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Abstract We study the hadronic η′ → ηππ decays within
the framework of U (3)L ⊗ U (3)R Chiral Perturbation The-
ory including resonance states and the complete one-loop
corrections. The amplitude is projected in partial waves and
unitarized by means of the N/D method resumming both
the important S- and D-wave ππ and the subleading S-
wave πη final-state interactions. The participating scalar
multiplet mass and coupling strengths are determined from
fits to the Dalitz plot experimental data recently released
by the A2 collaboration. As a byproduct of our analysis,
the associated Dalitz-plot slope parameters are found to be
a = − 0.072(7)stat(8)syst, b = − 0.052(1)stat(2)syst, d =
− 0.051(8)stat(6)syst, which lie in the ballpark of the current
experimental and theoretical determinations.

1 Introduction

Different to Quantum Electrodynamics, a perturbative expan-
sion in terms of the strong coupling cannot be applied to
describe QCD processes at low-energies because the cou-
pling strength becomes very large and therefore invalidates
such an expansion. A well-known and particularly successful
approach to overcome this limitation is Chiral Perturbation
Theory (ChPT) [1], the low-energy effective field theory of
QCD. ChPT is described in terms of eight pseudo-Goldstone
bosons associated to the spontaneous chiral symmetry break-
ing SU (3)L ⊗ SU (3)R → SU (3)V exhibited by QCD i.e.
three pions π±,0, four kaons K±, K 0 and K̄ 0, and the η.
The theory is constructed by performing a double pertur-
bative expansion, in momenta, p2, and quark masses, mq ,
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over Λχ ∼ mρ ∼ 1 GeV.1 ChPT has been successfully
applied for describing numerous processes involving pions
and kaons but much less for the η. Actually, the η entering
ChPT is not the physical one but rather a part of it corre-
sponding to the octet.2 In reality, the η meson has a sec-
ond component, coming from the pseudoscalar singlet η1,
which is not systematically included in ChPT due to the
emergence of an anomaly. Indeed the U (1)A symmetry is
broken (even in the massless case) by the quantum dynamics
of QCD itself, preventing the η1 to be the ninth Goldstone
boson. This makes the η′ too heavy to be included as the
ninth pseudo-Goldstone boson. However, in the limit of the
number of colours becoming large, the “large-NC limit”, the
axial anomaly vanishes and the η1 can be integrated to the
Goldstone bosons [2–4]. In this limit, the (inverse) number
of colors 1/NC is included in the power counting scheme as
δ ≡ {(p/Λχ)2,mq/Λχ, 1/NC } leading to a combined triple
expansion in δ ∼ p2/Λ2

χ ∼ mq/Λχ ∼ 1/NC . Moreover, the
SU (3)L ⊗ SU (3)R symmetry is enlarged to U (3)L ⊗U (3)R
and, the pseudoscalar octet and singlet states η8 and η1 mix
allowing for a reasonable dynamical description of the phys-
ical η and η′ mesons.

While the convergence of the SU (3) ChPT perturbative
expansion is restricted to low-energies i.e. when the energy
available in the process is below the mass of the first reso-
nance (i.e. the mass of the ρ(770)), the η′ meson in U (3) is
heavier (mη′ ∼ 958 MeV) than some resonances. To describe
processes involving the η′ meson the ChPT framework has
therefore to be enlarged to include explicitly such resonances.
This is the avenue of Resonance Chiral Theory (RχT) [5]. In
this theory, the interactions of the pseudoscalar mesons are
governed by resonance exchanges. For these reasons, pre-
dicting observables that include η and η′ mesons is, typically,
more difficult than for pions and kaons.

1 It corresponds to the scale where ChPT breaks down.
2 Accordingly one should not call this state η but rather η8.
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Measuring η and η′ observables is also more compli-
cated since more decay channels are allowed and most of
them contain hadrons in the final state instead of photons
as in the π0 case. At present, there is a series of ongo-
ing experiments measuring the decays of η and η′ mesons
with a precision never reached before. The WASA-at-COSY
experiment has recently measured the branching ratios of
the decays η → e+e−γ , η → π+π−γ , η → e+e−e+e−
and η → π+π−e+e− [6]. The A2 collaboration at MAMI
has measured η → e+e−γ [7], released a new evalua-
tion of the decay rate distribution of the doubly radiative
decay η → π0γ γ [8] as well as very recently a high-
statistic measurement of η → 3π0 [9]. The BESIII collab-
oration has reported the first measurements of the decays
η′ → e+e−γ [10], η′ → π0γ γ [11], η′ → ωe+e− [12],
η′ → π+π−π+π− and η′ → π+π−π0π0 [13], performed
a precise study of η′ → π+π−γ [14], provided new mea-
surements of η′ → 3π [15] and η′ → π+π−e+e− [16],
and set the first upper bound on η′ → π+π−μ+μ− [16].
Searches of the CP-violating η(′) → π+π− decays are pur-
sued at LHCb [17]. This experimental progress mades us
enter in a precision era for the physics of η and η′. These
experimental advances require revisiting the corresponding
theoretical analyses in order to understand better the meson
dynamics at low energy in the non perturbative regime of
QCD. Recent studies of some of the aforementioned decays
include Refs. [18–21] for η → 3π , Ref. [22] for η(′) → 4π ,
Refs. [23–25] for η(′) → π+π−γ , Ref. [26] for η′ → π0γ γ

and η′ → ηγ γ , and Refs. [27–34] for transition form factors
and Dalitz decays.

Studying the hadronic η′ → ηππ decay is particularly
interesting theoretically since this decay cannot be described
within SU (3) ChPT alone for the reasons given above. There-
fore, it represents an advantageous laboratory to test any of
the extensions of ChPT such as the Large-NC U (3) ChPT
or RχT. In U (3) Large-NC ChPT, the lowest-order (LO)
contribution to the amplitude is chirally suppressed giving
a branching ratio inconsistent with its measured value. The
LO is a constant leading to a constant Dalitz-plot distribution
in disagreement with the measurements. The next-to-leading
order contribution is found to be the dominant one and con-
sidered as the first term in the expansion [35,36]. This fact
should not be understood as the sign for a poorly convergent
expansion since we can anticipate from our study that, as
shown in Ref. [37], higher order terms, i.e. loop corrections
in the simultaneous triple chiral expansion scheme, are rather
small. On the other hand, this process can be explained by
means of the explicit exchange of the scalar resonances σ

or f0(550), f0(980) and a0(980). Based on an effective chi-
ral Lagrangian model, the authors of Ref. [38] have shown
that the a0(980) resonance indeed dominates the decay. This
was confirmed later on by theU (3) chiral unitary analyses of
Refs. [39,40]. Notwithstanding, the σ is essential to deter-

mine the Dalitz-plot parameters [36]. See Ref. [41] for a
recent study of this process using a dispersion approach.

On the experimental side, the η′ → ηππ decay width rep-
resents ∼ 65% of the total width; the PDG reported values
for the branching ratios of 42.6(7)% in the charged chan-
nel and of 22.8(8)% in the neutral one [42]. Experimentally
the Dalitz plots parameters associated to the decay are usu-
ally extracted from the measurements. In the isospin limit,
these parameters should be the same in both channels. How-
ever, large discrepancies have been reported between the VES
[43], GAMS-4π [44] and BESIII [45] and the A2 [46] and
BESIII [47] measurements. The current status calls for clar-
ification. The theoretical predictions [36–41,48] exhibit the
same level of disagreement to the extent that, for example,
the 2011 BESIII paper [45] cites some of the existing calcu-
lations of the Y -variable quadratic term “b” concluding that
‘the dynamical nature of this term needs further clarification’.

In this work, we revisit the η′ → ηππ decays tak-
ing advantage of the large number of reconstructed events,
∼ 1.23 · 105, for the neutral mode recently collected by the
A2 collaboration [46]. This study extends the analyses of
Refs. [36,49] by including the complete one-loop correc-
tions within aU (3) ChPT framework and taking into account
the ππ and πη final-state interactions. These rescattering
effects are accounted using the N/D unitarization method.
We extract with accurate precision the associated Dalitz-plot
parameters from fits to the A2 Dalitz distributions [46].3

This article is structured as follows. In Sect. 2, we define
the kinematics of the process, introduce the Dalitz-plot
parametrisation and discuss the current status of the associ-
ated parameters. The relevant Lagrangian is given in Sect. 3.
The structure of the decay amplitude is addressed in Sect. 4
while Sect. 5 is devoted to its unitarization. In Sect. 6 we
present the results of our fit to the experimental data for the
π0π0 mode from A2. Different fits are performed. They are
organized according to their increasing fulfilment of unitar-
ity. In each of these fits, the mass and the couplings of the
scalar resonances are determined as well as the Dalitz plot
parameters. We start our study considering ChPT including
resonances and one-loop corrections. In a second step, we
show the importance of the ππ S- and D-wave rescattering
effects that nicely accommodate the π+π− cusp effect seen
for the first time in η′ → ηπ0π0 by the A2 collaboration. We
then explore first the individual effect of the πη final-state
interactions, anticipated to be small, before presenting our
central description of the process including both ππ and πη

rescattering effects. Our results are obtained from a fit to the
A2 data. Our analysis enables us to extract some information

3 Contrary to A2 [46], the recent BESIII Dalitz plot measurements
[47], consisting of 351016 and 56249 events for the charged and neutral
channels, respectively, are unfortunately not yet publicly available. We
therefore postpone the analysis of this data for the near future.
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about the I = 1 πη scattering phase shift within the allowed
physical decay region. Moreover we predict the Dalitz-plot
parameters and distribution of the π+π− decay channel that
are found to be in excellent agreement with the BESIII exper-
imental data. Finally, our conclusions are presented in Sect. 7.

2 Kinematics and Dalitz-plot parametrisation

Let us consider the η′(pη′) → η(pη)π(p1)π(p2) decay
amplitude, M (s, t, u). It is given in terms of the Mandel-
stam variables

s = (
pη′ − pη

)2 = (p1 + p2)
2 ,

t = (
pη′ − p1

)2 = (
pη + p2

)2
,

u = (
pη′ − p2

)2 = (
pη + p1

)2
, (1)

which fulfill the relation

s + t + u = m2
η′ + m2

η + 2m2
π . (2)

The partial decay rate reads [42]

Γ
(
η′ → ηππ

) = 1

256π3m3
η′N

∫
ds dt |M (s, t, u)|2,

(3)

where N accounts for the number of identical particles in
the final state; N = 1 for the charged and N = 2 for
the neutral decay modes, respectively. The boundaries of the
physical decay region in t lie within [tmin(s), tmax(s)] with

tmax/min(s) = 1

2

[
m2

η′ + m2
η + 2m2

π − s

±λ1/2(s,m2
η′ ,m2

η)λ
1/2(s,m2

π ,m2
π )

s

]
, (4)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. The
boundaries in s are given by

smin = 4m2
π , smax = (mη′ − mη)

2. (5)

However, the experimental measurements are often given as
a power expansion in terms of the so-called Dalitz variables
X and Y . These two variables are defined by

X =
√

3

Q

(
Tπ1 − Tπ2

)
, Y = mη + 2mπ

mπ

Tη

Q
− 1, (6)

where Tπ1,2 and Tη are the kinetic energies of the mesons in
the η′ rest frame:

Tη =
(
mη′ − mη

)2 − s

2mη′
,

Tπ1 =
(
mη′ − mπ

)2 − t

2mη′
,

Tπ2 =
(
mη′ − mπ

)2 − u

2mη′
, (7)

and Q = Tη + Tπ1 + Tπ2 = mη′ − mη − 2mπ .
The decay width Eq. (3) can therefore also be written as:

Γ
(
η′ → ηππ

) = mπ Q2

128
√

3π3mη′(2mπ + mη)N

×
∫

dX dY |M (X,Y )|2, (8)

where now the integration boundaries are given by

Ymin = −1, Ymax = 1

2mη′mπ

(
mηmη′ − m2

η + 4m2
π

)
,

(9)

and

Xmin(s) = −
√

3

2mη′ Q
h

(
(mη′ − mη)2 − 2mη′mπ Q

mη + 2mπ
(Y + 1)

)
,

Xmax(s) = −Xmin(s). (10)

The function h(s) is defined as

h(s) = λ1/2(s,m2
η′ ,m2

η)λ
1/2(s,m2

π ,m2
π )

s
. (11)

Figure 1 shows the boundaries of the Dalitz plot in m2
ππ ≡ s

and m2
πη ≡ t, u, the invariant masses (left panel) and in the

Dalitz variables X and Y (right panel). At the ππ thresh-
old, m2

πη ∼ 0.59 GeV2, the two pions move together in
the same direction with equal velocities and the η moves
in opposite direction (red point). At m2

ππ ∼ 0.11 GeV2,
the range of m2

πη increases going from ∼ 0.47 GeV2 to
∼ 0.67 GeV2. In this last point, one pion is at rest and the
other one moves in opposite direction of the η (blue dia-
mond). At m2

πη ∼ 0.54 GeV2, the allowed range of m2
ππ

values is large and reaches energies close to the region of
influence of the σ meson. When m2

ππ ∼ 0.16 GeV2, the η

is at rest and the two pions move back-to-back (green trian-
gle). We can anticipate that the region around this point will
contain the largest number of events of the Dalitz plot decay
distribution. Finally, at the πη threshold,m2

ππ ∼ 0.12 GeV2,
the η and one pion move in one direction with equal velocities
and the other pion in the opposite direction (orange square).

