067 0.566754

0.2 0.017666 0.768880 0.652131

0.3 0.007684 0.847700 0.753423

q T c
eff xc x0

e = 0.2 −0.1 0.031840 0.700833 0.575758

−0.2 0.017666 0.768880 0.652131

−0.3 0.009568 0.825573 0.722681

The value of x0 (i.e., the root of Teff = 0) is also listed for comparison

Similarly, in order to clearly see the effect of relevant param-
eters on the effective temperature, we illustrate an example
of the Teff − x diagram with different value of e and q, which
are explicitly shown in Fig. 6 (by fixing k = 1 and rc = 1).
The corresponding numerical results can be seen in Table 1.
It is obvious that different values of q and e may lead to
different effective temperature of ECBH spacetime, as can
be seen from Fig. 6. More specifically, when q is fixed, the
maximum value of the effective temperature of the system
will decrease with e, while the allowed region with Teff lager
than zero is also reduced. Such tendency can also be seen
from the behavior of the effective temperature as a function
of x , in term of different q.

On the other hand, the effective pressure of ECBH space-
time can be derived from Eq. (20), which is given by

Peff = 16π

3ω2
3(k)r

2
c x

2(1 + x5)(1 − x4)
P(x, rc, q, e) (32)

where

P(x, rc, q, e)

= x4 (1 + x5)

(1 − x4)

[
2k(1 − x2) + q

r3
c

(1 − x5)

x3 − 2e2

r4
c

(1 − x6)

x4

]

+x

[
11

7
(1 − x4)

3/4 − 4(1 + x4)(1 − x + x2) − 11x3

7(1 − x)(1 + x2)

]

×
[

2k(1 − x2)1 − x2 + x4) + q

r3
c

(1 − 4x4 + 4x5 − x9)

x3

− e2

r4
c

2(1 − 2x4 + 2x6 − x10)

x4

]
(33)

The effective potential of ECBH spacetime can be written as

φeff =
(

∂M

∂Q

)
S,V,q

= 32πQ

ω(k)r2
c

(1 − x6)

(1 − x4)
= −2

√
3e

r2
c

(1 − x6)

(1 − x4)

(34)

By taking different value of q and e (with k fixed at 1), we
analyze the behavior of the effective pressure Peff in Fig. 7,
from which one could clearly see the effect of these param-
eters on the effective pressure of ECBH spacetime. Notice
that the maximum value of the effective pressure Peff and
its positive region (Peff > 0) will decrease with e and q,
which is quite similar to the behavior of effective tempera-
ture shown in Fig. 6. Meanwhile, concerning different value
of φeff and q (with k = 1), we can obtain the correlation
between the entropy S and the effective temperatue Teff pre-
sented in Fig. 8. For comparison, the value of S0 and T 0

eff at
the phase transition point is also displayed in Table 2.

Now we will focus on the thermodynamic properties of
ECBH spacetime in the vicinity of T 0

eff and S0. As can be
clearly seen from the results presented in Fig. 8, when the
effective temperature is lower than T 0

eff , there exist two differ-
ent entropy for one specific effective temperature. Thus, con-
sidering the strong correlation between entropies and phases,
Teff < T 0

eff is a two-state coexistence region, which can
be classified first-order phase transition in the framework
of the well known Ehrenfest classification of phase transi-
tions [61]. When the effective temperature approaches T 0

eff ,
the difference between the two entropies will significantly
decrease, which indicates that at the phase transition point
(Teff = T 0

eff ), the AdS black holes will transform from one-

123



Eur. Phys. J. C (2018) 78 :763 Page 7 of 12 763

q 0.05

q 0.1

q 0.2

0.6 0.7 0.8 0.9 x
0.005

0.005

0.010

0.015

0.020
Peff

(a)

e 0.1

e 0.15

e 0.2

0.6 0.7 0.8 0.9 x

0.005

0.005

0.010

Peff

(b)

Fig. 7 The same as Fig. 6, but for the behavior of the effective pressure Peff
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Fig. 8 The S − Teff diagram with different φeff (while q is fixed at −0.2) and different q (while φeff is fixed at 0.2)

order phase transition to second-order phase transition. On
the other hand, the heat capacity CQ will diverge at the phase
transition point, as can be seen from the slope of the yielded
S−T curves for the thermodynamic system. We remark here
that, the allowed region of the first-order phase is strongly
dependent on the value of q, i.e., the effective temperature of
the second-order phase will dramatically increase with the
q parameter, which gives birth to an enlarged region of the
first-order phase. Meanwhile, it is interesting to understand
whether the presence of the scalar field will change the phase
diagram. Comparing the two cases illustrated in Fig. 8, one
could easily find that the scalar field plays a similar role as
the q parameter. More specifically, the decrease of the effec-
tive potential φeff could significantly influence the effective
temperature of the second-order phase, and thus contribute
to the absence of the first-order phase transitions.

For the case of rc = 1, the heat capacity with equal φeff

can be expressed as

Cφeff = Teff

(
∂S

∂Teff

)
φeff

(35)

where

Teff = 1

2πrcx2(1 + x5)

[
kx(1 − x2)(1 − x2 + x4)

Table 2 Summary of the value of S0 and T 0
eff at the phase transition

point for different q and e parameter

q T 0
eff S0

φeff = 0.2 −0.3 65.8037 0.01865

−0.2 55.0477 0.03560

−0.1 45.9586 0.07531

φeff T 0
eff S0

q = −0.2 0.2 55.0477 0.03560

0.5 59.9295 0.02754

0.9 72.7724 0.01641

+ q

r3
c

(1 − 4x4 + 4x5 − x9)

2x2

−φ2
eff

(1 − 2x4 + 2x6 − x10)(1 − x4)
2

12x3(1 − x6)
2

]
(36)

S = S+ + Sc + Sex = ω3(k)r
3
c (1 + x3 + f (x)) − 5ω3(k)

4
q

(37)

Cφeff = Teff

(
∂S

∂Teff

)
φeff

= Teff

(
dS(x)

dTeff (x)

)
φeff

(38)

In term of the thermodynamic quantities discussed above, the
extended Gibbs free energy for our system is given by
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Fig. 9 Heat capacity Cφeff varying with effective temperature Teff and entropy S, for the case of k = 1, φeff = 0.2 and q = −0.2. Note the phase
transition of ECBH spacetime occurs when the effective temperature is less than T 0
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Fig. 10 The same as Fig. 9, but for the behavior of the Gibbs function G

G = M − Teff S − φeff Q (39)

provided the mass of the electrically charged hairy black hole
[62]

M = 3ω3(k)

16π
r2
c

×
(

kx2

(1 + x2)
− q

r3
c

(1 − x5)

x(1 − x4)
+ φ2

eff
(1 − x4)

12x2(1 − x6)

)

(40)

Now, it is worthwhile commenting on the correlation
between the corresponding Gibbs function and the effec-
tive temperature. Taking k = 1, φeff = 0.2 and q = −0.2,
we obtain the Cφeff − Teff , Cφeff − S, G − S, and G − Teff
graphs presented in Figs. 9 and 10. One could note that when
the effective temperature is less than T 0

eff = 0.03560, there
exist two different Gibbs function for one certain effective
temperature. Meanwhile, the ECBH spacetime will exhibit
the smallest Gibbs function G under the isothermal and iso-
baric conditions (with fixed φeff and Teff ). More interestingly,
following the Gibbs principle of minimum free energy, any

fluctuation of the spacetime could generate possible phase
transition, i.e., an arbitrary state of phase 2 may change to
the state of phase 1 under the isothermal and isobaric condi-
tions, which, in the framework of Ehrenfest’s classification
method, satisfies the requirements of zero-order phase tran-
sition [61]. Such classification of general types of transition
between phases of matter, introduced by Paul Ehrenfest in
1933, lies at a crossroads in the thermodynamical study of
critical phenomena. Therefore, similar to the case of AdS
spacetime [50,63–68], through a zero-order phase transi-
tion our Universe may transform from an initially unstable
phase to a stable phase, which can be interpreted as a con-
finement/deconfinement phase transition in dual quark gluon
plasma [69], superfluidity, and superconductivity [70–72].