The Dalitz plot parametrisation for η′ → ηππ decays is
obtained by expanding the squared of the decay amplitude in
powers of X and Y around the center of the Dalitz plot

Γ (X,Y ) = |M (X,Y )|2
= |N |2

[
1 + aY + bY 2 + cX + dX2 + · · ·

]
, (12)
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Fig. 1 Boundary of the Dalitz plot for η′ → ηππ in terms of the invariant masses m2
ππ and m2

πη (left) and in terms of the Dalitz variables X and
Y (right)

Table 1 Experimental and theoretical determinations of the Dalitz
slope parameters associated to η′ → ηπ0π0 (up panel) and η′ →
ηπ+π−(down panel) decays. For the parameter values of Ref. [41], we
only show the results obtained with one of the solutions presented in

the paper; the other solution leads to similar values. Moreover, while
systematic uncertainties are ascribed to the parameter values of this
reference, here only the statistical uncertainties are shown

η′ → ηπ0π0 a[Y ] b[Y 2] c[X ] d[X2] # events

GAMS-4π [44] − 0.067(16)(4) − 0.064(29)(5) = 0 − 0.067(20)(3) 15000

GAMS-4π [44] − 0.066(16)(4) − 0.063(28)(4) − 0.107(96)(3) 0.018(78)(6) 15000

A2 [46] − 0.074(8)(6) − 0.063(14)(5) – − 0.050(9)(5) ∼ 1.23 · 105

BESIII [47] − 0.087(9)(6) − 0.073(14)(5) 0 − 0.074(9)(4) 56249

Borasoy et al. [40] − 0.127(9) − 0.049(36) – 0.011(21)

η′ → ηπ+π− a[Y ] b[Y 2] c[X ] d[X2]
VES [43] − 0.127(16)(8) − 0.106(28)(14) 0.015(11)(14) − 0.082(17)(8)

BESIII [45] − 0.047(11)(3) − 0.069(19)(9) 0.019(11)(3) − 0.073(12)(3) 43826

BESIII [47] − 0.056(4)(3) − 0.049(6)(6) 2.7(2.4)(1.8) · 10−3 − 0.063(4)(4) 351016

Borasoy et al. [40] − 0.116(11) − 0.042(34) 0 0.010(19)

Escribano et al. [36] − 0.098(48) − 0.050(1) 0 − 0.092(8)

Escribano et al. [36] − 0.098(48) − 0.033(1) 0 − 0.072(1)

Isken et al. [41] − 0.041(9) − 0.088(7) 0 − 0.068(11)

Isken et al. [41] − 0.148(18) − 0.082(14) 0 − 0.086(22)

where a, b, c and d are the real-valued Dalitz parameters and
N is an overall normalization.4

4 An alternative parameterization would be the so-called linear expan-
sion

|M (X, Y )|2 = |N |2
(
|1 + αY |2 + cX + dX2 + · · ·

)
, (13)

where α is complex. A comparison with the parameterization of Eq. (12)
givesa = 2Re(α) andb = Re(α)2+Im(α)2. The two parameterizations
are equivalent if b > a2/4.

Table 1 contains the current state-of-the-art Dalitz-plot
parameters extracted from measurements together with their
theoretical estimates. We can see large discrepancies between
the results. VES result on the a parameter is 2.6σ from the
result of GAMS-4π and 3.8σ away from the result of BESIII
(2011 analysis). This disagreement persists between the 2017
updated BESIII values and the new A2 measurement. The
theoretical value for a as obtained in Ref. [40] is in agree-
ment with VES result. This is not surprising since this data
set was fitted in their analysis. In Ref. [36] the parameter a
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is not predicted but rather fixed from an average of the VES
and GAMS-4π values. From fits to the 2011 BESIII and VES
data, the recent dispersive analysis of Ref. [41] obtains val-
ues ranging from − 0.041 to − 0.148, which agree with the
corresponding measured values reported by these two col-
laborations. The parameter b determined by VES is ∼ 1σ

away from the measurements of GAMS-4π , BESIII and A2.
A deviation of ∼ (1-2)σ is also seen with respect to the
analyses of Refs. [36,40]. However, this discrepancy disap-
pears in the analysis of Ref. [41]. Both recent experimental
measurements and theoretical predictions seem to indicate
an unambiguously negative value for b in clear disagreement
with a vanishing b obtained in Refs. [38,48]. Regarding the
parameter c, the symmetry of the wave function forbids such
a term in the neutral channel. In the charged channel the
odd terms in X are forbidden since C-parity is conserved by
strong interactions. So its value is predicted theoretically to
be zero in the Standard Model. And the measured values of
this parameter are consistent with zero. Finally, for the value
of the parameter d, experimental results seem to favour the
predictions of Refs. [36,41] with respect to those of Refs.
[40,48]. In conclusion, from Table 1, we observe an incon-
sistent picture so far. The theoretical determinations of the
Dalitz parameters are intricately linked to the data used to
constrain the corresponding theories or models.

3 Formalism

The Large-NC ChPT is the effective field theory of QCD in
the chiral and large-NC (number of colour) limits. Within
this framework the singlet field η1, absent in SU (3) ChPT,
becomes a new degree of freedom of the effective theory
i.e. the ninth Goldstone boson associated with the sponta-
neous breaking of U (3)L ×U (3)R → U (3)V . The theory is
usually called U (3) ChPT and the same counting is assigned
to the squared momenta p2, to the light quark masses mq

and to the inverse of the number of colors 1/NC , giving rise
to a combined triple expansion in δ ∼ p2 ∼ mq ∼ 1/NC .
With the use of the single power-counting parameter δ the
expansion of the effective Lagrangian is given by [2]

Leff =
∞∑

i=0

L δi . (14)

In this notation, the contributionsL δi are of orderO(δi ). For
example, the leading and next-to-leading order Lagrangians,
L δ0

and L δ1
, are of order O(δ0) = O(1) and O(δ), respec-

tively. One interesting feature of the combined power count-
ing is that meson loop diagrams with vertices fromL δ0

count
asO(δ2). They are 1/NC suppressed with respect to the NLO
diagrams from L δ1

. Therefore at O(δ) only tree level dia-

grams from L δ0
and L δ1

need to be taken into account. The
loop diagrams are higher order in the counting. In our analy-
sis, we include the one-loop corrections for the first time for
describing η′ → ηππ and work at O(δ2) in order to match
the high level of precision of the experimental measurements.
We will study the impact of such inclusion.

Contrary to SU (3) or U (3) ChPT, the inclusion of reso-
nances into the description of the effective field theory spoils
the power counting. This is why, while RChT includes ChPT
at O(p2) = O(δ0), it does not include the next order either
in the chiral or in the combined triple expansion scheme.
It rather substitutes it by a Lagrangian accounting for the
interactions between pseudoscalar mesons and resonances.
In fact, resonance exchanges saturate the higher order local
contributions of the effective expansion. As a consequence,
the systematic effective field theory with a rigorous power
counting scheme is lost. It is replaced by a model based on
the large-NC limit as a guiding principle. This model allows
in general for reasonable descriptions of QCD processes at
low-energies.

The relevant Lagrangian for our work including scalar
resonances is written as [5,49]

LRχT = L (2)
χ + LS + L S

kin + · · · + LΛ, (15)

where the dots denote operators with three or more resonance
fields which we neglect in this analysis. The first term on the
right-hand side of Eq. (15) is the chiral Lagrangian at leading
order in U (3) ChPT, it is O(δ0) and reads

L (2)
χ = F2

4
〈uμu

μ〉 + F2

4
〈χ+〉 + F2

3
m2

0 ln2 det u, (16)

where the last term accounts for the U (1)A anomaly contri-
bution to the pseudoscalar singlet η1 of mass m2

0. The chiral
building blocks are defined by

U = u2 = ei
√

2Φ
F , χ = 2B(s + i p),

χ± = u†χu† ± uχ†u,

uμ = iu†DμUu†,

DμU = ∂μU − i(vμ + aμ)U + iU (vμ − aμ). (17)

F is the axial decay constant of the pseudo-Goldstone
bosons in the chiral and Large-NC limits. s, p, vμ, aμ stand
for external fields and the parameter B is related to the
quark condensate 〈0|q̄i q j |0〉 = −F2Bδi j . In the absence
of external fields, i.e. vμ = aμ = p = 0, we have
s = diag(mu,md ,ms), with mq the light quark masses,
encoding the explicit chiral symmetry breaking. The pseudo-
Goldstone bosons are collected in the matrix
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Φ =⎛

⎜
⎜
⎝

1√
2
π3 + 1√

6
η8 + 1√

3
η1 π+ K+

π− − 1√
2
π3 + 1√

6
η8 + 1√

3
η1 K 0

K− K̄ 0 − 2√
6
η8 + 1√

3
η1

⎞

⎟
⎟
⎠ .

(18)

Expanding u(Φ) in Eq. (16) in terms of Φ, one obtains the
kinetic term plus a tower of derivative interactions increasing
in an even number of pseudoscalar fields. This together with
the quadratic mass term plus additional interactions propor-
tional to the quark masses gives

L
(2)
χ = 1

2
〈∂μΦ∂μΦ〉

+ 1

12F2 〈(Φ(∂μΦ) − (∂μΦ)Φ
) (

Φ(∂μΦ) − (∂μΦ)Φ
)〉

+B0

{
−〈MΦ2〉 +

(
1

6F2

)
〈MΦ4〉

}
+ O

(
Φ6

F4

)

.

(19)

The mass termM in the previous expression induces a η8-η1

mixing. At leading order, the physical η and η′ mass eigen-
states are then obtained after diagonalising the mass matrix
with the following orthogonal transformation:

(
η

η′
)

=
(

cos θ − sin θ

sin θ cos θ

)(
η8

η1

)
, (20)

where the mixing angle θ stands for the degree of admixture.
When higher order terms are to be considered, the trans-

formations accounting for the mixing are more involved since
not only the mass terms do mix but also the kinetic ones. In
this work, we treat the η − η′ mixing as described in Sect. 3
of Ref. [49] and refer the reader to this reference for more
details and the expression of the higher order terms. In par-
ticular, we use the next-to-leading order expression given in
Eq. (15) of Ref. [49] based on the one-angle scheme approx-
imation.5

The second term in Eq. (15) corresponds to the interaction
terms of two pseudo-Goldstone-bosons with one resonance
and is given by

LS = cd 〈S8uμu
μ〉 + cm〈S8χ+〉 + c̃d S1〈uμu

μ〉 + c̃d S1〈χ+〉.
(21)

5 The so-called two-step mixing procedure makes the single mixing
angle at the lowest-order to be split in two mixing angles at next-to-
leading order [50–55]. One can thus express their associated parameters
either in the form of two mixing angles and two decay constants or one
mixing angle, the one entering at the lowest-order θ , and three wave-
function renormalization corrections appearing only at NLO. We follow
the second option in this work. See also Refs. [56,57] for recent studies
of the mixing phenomenon at higher orders.

The resonance state building blocks are

S8 =
⎛

⎜
⎝

1√
2
a0

0 + 1√
6
σ8 a+

0 κ+

a−
0 − 1√

2
a0

0 + 1√
6
σ8 κ0

κ− κ̄0 − 2√
6
σ8

⎞

⎟
⎠ , (22)

S1 = σ1. (23)

Similarly to Eq. (19), expanding the Lagrangian in Eq. (21)
in terms of Φ we get

LS = 2cd
F2 〈S8(∂μΦ)(∂μΦ)〉

+4B0cm [〈S8M 〉 − 1

4F2 〈S8(Φ2M + MΦ2 + 2ΦMΦ)〉]

+2c̃d
F2 S1〈(∂μΦ)(∂μΦ)〉

+4B0c̃m S1[〈M 〉 − 1

4F2 〈(Φ2M + MΦ2 + 2ΦMΦ)〉],
(24)

where we have used χ = 2B0M and neglected other external
fields (vμ = aμ = p = 0). Note that the interaction terms
proportional to cd and c̃d enter only with derivatives while
cm and c̃m are proportional to the quark masses.

The third term in Eq. (15) contains the kinetic term,

L S
kin = 1

2
〈�μS8 �μ S8 − M2

S8
S2

8 〉

+1

2
〈∂μS1∂μS1 − M2

S1
S2

1 〉, (25)

where

�μ S = ∂μS + [Γμ, S],
Γμ = 1

2
{u+[∂μ − irμ]u + u[∂μ − i�μ]u†}. (26)

Finally, the last term in Eq. (15) is a local operator of
O(δ), influencing only the singlet sector. It cannot be gen-
erated from the exchange of the scalar resonance discussed
above. It is obtained by integrating out pseudoscalar reso-
nances instead. It only involves pseudo-Goldstone bosons
and reads

LΛ = Λ1
F2

12
DμψDμψ − iΛ2

F2

12
〈U †χ − χ†U 〉, (27)

where

ψ = −i ln detU, Dμψ = ∂μψ − 2〈aμ〉, (28)

with aμ = (rμ − lμ)/2.

4 Structure of the decay amplitude

The calculation of the η′ → ηππ decay amplitude includes
the diagrams depicted in Fig. 2 and can be gathered as

M (s, t, u) = M (2) + M Res + M Loop + MΛ. (29)

123



Eur. Phys. J. C (2018) 78 :758 Page 7 of 26 758

Fig. 2 Diagrams contributing to the η′ → ηππ decay amplitude
within U (3) Large-NC ChPT at one-loop including resonance states.
From left to right and top to bottom we have: (i) lowest-order; (ii)

exchange of scalar resonances in the s, t and u channels; (iii) one-loop
corrections in the s, t and u-channels; (iv) tadpole contributions

M (2) is the amplitude at lowest order in ChPT. M Res rep-
resents the amplitude involving the exchange of resonances,
M Loop the loop contributions, and MΛ the Λ term.6 The
lowest order ChPT contribution is constant

M (2) =
(

2
√

2 cos(2θ) − sin(2θ)
) m2

π

6F2
π

, (30)

where isospin symmetry
(
mu = md = m̂ ≡ mu+md

2

)
has

been assumed. The origin of this term stems entirely from
the interactions proportional to quark masses appearing in
the last term of Eq. (19) i.e. no derivative interactions con-
tribute at this order. It is thus chirally suppressed explaining
the smallness of this contribution.

The (zero-width) resonance exchange contribution M Res

reads

MRes(s, t, u) = 2

9F4
π

(√
2 cos2 θ − cos θ sin θ − √

2 sin2 θ
)

×
{

12cdcmm
2
π

M2
S8

(
m2

π − m2
K

)

−
(

2cm
(
m2

π − 4m2
K

)
+ 3cd

(
m2

η + m2
η′ − s

))

M2
S8

− s

×
(

2cmm
2
π + cd

(
s − 2m2

π

) )

6 The graphs corresponding to the mass and wave-function renormal-
izations are not shown but have also been included in the calculation. In
addition, the axial decay constant F is also modified to one loop giving
rise to higher order contributions. We provide our expressions in terms
of a single decay constant, that we have chosen to be the pion decay
constant Fπ . The relation between F and Fπ can be found in Eq. (C2)
of Ref. [49].

−
24c̃m

(
m2
K − m2

π

) (
2c̃mm2

π + c̃d
(
s − 2m2

π

))

M2
S1

− s

+ 3

M2
a0 − t

(
4c2

mm
4
π − 2cdcmm

2
π

(
m2

η + m2
η′ + 2m2

π − 2t
)

+c2
d

(
m2

η + m2
π − t

) (
m2

η′ + m2
π − t

) )
+ (t ↔ u)

}
.

(31)

Unitarity loop corrections to the decay amplitude can
occur either in the s or in the t and u channels. In the s-
channel, the meson pairs ππ, K K̄ , ηη, ηη′ and η′η′ enter
within the loop while K K̄ , πη and πη′ pairs contribute in
the t and u-channels. Tadpole contributions with π and K
also appear. The complete expression for the unitarity loop
corrections M Loop, including the tadpoles can be found in
Appendix A.

Finally, the term from LΛ is constant

MΛ = m2
πΛ2

3F2
π

(√
2 cos2 θ − 4 cos θ sin θ − √

2 sin2 θ
)

.

(32)

Moreover, there is a contribution from the mixing [49]

Mmixing = − m2
π

6F2
π

[
8
√

2 cos θ sin θ sin θδ + 3δK

+2 sin θδ

(
cos2 θ − sin2 θ

)]
, (33)
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with sin θδ 
 0 [49] and

δK = sin θ cos θ

F2
π

μK + 1

3F2
π M

2
S8

[
16cdcm

(
m2

K − m2
π

)

×
(√

2 sin2 θ + cos θ sin θ − √
2 cos2 θ

)]
. (34)

μK is defined in Eq. (A.7). Although the mixing contribu-
tion is omitted all along the formulae presented in the next
sections, we have included it in our analysis. Note that both
the Λ and mixing terms, Eqs. (32) and (33), are constant and
their contributions are found to be small. Indeed they are both
proportional to m2

π and hence chirally suppressed.

5 Partial waves and unitarisation of the amplitude

Within the ChPT framework described in Sects. 3 and 4, the
loop contributions are unitary order-by-order in the pertur-
bative expansion. Nearby the resonance region, however, the
perturbative chiral amplitudes violate unitarity. This inherent
limitation of the theory is addressed by using a unitarization
procedure. For this, we rely on the N/D method. A detailed
account of this method can be found in Refs. [49,58–60]. In
the following, we recall the main features of this approach
that are relevant for our analysis. Another method relying
on the Khuri-Treiman framework has been followed in Ref.
[41].

We start by writing the most general unitarity relation for
η′(pη′) → η(pη)π(p1)π(p2) decay

ImMη′→ηππ = 1

2

∑

n

(2π)4 δ4 (
pη + p1 + p2 − pn

)

×T ∗
n→ηππMη′→n . (35)

Mη′→n denotes the η′ → n decay amplitude and Tn→ηππ

the transition n → ηππ . If for simplicity we restrict n ≤ 3
then the scattering matrix element Tn→ηππ contains pure
3-body → ηππ contributions as well as two-body final-
state interactions. The three-body final-state interactions are
suppressed by power counting and phase-space compared
to the two-body final-state interactions. In our analysis, we
include only the dominant two-body final-state interactions.
In a three-body decay, two-body final-state interactions can
occur either by means of a rescattering where two out of
the three final state particles rescatter an arbitrary number
of times in each of the two-particle channels considering
the third particle as a spectator or by interactions among
one of the two rescattering particles together with the third
spectating-particle. While the former will be fully accounted
for in our study only portions of the later will be incorporated.

In the following, we limit the sum over n in Eq. (35) to
ππ and πη intermediate states. The unitarity condition for
the η′ → ηππ decay in terms of the ππ and πη scattering

amplitudes can be written as

ImM I
η′→ηππ (s, t, u)

= 1

2(2π)2N

∫
dq3

b

2q0
b

dq3
c

2q0
c
δ4(qb + qc − p1 − p2)

×T I
ππ→ππ (s, θ ′′

s )∗M I
η′→ηππ (s, θ ′

s, φ
′
s)

+ 1

2(2π)2N

∫
dq3

a

2q0
a

dq3
b

2q0
b

δ4(qa + qb − p1 − pη)

×T I
πη→πη(t, θ

′′
t )∗M I

η′→ηππ (s, θ ′
t , φ

′
t )

+ 1

2(2π)2N

∫
dq3

a

2q0
a

dq3
c

2q0
c
δ4(qa + qc − p2 − pη)

×T I
πη→πη(u, θ ′′

u )∗M I
η′→ηππ (u, θ ′

u, φ
′
u). (36)

The symmetry factor is N = 2 in case of identical (ππ)

and N = 1 for distinguishable (πη) particles. θ ′
s,t,u stands

for the center-of-mass scattering angle between the initial
and intermediate state and θ ′′

s,t,u denotes the center-of-mass
scattering angle between the intermediate and final state.