In the next we will explore the phase structure of hairy
black hole solutions in the framework of Ehrenfest’s scheme.

4 Phase transition and Ehrenfest’s equations

As is well known, the classification of phase transition using
Ehrenfests scheme is a very elegant technique in the stan-
dard thermodynamics [73–76]. However, it is still not widely
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Fig. 11 Entropy (S) with different α and kT (for the charged hairy black holes with q = −0.2 and φeff = 0.2)

explored in the context of black hole thermodynamics, in
spite of some attempts made in Ref. [16] and further dis-
cussed in Ref. [17]. Therefore, it is rewarding to classify the
phase transitions in electrically charged hairy black holes by
Ehrenfest’s scheme. Let us start by reviewing the S − Teff
graph shown in Fig. 8. Considering the fact that the entropy
S is indeed a continuous function of temperature Teff , the
possible existence of a first-order phase transition could be
ruled out [77]. However, turning to the infinite divergence
of specific heat close to the critical point T = T0, the onset
of a higher-order (continuous) phase transition is strongly
supported, which is also supported by the behavior of the
CΦeff − S graph shown in Fig. 9.

Moreover, concerning the first law of thermodynamics in
term of the thermodynamic quantities of ECBH spacetime
(Eq. 20), the state parameters of ECBH spacetime are cor-
responding to those of general thermodynamic systems, i.e.,
V ↔ Q and P ↔ −φeff . Therefore, the Ehrenfest’s equa-
tions in ECBH spacetime can be rewritten as

−
(

∂φeff

∂Teff

)
S

= C2φeff − C1φeff

T c
eff Q

c(α2 − α1)
= ΔCφeff

T c
eff Q

cΔα
(41)

−
(

∂φeff

∂Teff

)
Q

= α2 − α1

kT 2 − kT 1
= Δα

ΔkT
(42)

where kT is the analog of isothermal compressibility, and α

is the analog of volume expansion coefficient given by

α = 1

Q

(
∂Q

∂Teff

)
φeff

= − 1

Q

(
∂Q(x)

dTeff (x)

)
φeff

(43)

Note that α can be obtained from the above expression, in
combination with the derivative of Eq. (36) and the transfor-
mation of Eq. (34):

Q = φeff
ω(k)r2

c

32π

(1 − x4)

(1 − x6)
(44)

while in the case of constant φeff and rc = 1, the analog of
isothermal compressibility can be derived from Eqs. (31) and
(34):

kT = 1

Q

(
∂Q

∂φeff

)
Teff

= 1

Q

(
∂Teff
∂x

)
Q(

∂Teff
∂x

)
Q

(
∂φeff
∂Q

)
x

−
(

∂Teff
∂Q

)
x

(
∂φeff
∂x

)
Q

(45)

In Fig. 11, we plot the change of the entropy S with the
analog of isothermal compressibility and volume expansion
coefficient, for the special case of q = −0.2 and φeff = 0.2).
One can clearly see from the plot that the phase transition
of the thermodynamic system of ECBH spacetime appears
at S = S0 = 55.0477, Teff = T 0

eff = 0.3560, φeff = 0.2,
which satisfies the requirements of thermodynamic second-
order phase transition in the Cφeff − S, α − S, kT − S and
G − Teff , G − S diagrams [78,79].

Following the same direction, given the analogy between
the thermodynamic state variables and black hole parameters,
the Maxwell relation provide the following expressions as

−
(

∂φeff

∂Teff

)
S

=
(

∂S

∂Q

)
φeff

,

−
(

∂φeff

∂Teff

)
Q

=
(

∂S

∂Q

)
Teff

(46)

and

−
[(

∂φeff

∂Teff

)
S

]c
=

[(
∂S

∂Q

)
φeff

]c

,

[
−

(
∂φeff

∂Teff

)
Q

]c

=
[(

∂S

∂Q

)
Teff

]c (47)
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Here the footnote c denotes the value of physical quantities at
the critical point. Then substituting Eqs. (47) into (41)–(42),
one may straightforwardly get

ΔCφeff

T c
eff Q

cΔα
=

[(
∂S

∂Q

)
φeff

]c

,

Δα

ΔkT
=

[(
∂S

∂Q

)
Teff

]c (48)