The decay and scattering amplitudes, M I and T I , can
be decomposed in partial waves with definite isospin I and
angular momentum J through

M I (s, cos θ ′, φ′) =
∑

J

32π(2J + 1)PJ (cos θ ′)mI J (s),

(37)

T I (s, cos θ ′′) =
∑

J

16πN (2J + 1)PJ (cos θ ′′)t I J (s),

(38)

where PJ is the Legendre polynomial of the J th degree.
Isospin conservation constrains the total isospin of the

final state ππ and πη pairs to be I = 0 and I = 1, respec-
tively. We limit our study to the S (J = 0) and D (J = 2)

waves for the ππ scattering and to the S-wave for the πη

scattering.7 Inserting Eqs. (37) and (38) in Eq. (36) and inte-
grating over the momentum using the relation

∫
dΩ ′PJ (cos θ ′′)PJ ′(cos θ ′) = 4π

2J + 1
δJ J ′ PJ (cos θ),

(39)

the following unitarity relations for each partial-wave of the
decay amplitude of definite isospin can be derived:

Im
(
m00

η′→ηππ (s)
)

= σπ(s)
(
t00
ππ→ππ (s)

)∗
m00

η′→ηππ (s)

×θ(s − 4m2
π ), (40)

7 The P-wave (J = 1) of the πη scattering is found to be strongly
suppressed [40,61] and will not be considered in this work.
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Im
(
m02

η′→ηππ (s)
)

= σπ(s)
(
t02
ππ→ππ (s)

)∗
m02

η′→ηππ (s)

×θ(s − 4m2
π ), (41)

Im
(
m10

η′→ηππ (t)
)

= λ1/2(t,m2
π ,m2

η)

t

(
t10
πη→πη(t)

)∗

×m10
η′→ηππ (t)θ(t − (mπ + mη)

2),

(42)

Im
(
m10

η′→ηππ (u)
)

= λ1/2(u,m2
π ,m2

η)

u

(
t10
πη→πη(u)

)∗

×m10
η′→ηππ (u)θ(u − (mπ + mη)

2),

(43)

where

σπ(s) =
√

1 − 4m2
π

s
. (44)

5.1 ππ final-state interactions

Let us consider first the unitarity relation in the s-channel
for illustrating the N/D method applied to the η′ → ηππ

decay. For a well-defined isospin I and angular momentum
J from Eq. (43) we have

Im
(
mI J

η′→ηππ (s)
)

= σπ(s)
(
t I Jππ (s)

)∗
mI J

η′→ηππ (s)

×θ(s − 4m2
π ). (45)

A possible way to fulfill the previous equation is as fol-
lows. We write the partial wave associated to the perturbative
decay amplitude, Eq. (29), as

m
I J, pert
η′→ηππ

(s) =
(
mI J

η′→ηππ
(s)

)(2) + Res + Loop + �

−16π
(
mI J

η′→ηππ
(s)

)(2)
gππ (s)

(
t I Jππ (s)

)(2)
,

(46)

where “pert” stands for perturbative. The amplitudes with
superscript (2) correspond to the tree-level amplitudes, Res
to the resonance exchanges in the s, t and u channels, Loop
to the loop contributions in the t and u channels and finally
Λ represents the contribution from the Λ term. The function
gππ (s) entering the second term of Eq. (46) accounts for the
discontinuity along the right-hand cut due to the two-pion
intermediate states

gππ (s) = 1

16π2

(

aππ (μ) + log
m2

π

μ2 − σπ (s) log
σπ (s) − 1

σπ (s) + 1

)

.

(47)

aππ (μ) ≡ aππ is a subtraction constant that is not directly
determined by the unitarization procedure but should be fixed
from elsewhere. gππ (s) satisfies Imgππ (s) = −σπ(s)/16π

[49]. It is related to the standard one-loop function given in
Eq. (A.4) through

gππ (s) = −Beq
0 (s,mπ ) + a′

ππ (μ), (48)

where a′
ππ (μ) is an arbitrary subtraction constant.

The basic idea of the N /D unitarisation method consists in
collecting the left- and right-hand cuts in two different func-
tions. AN /D representation of the decay amplitude, Eq. (46),
can be obtained rewriting it as [62]

mI J
η′→ηππ (s) = [1 + 16πN I J

ππ (s)gππ (s)]−1RI J
η′→ηππ (s),

(49)

where

N I J
ππ (s) =

(
t I Jππ (s)

)(2)+Res+Loop
,

RI J
η′→ηππ (s) =

(
mI J

η′→ηππ (s)
)(2)+Res+Loop+�

. (50)

(
t I Jππ (s)

)(2)+Res+Loop
and

(
mI J

η′→ηππ
(s)

)(2)+Res+Loop+�

contain, respectively, the corresponding perturbative calcu-
lation of the partial wave ππ scattering and the η′ → ηππ

decay amplitudes. As explained previously, in
(
t I Jππ (s)

)(2)+Res+Loop
, Eq. (50), the part with superscript (2)

corresponds to the tree level amplitude, the one with super-
script Res to the exchange of resonances in the s, t and u
channels and the Loop one denotes the loop contributions in
the t and u channels as well as the inelastic loop contributions
in the s-channel. The corresponding diagrams are depicted
in Fig. 3 recovering Eq. (46) up to higher orders. Note that a
chiral expansion of Eq. (49) leads to

mI J
η′→ηππ (s) = RI J

η′→ηππ (s)

−16πN I J
ππ (s)gππ (s)RI J

η′→ηππ (s) + · · ·

=
(
mI J

η′→ηππ (s)
)(2)+Res+Loop+�

−16π
(
t I Jππ (s)

)(2)

gππ (s)
(
mI J

η′→ηππ (s)
)(2) + · · · .

(51)

We would like to emphasize that the function R(s) entering
Eq. (50) does contain the left-hand cut (LHC) of the decay
amplitude, perturbatively treated, but does not contain the
ππ right-hand cut which is treated non-perturbatively using
the function gππ (s).
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Fig. 3 Diagrams contributing to the ππ → ππ scattering amplitude
within U (3) Large-NC ChPT at one-loop including resonance states.
From left to right and top to bottom we have: (i) lowest-order; (ii)

exchange of scalar resonances in the s, t and u channels; (iii) one-loop
corrections in the s, t and u-channels; (iv) tadpole contributions

Thus, the absorptive part of the unitarised partial wave
decay amplitude mI J (s) as given in Eq. (49) satisfies s-
channel unitarity:8

Im
(
mI J

η′→ηππ (s)
)

= −16π
(
t I Jππ (s)

)(2)

Imgππ (s)

×
(
mI J

η′→ηππ (s)
)(2)

=
(
t I Jππ (s)

)(2)

σπ (s)
(
mI J

η′→ηππ (s)
)(2)

.

(52)

8 In principle, the unitarity relation given in Eq. (52) is valid up to
the first inelastic threshold i.e. the K K̄ threshold. However, there is
a spurious contribution coming from the imaginary part of the t- and
u-channel πη left-hand cut loops. They sit on the elastic region and
induces a violation of unitarity. We have checked that this unitarity
violation is numerically tiny and therefore acceptable for our purposes.
There is, moreover, another source of unitarity violation coming from
the unitarization method itself. Spurious singularities, as for example
the ones given by the diagram below,

η′

η π

π
π

π

π π

are generated from the on-shell approximation within the N/D method
by the t- and u-channel ππ loops entering the ππ scattering amplitude.
In fact, this a drawback of the unitarization method (see Refs. [63,64] for
more details about this pathology). This violation of unitarity turns out
to be acceptable since these effects are usually found to be numerically
small. See Sect. 6.2 for a discussion of the size of these constributions
in the present case.

The unitarized η′ → ηππ I = 0 decay amplitude written in
terms of the S- and D-waves is

M I=0
η′→ηππ (s, cos θs) =

∑

J

32π(2J + 1)PJ (cos θs)m
I J
η′→ηππ

(s)

= 32π P0(cos θs)m
00
η′→ηππ (s)

+160π P2(cos θs)m
02
η′→ηππ (s). (53)

Using Eq. (49) it becomes

M I=0
η′→ηππ (s, cos θs) = 32π P0(cos θs)

×
(
m00

η′→ηππ
(s)

)(2)+Res+Loop+�

1 + 16πgππ (s)
(
t00
ππ (s)

)(2)+Res+Loop

+160π P2(cos θs)

(
m02

η′→ηππ
(s)

)(2)+Res+Loop+�

1 + 16πgππ (s)
(
t02
ππ (s)

)(2)+Res+Loop
.

(54)

The corresponding partial wavesmI J (s) are obtained through

mI J
η′→ηππ (s) = 1

32π

s

λ1/2(s,m2
η′ ,m2

η)λ
1/2(s,m2

π ,m2
π )

×
∫ tmax

tmin

dt PJ (cos θs)M
I
η′→ηππ (s, t, u),

(55)

with tmax/min defined in Eq. (4) and where θs is the angle of
pπ with respect to pη in the rest frame of the pion pair. It is
given by
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cos θs = −
s
(
m2

η′ + m2
η + 2m2

π − s − 2t
)

λ1/2(s,m2
η′ ,m2

η)λ
1/2(s,m2

π ,m2
π )

. (56)

The ππ -scattering amplitude and the calculation

of the S- and D-waves,
(
t00
ππ (s)

)(2)+Res+Loop
and

(
t02
ππ (s)

)(2)+Res+Loop
, are detailed in Appendix B.

5.2 πη final-state interactions

By analogy with Eq. (49), the N/D representation of the
decay amplitude can be written as

mI J
η′→ηππ

(t, u) = [1 + 16πN I J
πη (t)gπη(t)]−1RI J

η′→ηππ
(t)

+[1 + 16πN I J
πη (u)gπη(u)]−1RI J

η′→ηππ
(u),

(57)

where the πη final-state interactions in the t- and u-channels
have been resummed. We have

N I J
πη (t) =

(
t I Jπη(t)

)(2)+Res+Loop+�

,

RI J
η′→ηππ (t) =

(
mI J

η′→ηππ (t)
)(2)+Res+Loop+�

. (58)

(
t I Jπη(s)

)(2)+Res+Loop+�

contains the perturbative calcula-

tion of the partial wave πη scattering and(
mI J

η′→ηππ
(s)

)(2)+Res+Loop+�

the η′ → ηππ decay ampli-

tude one. The diagrammatic structure of the πη → πη scat-
tering amplitude resembles the ones shown in Fig. 3 for ππ .
The notation here follows the convention adopted for ππ see
Eq. (50) with ππ replaced by the πη-system.

The two-particle discontinuity along the right-hand cut
due to the πη intermediate states reads

gπη(t) = 1

16π2

(
aπη(μ) + log

m2
π

μ2

−x+ log
x+ − 1

x+
− x− log

x− − 1

x−

)
, (59)

with

x± = t + m2
η − m2

π

2t

± 1

−2t

√
−4t (m2

η − i0+) + (t + m2
η − m2

π )2, (60)

and analogously for gπη(u)with t ↔ u. However, we slightly
modify the expression of Eq. (57) and construct the ampli-
tude such that the perturbative terms of the decay amplitude
are kept. They are supplemented by the inclusion of the S-
wave πη final-state interactions. In this way, we are able to
quantify the importance of the πη rescattering contribution
with respect to the perturbative calculation. Since Eq. (57)

generates the S-wave projection of the lowest-order, the res-
onance exchanges, the loop contributions and the Λ term,9

we need to remove these contributions and add by hand the
term M (s, t, u)(2)+Res+Loop+�, see Sect. 4. Thus, the unita-
rized decay amplitude for η′ → ηππ taking into account the
I = 1 S-wave πη final-state interactions can be written as

Mη′→ηππ (s, t, u, cos θt , cos θu) = (M (s, t, u))(2)+Res+Loop+�

+32π P0(cos θt )

(
m10

η′→ηππ
(t)

)(2)+Res+Loop+�

1 + 16πgπη(t)
(
t10
πη(t)

)(2)+Res+Loop+�

+32π P0(cos θu)

(
m10

η′→ηππ
(u)

)(2)+Res+Loop+�

1 + 16πgπη(u)
(
t10
πη(u)

)(2)+Res+Loop+�

−32π P0(cos θt )
(
m10

η′→ηππ (t)
)(2)+Res+Loop+�

−32π P0(cos θu)
(
m10

η′→ηππ (u)
)(2)+Res+Loop+�

. (61)

Note thatM (s, t, u)(2)+Res+Loop+� is not projected into par-
tial waves and the last two terms are introduced to avoid dou-
ble counting. Them10

η′→ηππ
partial waves are derived through

m10
η′→ηππ (t) = − 1

64π

t

λ1/2(s,m2
η′ ,m2

π )λ1/2(s,m2
η,m

2
π )

×
∫ smax

smin

dsP0(cos θt )M
1(s, t, u), (62)

where

smax/min(s) = 1

2

[
m2

η′ + m2
η + 2m2

π − t − Δη′πΔηπ

t

±λ1/2(t,m2
η′ ,m2

π )λ1/2(t,m2
η,m

2
π )

t

]
, (63)

with ΔPQ = m2
P − m2

Q . In Eq. (62), θt is the angle of pη

with respect to pπ in the πη center-of-mass frame given by

cos θt = t (u − s) − Δη′πΔηπ

λ1/2(t,m2
η′ ,m2

π )λ1/2(t,m2
η,m

2
π )

. (64)

Analogous expressions are valid in the u-channel with the
replacements t ↔ u and cos θt ↔ − cos θu .