The critical point is determined through

(
∂φeff

∂Q

)
Teff

= 0,

(
∂2φeff

∂Q2

)

Teff

= 0

(49)

and it is convenient to rescale some quantities of Eq. (45) in
the following way:

(
∂φeff

∂Q

)
Teff

=

(
∂Teff
∂x

)
Q

(
∂φeff
∂Q

)
x

−
(

∂Teff
∂Q

)
x

(
∂φeff
∂x

)
Q(

∂Teff
∂x

)
Q

= 0 (50)(
∂S

∂Q

)
φeff

= −
(

∂φeff

∂Q

)
x

(
∂x

∂φeff

)
Q

dS(x)

dx
, (51)

(
∂S

∂Q

)
Teff

= −
(

∂Teff
∂Q

)
x

(
∂x

∂Teff

)
Q

dS(x)

dx
(52)

Two further comments should be made based on the above
calculations. First of all, as is implied from the combination
of Eqs. (50)–(52):

[(
∂S

∂Q

)
φeff

]c

=
[(

∂S

∂Q

)
Teff

]c

(53)

our analysis demonstrates the validity of the Ehrenfest
equations at the critical point [77]. More interestingly, the
Prigogine–Defay (PD) ratio

Π = ΔCφeff ΔkT

T c
eff Q

c(Δα)2 = 1 (54)

which can be calculated from the combination of Eqs. (48)
and (53), agrees very well with the previous results derived in
the AdS spacetime [80]. Such quantity contains information
about possible phase transitions in the system and allows
us to uncover a rich phase structure for electrically charged
hairy black holes [80].

5 Conclusion and discussion

The subject of black hole thermodynamics continues to be
one of great importance in gravitational physics. Over the
past forty years many of the studies in this field have con-
centrated on the thermodynamics of de Sitter spacetime, in
which the black hole horizon and the cosmological horizon
are always considered to be different thermodynamic sys-
tems with different radiation temperatures [20–22]. In this
paper, in the framework of de Sitter spacetime satisfying the
first thermodynamics law, we discuss the effective thermody-
namic quantities of higher dimensional electrically charged
hairy black holes, by considering the interaction between the
black hole horizon and the cosmological horizon. Here we
summarize our main conclusions in more detail:

• Considering the correlation between the black hole hori-
zon and the cosmological horizon, we obtain the effec-
tive temperature and the total entropy of the spacetime.
Our results show that the interaction between the two
horizons, which is only determined by the position of
the horizons, could significantly contribute to the total
entropy of de Sitter spacetime.

• As can be clearly seen from the S(x) − x , Teff − x
diagrams (shown in Figs. 5 and 6) and the expression

of heat capacity C = Teff
(

∂S(x)
∂Teff (x)

)
, the ECBH space-

time is thermodynamically unstable when 1 ≥ x > xc.
However, we cannot expect the existence of such ECBH
black holes in the Universe, considering the fact that there
exist only ECBH black holes satisfying the condition of
x0 < x < xc [81].

• The investigation of the thermodynamic quantities of
such spacetime indicates that, under certain conditions
both zero-order and second-order phase transition will
appear. However, one could also note the absence of first-
order phase transition in the electrically charged hairy
black holes, which is different from the case in AdS
spacetime [66,67].

• Turning to the classification of phase transition in Ehren-
fest’s equations, our findings indicate that the possible
existence of first-order phase transitions can be ruled out,
while the onset of higher-order (continuous) phase tran-
sitions is strongly supported in the thermodynamic sys-
tem of ECBH spacetime. More interestingly, our analysis
demonstrates the validity of the Ehrenfest equations at the
critical point, and furthermore indicates the similarity of
Prigogine–Defay (PD) ratio between ECBH spacetime
and AdS spacetime [80].

• Therefore, our analysis in this paper has theoretically
revealed the conditions of phase transition and thermo-
dynamic stability in de Sitter spacetime, which, to some
extent, may contribute to the construction of the overall
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evolution history of the Universe, as well as the classical
and quantum properties of the de Sitter spacetime.
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