The required πη-scattering amplitude and the calculation
of the corresponding S-wave projection(
t10
πη(s)

)(2)+Res+Loop+�

are given in Appendix C.

5.3 ππ and πη final-state interactions

While in Sects. 5.1 and 5.2 the individual effects of the
I = 0 S- and D-wave ππ and I = 1 πη S-wave final-
state interactions have been considered, we now account for

9 Twice (one for each channel).
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both effects simultaneously. The unitarized decay amplitude
is written as

mη′→ηππ (s, t, u) = [1 + N 00
ππ (s)gππ (s)]−1R00

η′→ηππ (s)

+[1 + N 02
ππ (s)gππ(s)]−1R02

η′→ηππ (s)

+[1 + N 10
πη(t)gπη(t)]−1R10

η′→ηππ (t)

+[1 + N 10
πη(t)gπη(u)]−1R10

η′→ηππ (u),

(65)

where the functions gππ (s) and gπη(t) are defined in
Eqs. (47) and (59), respectively. The ππ and πη scattering
amplitudes as well as the η′ → ηππ decay are defined along
the lines of the previous sections. In an analogous fashion
to Sect. 5.2, we build the full decay amplitude keeping its
perturbative part that we supplement by the inclusion the
S- and D-wave ππ and the S-wave πη final-state interac-
tions. This allows us to have a direct access to the rescat-
tering effects that can be compared to the contribution com-
ing from the perturbative calculation. Similarly to what is
described in Sect. 5.2, the unitarization procedure, Eq. (65),
generates redundant terms that need to be removed. More-
over, (M (s, t, u))(2)+Res+Loop+� perturbatively calculated
in Sect. 4 needs to be added. This leads to

M (s, t, u, cos θs,t,u) = (M (s, t, u))(2)+Res+Loop+�

+32π P0(cos θs)

(
m00

η′→ηππ
(s)

)(2)+Res+Loop+�

1 + 16πgππ (s)
(
t00
ππ (s)

)(2)+Res+Loop

+160π P2(cos θs)

(
m02

η′→ηππ
(s)

)(2)+Res+Loop+�

1 + 16πgππ (s)
(
t02
ππ (s)

)(2)+Res+Loop

−32π P0(cos θs)
(
m00

η′→ηππ (t)
)(2)+Res+Loop+�

−160π P2(cos θs)
(
m02

η′→ηππ (u)
)(2)+Res+Loop+�

+32π P0(cos θt )

(
m10

η′→ηππ
(t)

)(2)+Res+Loop+�

1 + 16πgπη(t)
(
t10
πη(t)

)(2)+Res+Loop+�

+32π P0(cos θu)

(
m10

η′→ηππ
(u)

)(2)+Res+Loop+�

1 + 16πgπη(u)
(
t10
πη(u)

)(2)+Res+Loop+�

−32π P0(cos θt )
(
m10

η′→ηππ (t)
)(2)+Res+Loop+�

−32π P0(cos θu)
(
m10

η′→ηππ (u)
)(2)+Res+Loop+�

. (66)

6 Fits to experimental data

We relate the theoretical expression for the differential decay
rate of η′ → ηπ0π0, Eq. (8), to the Dalitz distribution of the
measured number of events through

d2Nevents

dXdY
= 2

Nevents

Γη′ B̄(η′ → ηπ0π0)

×dΓ (η′ → ηπ0π0)

dXdY
ΔXΔY. (67)

For our study, we analyze the acceptance corrected η′ →
ηπ0π0 Dalitz distribution recently released by the A2 collab-
oration [46]. The factor of 2 accounts for the fact that the data
is given for half of the (symmetric) Dalitz distribution. Nevents

is the total number of events for the considered process. Γη′
is the total decay width of the η′ meson. ΔX and ΔY are the
bin width of the X and Y variables. B̄(η′ → ηπ0π0) ≡ B̄
is a normalisation constant that, for a perfect description of
the spectrum, would be equal to the corresponding branch-
ing fraction. For our analysis, we fix this normalisation to the
PDG reported value B̄ = 22.8(8)% [42].10 Two analyses of
the same data set called analysis I and analysis II have been
performed in Ref. [46]. They correspond to different anal-
ysis frameworks and to different selections of data samples.
The corresponding efficiency corrected numbers of events
(Nevents) are 463066 for analysis I and 473044 for analysis
II. The width of the bins is ΔX = ΔY = 0.10 MeV. The
central value of the results of our analysis are obtained by
considering the data set of analysis I. The results obtained
with the data set of analysis II is used to assess the system-
atic uncertainties of our fit results presented in Sect. 6.3.

The χ2 function we minimize is

χ2 =
∑

X,Y

(
N th

XY − N
exp
XY

σ
exp
XY

)2

, (68)

where N
exp
XY is the experimental number of events and σ

exp
XY

the corresponding uncertainties in the XY -th bin. The num-
ber of data points to be fitted is 200.

Our fitting strategy is organized in a bottom-up approach
guided by step-by-step implementation of two-body unitar-
ity. The free parameters to fit are MS8 , MS1 , Ma0 , cm, c̃m, cd
and c̃d . However, in order to reduce the number of free param-
eters we invoke the large-NC relations for the couplings
and masses of the octet and singlet. We set c̃d = cd/

√
3,

c̃m = cm/
√

3 and MS = MS8 = MS1 = Ma0 [5]. For the
η-η′ mixing angle we take θ = −13.3(5)◦ [65]11 while we
use Λ2 = − 0.37 [62] and set the regularization scale to

10 The A2 collaboration does not provide a measurement for the branch-
ing ratio. Otherwise, we would fix this constant to the A2 measured value
for consistency. Another possibility would be to let this constant float
and infer its value from fits to the data. However, in order to reduce the
number of free parameters to fit, we prefer to fix this constant to the
PDG average.
11 In Ref. [65], the value φηη′ = (41.4±0.5)◦ is obtained in the quark-
flavor basis. However, at the lowest order, this value is equivalent in the
octet-singlet basis to θηη′ = φηη′ − arctan

√
2 = (−13.3 ± 0.5)◦.
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μ = 700 MeV. Note that by imposing the large-NC con-
straints we are introducing large correlations between the fit
parameters. This implies that different values for the cou-
plings and masses can lead to a similar fit quality underes-
timating the true statistical errors. Therefore the fit results
presented below should be taken with a word of caution.

6.1 ChPT fits including resonances and one-loop
corrections

We start by fitting Eq. (67) to A2 data [46] with the amplitude
described in Sect. 4. For our first fit we impose the restriction
cd = cm for the couplings which comes from the requirement
of the Kπ scalar form factor to vanish at high energies [66].
The resulting fit parameters take the values

MS = 973(5) MeV, cd = cm = 30.1(4) MeV, (69)

with a χ2/dof = 242.2/198 = 1.22, which leads to c̃d,m =
cd,m/

√
3 = 17.4(2) MeV for the singlet couplings while the

associated Dalitz-plot parameters are found to be

a = − 0.095(6), b = 0.005(1), d = − 0.037(5). (70)

For our second fit we allow the couplings cd and cm to
float. We obtain

MS = 954(47) MeV,

cd = 28.0(4.6) MeV, cm = 53.4(52.0) MeV, (71)

with a χ2/dof = 242.0/197 = 1.23. The corresponding
Dalitz parameters in this case are

a = − 0.093(45), b = 0.004(3), d = − 0.039(18).

(72)

The fitted parameters are particularly strongly correlated
in this case leading to a large error for the coupling cm .
This is not a surprise since cm always enters with m2

π in the
amplitude, and hence is chirally suppressed, indicating that
its influence is small. This is in agreement with previous esti-
mates of this coupling suffering from a large uncertainty. For
example, cm = 31.5+19.5

−22.5 MeV in [49], cm = 15(30) MeV in
[59] and cm = 80(21) MeV in [67]. In order to alleviate this
correlation, we also consider fits where we fix the couplings
cm and c̃m . For instance, we first fix them to cm = 41.1(1)

MeV and c̃m = 18.9(9) MeV [64] using results obtained
from meson-meson scattering (see Refs. [49,62] for other
possible values for these couplings). Imposing in addition
the constraint c̃d = cd/

√
3 we obtain

MS = 992(7) MeV, cd = 31.9(5) MeV, (73)

with a χ2/dof = 246.4/198 = 1.24. This leads to c̃d =
18.4(3) MeV for the singlet coupling and

a = − 0.083(6), b = − 0.0002(1), d = − 0.057(5),

(74)

for the associated Dalitz parameters. If now we let the cou-
pling c̃d float, we get

MS = 968(11) MeV,

cd = 29.8(9) MeV, c̃d = 21.2(1.2) MeV, (75)

with a χ2/dof = 241.9/197 = 1.23. The corresponding
Dalitz-plot parameters are found to be

a = − 0.092(5), b = 0.004(2), d = − 0.041(11). (76)

On the contrary, if we take cm = 80(21) MeV from Ref.
[67] and impose the constraint c̃d,m = cd,m/

√
3, we get

MS = 926(5)(25) MeV, cd = 25.7(4)(1.9) MeV, (77)

with a χ2/dof = 242.3/198 = 1.22. The first error is the
fit uncertainty and the second is the systematic uncertainty
due to cm . The corresponding singlet couplings are found to
be c̃d = 14.8(2)(1.1) MeV and c̃m = 46.2(12.1) MeV. The
Dalitz parameters read

a = − 0.090(7)(3), b = 0.004(0)(0), d = − 0.041(7)(1).

(78)

We have also tried fits having all couplings i.e.cm, c̃m, cd
and c̃d as free parameters but these fits are unstable because
there are too many free parameters to fit.

In Fig. 4, we provide a graphical account of the ratio of
the differential decay width distributions of η′ → ηπ0π0

as a function of X,Y,mπ0π0 and mπ0η over the phase-space
obtained from the fit results of Eq. (69). In order to compare
with the experimental data, both expressions are normalized
such that the individual integrated branching ratio is 1. The
corresponding normalized amplitudes are denoted as M̄ and
φ̄ in the figure. A cusp effect at the π+π− mass threshold is
neatly visible in the data (see top-right and bottom-left pan-
els of the figure). This is the first cusp structure observed in
η′ → ηπ0π0 and is not accommodated by the theoretical
description given here. In the next Sect. 6.2 we will improve
the theoretical description in order to obtain a better agree-
ment with the experimental data and to try to describe the
cusp effect.

In Fig. 5 we display graphically the different contribu-
tions entering the decay amplitude as a function of themπ0π0

invariant mass distribution. The hierarchy between the reso-
nance exchange and loop contributions is shown. From the

123



758 Page 14 of 26 Eur. Phys. J. C (2018) 78 :758

Fig. 4 Differential decay rate distribution for η′ → ηπ0π0 divided by the phase-space, both individually normalized, for X (left-top panel), Y
(right-top panel), mπ0π0 , (left-down panel) and mπ0η (right-down panel) using the fit results of Eq. (69). The data are taken from Ref. [46]

Fig. 5 Individual contributions to the differential decay rate distribution for η′ → ηπ0π0. See main text for details

top-left panel, we observe that the lowest-order contribu-
tion is tiny while the decay is largely dominated by the
resonance exchanges with the loop contributions interfer-
ing destructively. The integrated branching ratio associated

to these curves is of 0.6% for the lowest-order (blue dotted
curve), 28.2% for the lowest-order plus resonance exchanges
(red dashed curve) and of 22.5% for the lowest-order includ-
ing resonance exchanges and loop contributions (black solid
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curve). The individual resonance exchange contributions are
shown in the top-right panel. The t (u) channel (brown dot-
ted curve) dominates over the s-channel contribution (green
dashed curve) in the entire allowed phase space. Further,
in the bottom-left panel we classify the loop contributions
which are indeed subleading. In this case, the t (u) chan-
nel loops dominate the first half of the spectrum while the
loop contributions in the s-channel dominate the second half.
A decomposition into the individual loop contributions is
provided on the bottom-right panel. This reveals that the s-
channel loops (green dashed curve) are largely dominated by
the ππ contribution (light green dashed curve) while the KK
loops (light pink dotted curve) dominate the crossed channels
ones (brown dotted curve).

Finally, we would also like to provide an estimate of the
chiral couplings L5 and L8 as well as the sum 3L2 + L3

as output of our fits. Assuming resonance saturation for the
order p4 ChPT couplings constants [5], the following rela-
tions can be derived

3L2 + L3 = c2
d

2M2
S

, L5 = cdcm
M2

S

, L8 = c2
m

2M2
S

. (79)

Using the results of the fit, Eq. (69), we obtain

3L2 + L3 = 0.47 · 10−3, L5 = 0.95 · 10−3,

L8 = 0.47 · 10−3. (80)

With the results of the fit Eq. (73), we get:

3L2 + L3 = 0.51 · 10−3, L5 = 1.03 · 10−3,

L8 = 0.51 · 10−3, (81)

Considering the results of the fit Eq. (77), we obtain

3L2 + L3 = 0.38 · 10−3, L5 = 2.39 · 10−3,

L8 = 3.73 · 10−3. (82)

The values of Eqs. (80) and (81) are in reasonable agree-
ment with the chiral couplings determinations at O(p4) (see
Ref. [68] for a recent review) while the values for L5,8 in
Eq. (82) disagree. However, the first relation in Eq. (79) is not
well fulfilled for most of the values of L2 and L3 obtained at
O(p6). For example, the most recent analysis of K�4 decays
gives Lr

2 = 0.63(13) ·10−3 and Lr
3 = −2.63(46) ·10−3 [69]

leading to a negative value for the sum 3L2 + L3. So the left-
hand side of the first equality of Eq. (82) is negative while
the right-hand side of the equation is definite positive. This
inconsistency shows that resonance saturation of low-energy
constants by scalar resonances should be taken with a word
of caution.

6.2 Fits including individual ππ and πη final-state
interactions

In order to improve our fits to the data, we unitarize the param-
eterization of the decay amplitude. As derived in Eq. (54) we
first include the ππ final-state interactions only. By analogy
with Sect. 6.1, we first perform a fit imposing the relations
c̃d,m = cd,m/

√
3 and cd = cm . In this case we obtain

MS = 1001(24) MeV,

cd = cm = 29.5(1.8) MeV, aππ = 0.73(25), (83)

with a χ2/dof = 220.4/197 = 1.12. c̃d,m = 17.0(1.0) MeV
for the singlet couplings and

a = − 0.075(9), b = − 0.051(1), d = − 0.049(14),

(84)

for the associated Dalitz-plot parameters. Note that, with
respect to the previous section, there is one more free param-
eter to fit since we have the subtraction constant, Eq. (48) to
determine. Due to the important correlations between the
fit parameters, the statistical uncertainties have increased
while the total χ2/dof is slightly improved. Comparing these
results to the ones of Eq. (70) obtained within ChPT including
resonance exchanges and one-loop corrections without con-
sidering any final-state interactions, shows that the inclusion
of the ππ final-state interactions has a large effects on the
Dalitz plot parameters. In particular, the a and b parameters
associated to powers of Y , have been substantially shifted
downwards while the change on the d parameter related to
X2 is slightly less severe. We would like to note that while
the S-wave only affects the parameters a and b associated to
powers of Y , the D-wave affects the variable X2 but also the
determination of a and b. For example, if we consider only
the S-wave for the ππ final-state interaction, we obtain

a = − 0.094(7), b = − 0.034(2), (85)

instead of the results of Eq. (84). Comparing to Eq. (70) a
seems unaffected by the inclusion of the S-wave ππ final-
state interaction while b is clearly moved down. We therefore
conclude that while a precise determination of the b parame-
ter requires to take into account the the S-wave ππ final-state
interaction the determination of the a and d parameters are
dominated by the D-wave.

We shall now return to the discussion on the spurious
singularities introducing unitarity violations, see Sect. 5.1.
According to the Watson’s theorem [70], the phase of the
η′ → ηπ0π0 decay amplitude equals the ππ scattering
phase-shift in the elastic region. On Fig. 6 we compare the
S-wave phase of the decay amplitude (blue line) to the ππ

scattering phase-shift (red dashed line) using the results of
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Fig. 6 S-wave phases of the η′ → ηπ0π0 decay amplitude (blue line)
and of the ππ scattering (red dashed line). The phases differ from one
another due to the appearance of spurious contributions that induce
(small) unitarity violations. See main text for details

the fits Eq. (83). The difference between the two phases in
the elastic region is due to such spurious contributions. This
implies that unitarity is no longer fulfilled exactly. However,
this effect is numerically quite small (for the D-wave this
effect is completely negligible) and acceptable for our analy-
sis. We have checked that by removing these spurious contri-
butions (i.e. removing the t- and u-channel from the ππ loop
contributions) entering ππ scattering, unitarity is restored.
The changes in the fits are negligible.

We also perform the two other fits corresponding to
Eqs. (71), (73) and (75) with the inclusion of the ππ final-
state interactions. If we let the couplings cd and cm as free
parameters we do not manage to get acceptable fits. Fixing
cm = 41.1(1) MeV and c̃m = 18.9(9) MeV [64] together
with the relation c̃d = cd/

√
3, we obtain

MS = 988(10) MeV,

cd = 28.6(7) MeV, aππ = 0.24(12), (86)

with a χ2/dof = 220.1/197 = 1.12. c̃d = 16.5(4) MeV for
the singlet coupling and the associated Dalitz-plot parameters
are found to be

a = − 0.075(7), b = − 0.056(1), d = − 0.050(4).

(87)

On the contrary, if we take cm = 80(21) MeV [67] the fit
leads to

MS = 930(7)(39) MeV,

cd = 23.5(6)(2.4) MeV, aππ = 0.41(11)(19), (88)

with a χ2/dof = 220.1/197 = 1.12. The associated Dalitz-
plot parameters are found to be

a = − 0.074(7)(1), b = − 0.053(1)(1), d = − 0.049(4)(1),

(89)

where the first error is the fit uncertainty while the second
is due to cm . In this case the singlet couplings read c̃d =
13.6(4)(1.4) MeV and c̃m = 46.2(12.1) MeV.

Note that the Dalitz parameters as obtained in Eqs. (84),
(87) and (89) do not change between the different fits. If
we allow more parameters to float in the fits such as i.e.
cm, c̃m, cd and c̃d the fits become unstable due to the large
number of free parameters.

In this case we find for the chiral couplings:

3L2 + L3 = 0.43 · 10−3, L5 = 0.87 · 10−3,

L8 = 0.43 · 10−3, (90)

for the fit Eq. (77).

3L2 + L3 = 0.42 · 10−3, L5 = 1.20 · 10−3,

L8 = 0.87 · 10−3, (91)

for the the fit Eq. (83).

3L2 + L3 = 0.31 · 10−3, L5 = 2.17 · 10−3,

L8 = 3.70 · 10−3, (92)

for the the fit of Eq. (86).
Similarly to what have been done for ππ , we can take into

account only the individual πη final-state interaction effects
using the representation Eq. (61). The corresponding results
can be found in Table 2 where different fit settings have been
considered. Note that the πη subtraction constant is fixed to
aπη = 2.0+3.1

−3.4 [49] for these fits.12 (i) Fit A corresponds
to imposing the restriction cd = cm and using the relation
c̃d,m = cd,m/

√
3; (ii) Fit B let the couplings cd and cm to

float and uses the relation c̃d,m = cd,m/
√

3; (iii) Fit C fixes
cm = 41.1(1) MeV and c̃m = 18.9(9) MeV [64] using the
relation c̃d = cd/

√
3 where cd is a free parameter of the fit;

iv) Fit D takes cm = 80(21) MeV [67] and uses the relation
c̃d,m = cd,m/

√
3 with cd a free parameter of the fit.

Comparing the results of Table 2 to the ones given in
Sect. 6.1 obtained using ChPT including resonances and one-
loop corrections without resumming the final-state interac-
tion effects, we observe that the inclusion of the πη rescat-
tering effects has small effects on the result of the fits. We
therefore conclude that πη rescattering effects are small as
previously observed, see Ref. [61]. Note that Fit B allowing
the coupling cm to float carries a large error bar for the same
reasons as discussed in the previous section.

As in Sect. 6.1, we compare the fit results to the experi-
mental data in Fig. 7. The black solid curve corresponds to the
fit results Eq. (83) where the ππ final-state interactions have
been taken into account. The gray dashed curve represents
the resulting amplitude obtained from Fit A of Table 2 for
which the πη final-state interactions have been resummed.

12 The subtraction constant aπη is not well determined by the fits. We
therefore prefer to fix its value.

123



Eur. Phys. J. C (2018) 78 :758 Page 17 of 26 758

Table 2 Results for the parameters of different fits and their associated
Dalitz parameters after resumming the πη final-state interactions. The
first error corresponds to the statistical fit uncertainty, the second error

is due to the systematic uncertainty coming from the subtraction con-
stant aπη and the corresponding couplings that are fixed. The masses
and couplings are given in MeV. See the main text for details

Parameter Fit A Fit B Fit C Fit D

MS 985(7)(20) 913(12)(32) 999(9)(14) 940(9)(47)

cd 30.6(5)(7) 24.4(1.0)(4.6) 32.3(6)(9) 26.3(5)(2.5)

cm = cd 100.5(3.0)(50.0) = 41.1(1) = 80(21)

c̃d 17.7(2)(2) 14.1(6)(2.7) 18.7(4)(5) 15.2(3)(1.4)

c̃m = c̃d 58.0(1.7)(28.9) = 18.9(9) 46.2(12.1)

χ2
dof 243.2/198 ∼ 1.23 242.9/197 ∼ 1.23 244.5/198 ∼ 1.24 242.7/197 ∼ 1.23

a[Y ] − 0.094(6)(9) − 0.086(9)(14) − 0.083(7)(7) − 0.089(8)(15)

b[Y 2] 0.005(1)(1) 0.004(1)(1) 0.001(1)(1) 0.004(1)(1)

d[X2] − 0.031(5)(4) − 0.035(8)(9) − 0.049(5)(13) − 0.035(7)(9)

Fig. 7 Differential decay rate distribution for η′ → ηπ0π0 divided by
the phase-space, both individually normalized, for X (left-top panel),
Y (right-top panel), mπ0π0 , (left-down panel) and mπ0η (right-down
panel) associated to the fit Eq. (77) and Fit A of Table 2. These results

are obtained after the individual resummation of ππ (black solid curve)
and πη (gray dashed curve) final-state interactions effects. Data is taken
from Ref. [46]

Contrary to the fit results shown in Fig. 4, the cusp structure
at the π+π− mass threshold (see top-right and bottom-left
panels of the figure) is now nicely accounted for within our
description. This is possible after the inclusion of the ππ

unitarization.13 Note that the theory describes much better

13 We have considered the charged pion mass in the function gππ (s),
Eq. (47), and in the t- and-u channel pion loop contributions entering
the ππ scattering (see Appendix B). The other pion masses are set to
the neutral ones.

the data once ππ rescattering effects have been included
compared to πη.14 This is also in part reflected in the corre-
sponding χ2

dof .

14 The cusp effect at the π+π− mass threshold is not included into
the description represented by the gray dashed curve. While this effect
would affect a little the s-channel ππ loop of the decay amplitude,
the resulting fit parameters w/o including the cusp effect remains
unchanged.

123



758 Page 18 of 26 Eur. Phys. J. C (2018) 78 :758

Table 3 Results for the parameters of the fits together with their associ-
ated Dalitz parameters for two different fit scenarios and two different
analyses (analysis I and II) of the A2 data set. Masses and coupling
are given in MeV. The first error is the statistical uncertainty coming

from the statistical uncertainties on the data, the second error is the
systematic uncertainty coming from the uncertainty on the subtraction
constant aπη. See main text for details

Parameter Analysis I Analysis II

Fit 1 Fit 2 Fit 1 Fit 2

MS 1017(68)(24) 999(33)(23) 1040(79)(28) 1020(48)(28)

cd 30.4(4.8)(9) 29.1(2.4)(1.6) 32.0(5.3)(9) 30.9(3.4)(2.2)

cm = cd = 41.1(1) = cd = 41.1(1)

c̃d 17.6(2.8)(5) 16.8(1.4)(9) 18.5(2.8)(5) 17.8(2.0)(1.3)

c̃m = c̃d = 18.9(9) = c̃d = 18.9(9)

aππ 0.76(61)(6) 0.34(22)(19) 0.98(58)(9) 0.57(38)(20)

χ2
dof 1.12 1.12 1.23 1.23

a[Y ] − 0.074(7)(8) − 0.073(6)(9) − 0.071(6)(8) −0.070(6)(9)

b[Y 2] − 0.049(1)(2) − 0.054(1)(2) − 0.050(2)(1) − 0.054(1)(1)

d[X2] − 0.047(8)(4) − 0.047(2)(4) − 0.055(6)(4) − 0.055(6)(4)

κ03[Y 3] 0.001 0.003 0.001 0.002

κ21[Y X2] − 0.004 − 0.005 − 0.005 − 0.005

κ22[Y 2X2] 0.001 0.002 0.002 0.002

6.3 Fits including both ππ and πη final-state interactions

This section contains our central results for the corresponding
fit parameters as well as for the associated Dalitz-plot slope
parameters. They are obtained by building a representation
for the amplitude that takes into account the ππ and πη final-
state interactions simultaneously as described in Sect. 5.3. In
the previous sections, we presented fits to the analysis I of
the A2 data set. Here we fit our theoretical representation to
analysis I and II of the A2 data set allowing us to include a
systematic uncertainty on our results. The systematic uncer-
tainty is taken to be the difference between the results of
the fits to the two different experimental analyses. The fit
results are collected in Table 3 using two different settings
and with fixing the πη subtraction constant to aπη = 2.0+3.1

−3.4

[49]. (i) In Fit 1 we impose two conditions c̃d,m = cd,m/
√

3
and cd = cm ; (ii) In Fit 2 we fix cm = 41.1(1) MeV and
c̃m = 18.9(9) MeV [64] and impose c̃d = cd/

√
3.

Contrary to what was done in the previous sections, we
report here not only the results for the Dalitz plot parameters
a, b and d but also the results for the higher order ones,
κ03, κ21 and κ22. They are found to be very small as reported
in previous theoretical analyses [36,41].

Note that the values found for the Dalitz plot parameters
do not change much with the different fit scenarios and are
very similar to the ones obtained in Sect. 6.2 where only
the ππ rescattering effects were taken into account. This is
expected since we saw that the ππ rescattering dominates the
final-state interactions. The stability of our fit results makes
us very confident in the robustness of the results.

In order to illustrate the overall effects of the D-wave
ππ final-state interactions, we have also performed fits to
the Dalitz plot experimental distribution without the D-wave
contribution. The resulting fit results are gathered in Table 4.
They show a substantial shift of the Dalitz parameters with
respect to the ones collected in Table 3 that include the D-
wave. In particular, when the D-wave is omitted the value for
a[Y ] is shifted downwards while the parameters b[Y 2] and
d[X2] are shifted upwards. This demonstrates the importance
of the D-wave ππ final-state interactions.

In the following, we study the dependence of the Dalitz
parameters with respect to the numerical values of the mass
and couplings of the participating scalar multiplets. For this
exercise, we take different values for the mass and couplings
from the literature and make some “crude” predictions. The
resulting estimates are gathered in Table 5 where we have
used the constraints c̃d = cd/

√
3 and c̃m = cm/

√
3, and

fixed aππ = 0.76 from Table 3. These results show that
the Dalitz plot parameters are sensitive mostly to the values
of cd and MS . The variation of these parameters has also a
sizeable impact on the predicted branching ratio. Out of the
five predictions shown in this table, the results given in the
last column are the most realistic ones. In Fig. 8 we com-
pare the experimental data to the results corresponding to
Fit 1 of Table 3. We observe that the representation of the
amplitude obtained from the fit results of analysis I (black
solid curve) practically overlaps with the one coming from
the fit results of analysis II (gray dotted curve). The repre-
sentation of the amplitude built from the results of our fits
successfully describes the experimental data including the
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Table 4 Same as Table 3 but without the D-wave ππ final-state interactions

Parameter Analysis I Analysis II

Fit 1 Fit 2 Fit 1 Fit 2

MS 996(66)(25) 967(29)(3) 1016(63)(31) 983(51)(3)

cd 23.3(3.5)(1.5) 21.5(2.1)(2) 24.6(3.8)(1.8) 22.5(3.1)(2)

cm = cd = 41.1(1) = cd = 41.1(1)

c̃d 13.5(2.0)(9) 12.4(1.2)(2) 14.2(2.2)(1.0) 13.0(1.8)(2)

c̃m = c̃d = 18.9(9) = c̃d = 18.9(9)

aππ 2.01(1.61)(71) 0.16(12)(12) 2.74(2.18)(90) 0.66(1.35)(10)

χ2
dof 1.24 1.16 1.39 1.29

a[Y ] − 0.091(9)(4) − 0.091(8)(2) − 0.090(6)(4) − 0.089(9)(2)

b[Y 2] − 0.013(1)(5) − 0.029(1)(1) − 0.009(2)(5) − 0.024(1)(1)

d[X2] − 0.031(6)(3) − 0.030(4)(7) − 0.037(6)(3) − 0.036(5)(6)

κ03[Y 3] 0.001 0.003 0.001 0.002

κ21[Y X2] − 0.001 − 0.001 − 0.001 − 0.001

κ22[Y 2X2] 0.0004 0.003 0.001 0.001

Table 5 Predictions for the Dalitz-plot parameters for different val-
ues of the mass and couplings (given in MeV). In the first column, the
estimate† MS = 1400 GeV assumes that the a0(980) is dynamically

generated and the large-Nc restriction†† for the couplings cd = cm =
Fπ/2 [71] is taken

Parameter Predictions

Constraint Ref. [5] Ref. [71] Ref. [71] Ref. [67]

MS 1400† 983 1400† 1190 980(40)

cd Fπ/2†† 32 30(10) 45.4 26(7)

cm Fπ/2 43 43(14) = cd 80(21)

a[Y ] − 0.201 − 0.045 − 0.341 − 0.136 − 0.083(8)

b[Y 2] − 0.055 − 0.050 − 0.041 − 0.056 − 0.051(1)

d[X2] − 0.088 − 0.034 − 0.140 − 0.071 − 0.065(4)

Branching ratio 11% 47% 2% 46% 22%

cusp effect at the π+π− threshold. Moreover, in order to
compare the decay amplitude with the Dalitz plot experi-
mental measurements, we compute its square in terms of the
Dalitz variables X and Y inside the physical decay region.
The shape of the Dalitz distribution, normalized to 1 in the
center of the Dalitz plot, is displayed in Fig. 9 for the ChPT
results presented in Eq. (69) including resonances and one-
loop corrections |M(X,Y )ChPT+Res+Loop|2 (top left panel)
and for the amplitude including ππ and πη final-state inter-
actions |M(X,Y )Full|2 as obtained in Fit 1 of the analysis I of
Table 3 (top right panel). The rescattering effects are neatly
seen by the enhancement of the distribution in the center of
the Dalitz plot, and in the outer up corners to less extent, on
the plot of the top right with respect to the plot of the top
left. The top right plot is in good agreement with the experi-
mental results [46,47]. It shows that the Dalitz distribution is
more populated when the pions go back-to-back (cf. Fig. 1).

In order to further illustrate the strong effects of all final-state
interactions on the Dalitz plot distribution, on the bottom left
panel of Fig. 9 we plot the quantity |M(X,Y )Full|2 divided
by the same quantity before the unitarization, correspond-
ing to |M(X,Y )ChPT+Res+Loop|2. Clearly, the effects of the
unitarization of the amplitude, dominated by the ππ rescat-
tering, are very important in the upper central region of the
distribution. Finally, we study the region of the Dalitz plot
influenced by the effects of the D-wave ππ final-state inter-
actions. The answer is given on the bottom right panel of
Fig. 9 where we show the quantity |M(X,Y )Full|2 divided
by |M(X,Y )D−wave=0|2. |M(X,Y )D−wave=0|2 corresponds
to |M(X,Y )Full|2 with the D-wave ππ final-state interac-
tions effects set to zero. We can see that the D-wave effects
also appear on the upper central region of the Dalitz plot.

The central values of our final results for the Dalitz-plot
parameters associated to the η′ → ηπ0π0 decay correspond
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Fig. 8 Differential decay rate distribution for η′ → ηπ0π0 divided by
the phase-space, both individually normalized, for X (left-top panel),
Y (right-top panel), mπ0π0 , (left-down panel) and mπ0η (right-down
panel) associated to the results of Fit 1 in Table 3 (black solid and gray

dotted curves for the analyses I and II data sets, respectively). They are
obtained after resumming both the ππ and the πη final-state interac-
tions. Data is taken from Ref. [46]

to Fit 1 of Table 3 for the analysis I of A2 data. To assess the
“experimental” systematic uncertainty, we take the largest
variation of the central values with respect to the results con-
sidering the analysis II data set of the same table. We add
this uncertainty to the systematic uncertainty coming from
the subtraction constant aπη in quadrature and we obtain

a = − 0.072(7)stat(8)syst,

b = − 0.052(1)stat(2)syst,

d = − 0.051(8)stat(6)syst. (93)

While the values for the Dalitz-plot parameters a and d
are in good agreement with the one reported by A2, a =
− 0.074(8)(6) and d = − 0.050(9)(5), the central value of
the parameter b is shifted towards a smaller absolute value
compared to the A2 one, b = − 0.063(14)(5), but in good
agreement within errors.

Although our dedicated analysis shows that the πη rescat-
tering effects are small we can still extract some information
about the I = 1 πη phase shift as a byproduct of our study. In
Fig. 10, we display the πη phase shift in the physical decay
region t = [(mπ + mη)

2, (mη′ − mπ )2]15 using the results

15 For a precise extraction of the πη phase shift at higher energies i.e.
reaching the K K̄ threshold, a more sophisticated parameterization of
theπη scattering is required. See Ref. [72] for a recent parameterization.

of Fit 1 of Table 3. The phase shift is calculated as

tan δπη(s) = Im T 10
πη(s)

Re T 10
πη(s)

, (94)

where

T 10
πη(s) = t10

πη(s)(
1 + 16πgπη(s)t10

πη(s)
) . (95)

gπη(s) is given in Eq. (59) and t10
πη(s) is defined in

Appendix C. We observe that within this energy region the
phase shift is small.

Before concluding, in Fig. 11, we compare our results
on the π0π0 mode to the BESIII measurement [47]. Con-
trary to A2, the BESIII experimental data is not yet pub-
licly available, so we have extracted the data points from
Fig. 7 of Ref. [47] for the comparison. Our prediction is
displayed in Fig. 11. It is in very good agreement with the
measured data. To show this we computed the χ2/dof using
the results of Fit 1 of Table 3 and the BESIII data. We obtain
χ2/dof= 101.5/95 ∼ 1.07. Note that contrary to A2 no sta-
tistically significant evidence for a cusp at the π+π− thresh-
old is observed.

Using our representation of the amplitude using the fits
to the data on the π0π0 mode from the A2 collaboration,
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Fig. 9 Dalitz plot distribution for the decay amplitude squared
of η′ → ηπ0π0 normalized to 1 at X = Y = 0 as
obtained from ChPT including resonances and one-loop correc-
tions |M(X, Y )ChPT+Res+Loop|2 (top left panel) and after resum-

ming ππ and πη final-state interactions |M(X, Y )Full|2 (top right
panel). The quantities |M(X, Y )Full|2/|M(X, Y )ChPT+Res+Loop|2 and
|M(X, Y )Full|2/|M(X, Y )D−wave=0|2 are also show in the bottom left-
and right-panel, respectively

Fig. 10 Isospin-zero πη phase shift in the physical region of the decay
η′ → ηπ0π0. The error band is due to the statistical uncertainties
associated to the parameters of Fit 1 of Table 3 and to the subtraction
constant aπη

we can predict the Decay rate distribution in the charged
channel (π+π−). To predict the Dalitz-plot parameters of
the π+π− decay mode, one should consider all possi-
ble sources of isospin breaking. In our framework, isospin

Fig. 11 Differential decay rate distribution for η′ → ηπ0π0 divided
by the phase-space, both individually normalized, associated to the
resulting parameters of Fit 1 of Table 3 as compared with the BESIII
experimental data [47]

breaking effects mostly affect the Dalitz variables X and Y
if the charged pion mass is used in Eqs. (9) and (10). In Ref.
[41] relations between the Dalitz parameters in the charged
and the neutral decay modes have been derived:
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Fig. 12 Comparison of experimental (•) and theoretical (�) determinations of the associated Dalitz-plot slope parameters for η′ → ηππ

(cf. Table 1). Our results (�) correspond to Eqs. (93) and (97) for the π0π0 and π+π− modes, respectively. Only the statistical uncertainty is
shown

an = ac + εiso(a
c + 2bc),

bn = bc(1 + 2εiso),

dn = dc
(
Qn

Qc

)2

, (96)

where the superscripts c and n denote the associated parame-
ters in the charged and neutral systems, respectively, and with
εiso ∼ 4.7% [41]. Following this prescription, our estimates
for the Dalitz parameters in the charged channel reads

a = − 0.065(7)stat(8)syst,

b = − 0.048(1)stat(2)syst,

d = − 0.045(7)stat(5)syst. (97)

Comparing the above results with the most recent experi-
mental determination of these parameters in the charged sys-
tem released by BESIII in 2017 [47], a = − 0.056(4)stat

(3)syst, b = − 0.049(6)stat(6)syst, d = − 0.063(4)stat(4)syst,
we observe that our prediction for b is in excellent agreement
while a and d are found to be 1σ and 2σ away, respectively.

Finally, our results given in Eqs. (93) and (97) for the neu-
tral and charged decays modes, respectively, are graphically
compared to previous experimental and theoretical determi-
nations in Fig. 12.

7 Conclusions

Recent measurements of the η-η′ system have reached
unprecedented precision placing new demands on the accu-
racy of the corresponding theoretical description. The η′ →
ηππ decays represent a good laboratory to test any exten-
sion of SU (3) Chiral Perturbation Theory, the effective field
theory of QCD, which has proven to be very successful in
describing pion and kaon processes. In this work, we have
analyzed the η′ → ηππ transition withinU (3) ChPT at one-
loop including scalar resonance states as degrees of freedom.
The corresponding amplitude has been unitarized using the
N/D method. Our treatment accounts for simultaneous ππ

and πη final-state interaction effects.
This parametrization has been fitted to the recently

released A2 collaboration data on the η′ → ηπ0π0 channel
and very good agreement has been achieved. The results of
the fit show that the Dalitz plot parameter b is shifted down-
wards compared to U (3) ChPT predictions. We demonstrate
that this is attributed to the S-wave resummation of the ππ

final-state interactions. Moreover, to match the A2 experi-
mental accuracy requires the inclusion of the D-wave con-
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tribution. On the contrary, the S-wave πη rescattering has
shown to be small in agreement with previous studies.

To further improve the description of the rescattering
effects, one can consider a more sophisticated unitarization
procedure in coupled channels including inelastic K K̄ scat-
tering. Moreover, since the ππ rescattering effects are found
to be very important, the inclusion of the ππ scattering phase
shift data in a combined analysis may help to determine the
parameters of the model more accurately and improve the
quality of the fit. We postpone it for a future analysis when
new measurements, e.g. by GlueX experiment, become avail-
able.

In summary, from our analysis we extract the follow-
ing Dalitz-plot parameters a = −0.072(7)stat(8)syst, b =
−0.052(1)stat(2)syst, d = −0.051(8)stat(6)syst. Using
these results, we are able to make predictions for the charged
channel. These predictions are found to be in very good
agreement with the BES-III measurements of this channel.
Moreover, we were able to extract some information on the
I = 1 πη phase shift at low energy.

The theoretical framework developed here should be suit-
able for precision analyses of future experimental data.
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Appendix A: loop contributions to the decay amplitude

M Loop(s, t, u) = m2
π

9F2
π

(√
2c2θ − cθsθ − √

2s2θ
)

×
[

1

3F2
π

(
m2

π − 4m2
K

) ( − 2c4θ + 2
√

2c3θsθ + 3c2s2θ

−2
√

2cθs3θ − 2s4θ
)
B0(s,mη′ ,mη)

+m2
π

F2
π

(
cθ − √

2sθ
)2

B0(t,mη,mπ ) + (t ↔ u)

+m2
π

F4
π

(√
2cθ + sθ

)2
B0(t,mη′ ,mπ ) + (t ↔ u)

]

+ m2
π

54F4
π

(
cθ − √

2sθ
)2 [√

2c4θ
(

5m2
π − 8m2

K

)

−c3θ
(

8m2
K + m2

π

)
sθ + 3

√
2c2θ

(
4m2

K − m2
π

)
s2θ

+4cθ
(

5m2
K − 2m2

π

)
s3θ

+4
√

2
(
m2

K − m2
π

)
s4θ

]
Beq

0 (s,mη)

+ m2
π

54F4
π

(√
2cθ + sθ

)2 [
4
√

2c4θ
(
m2

π − m2
K

)

+4c3θ
(

5m2
K − 2m2

π

)
sθ + 3

√
2c2θ

(
m2

π − 4m2
K

)
s2θ

−cθ
(

8m2
K + m2

π

)
s3θ

+2
√

2
(

8m2
K − 5m2

π

)
s4θ

]
Beq

0 (s,mη′)

+ s

244

[
2
√

2c2θ
(

2m2
K − m2

π

)

+cθ
(

3m2
η + 2m2

η′ + 8m2
K + 2m2

π − 9s
)

sθ

+2
√

2
(
m2

π − 2m2
K

)
s2θ

]
Beq

0 (s,mK )

+m2
π

(
m2

π − 2s
)

6 f 4

(√
2c2θ − cθsθ − √

2s2θ
)
Beq

0 (s,mπ )

+ 1

216F4
π

[
− 2

√
2c2θ

(
2m2

K + m2
π

)

×
(

3m2
η + 8m2

K + m2
π − 9

(
m2

η + m2
η′ + 2m2

π − s − t
))

+cθsθ
(

32m4
K − 16m2

Km
2
π − 7m4

π

+3m2
η′

(
8m2

K + m2
π − 9t

)

+3m2
η

(
3m2

η′ + 8m2
K + m2

π − 9t
)

−144m2
K t − 18m2

π t + 81t2
)

+2
√

2
(

2m2
K + m2

π

)
s2θ

]
Beq

0 (t,mK ) + (t ↔ u),

(A.1)

with (c, s) = (cos, sin) for abbreviation and where the loop
functions are calculated in dimensional regulartization within
the MS-1 renormalization scheme defined by

B0(s,ma,mb) = 1

16π2

(
1 − log

m2
b

μ2

+x+ log
x+ − 1

x+
+ x− log

x− − 1

x−

)
,

(A.2)

with

x± = s + m2
a − m2

b

2s

± 1

−2s

√
−4s(m2

a − i0+) + (s + m2
a − m2

b)
2. (A.3)
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for the case of different mesons masses, and

Beq
0 (s,m) = 1

16π2

(

1 − log
m2

b

μ2 + σ(s) log
σ(s) − 1

σ(s) + 1

)

,

(A.4)

with

σ(s) =
√

1 − 4m2

s
, (A.5)

for the case of equal masses. In Eq. (A.1), loops with identical
particles have been multiplied by factor of 1/2.

The tadpole contribution is given by

M Tadpole =
(√

2 cos2 θ − cos θ sin θ − √
2 sin2 θ

) 2m2
π

3F4
π

μπ

+ 1

60F4
π

[
− 10
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π cos4 θ + 8
√
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π cos3 θ sin θ + 2
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2 sin2 θ
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5 sin2 θ − 4
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+ cos θ sin θ

(
13m2
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η′ + 32m2
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π − 25s

+10m2
π sin2 θ − 25

(
m2

η + m2
η′ + 2m2

π − s − t
)

− 25t

)]
μK ,

(A.6)

where

μP = − m2
P

16π2 log
m2

P

μ2 . (A.7)

Appendix B: ππ scattering within one-loop U(3) RχT

The S- and D-wave of the ππ scattering, t00(s)(2)+Res+Loop

and t02(s)(2)+Res+Loop entering Eq. (54), are obtained
through (omitting the superscripts associated to the pertur-
bative expansion)

t I Jππ (s) = 1

32π

1

s − 4m2
π

×
∫ 0

4m2
π−s

dt PJ

(
1 + 2t

s − 4m2
π

)
T I

ππ (s, t, u).

(B.8)

For the case that concerns us I = 0 and so the corresponding
isospin amplitude reads

T 0
ππ (s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s), (B.9)

where

A(s, t, u) = s − m2
π
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− 2
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(B.10)

Appendix C: πη scattering within one-loop U(3) RχT

The corresponding I = 1 S-wave of the πη-scattering
t10
πη(t)

(2)+Res+Loop+� entering Eq. (61) is given by (omitting
the superscripts associated to the perturbative expansion)

t10
πη(s) = s

16π

1

λ(s,m2
η,m

2
π )

×
∫ 0

− λ(s,m2
η,m2

π )

s

dsP0
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2
π )

)

T 1
πη(s, t, u),

(C.11)

with the πη scattering amplitude given by

T 1
πη(s, t, u) = T (2)

πη + TRes
πη + T Loop

πη + TΛ
πη + Tmixing

πη ,

(C.12)

where
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π ) + 2c2
d (s − m2

η − m2
π )2

M2
a − s
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+ 1

M2
a − u

(
8c2

mm
4
π + 8cdcmm

2
π (m2

η + m2
π − s − t)

+2c2
d (s + t − m2

η − m2
π )2

)}

+ 2

9F4
π (M2

S8
− t)

[
2cm

(
cos2 θ(8m2

K − 5m2
π )

+2
√

2 cos θ sin θ(4m2
K − m2

π ) + 4 sin2 θ(m2
K − m2

π )
)

−3cd cos θ(cos θ + 2
√

2 sin θ)(2m2
η − t)

]

×
(

2cmm
2
π + cd (t − 2m2

π )
)

+ 4

3F4
π (M2

S1
− t)

[
2c̃m

(
cos2 θ(4m2

K − m2
π )

+4
√

2 cos θ sin θ(m2
K − m2

π ) + sin2 θ(2m2
K + m2

π )
)

−2c̃d (cos2 θ + sin2 θ)(2m2
η − t)

](
2c̃mm

2
π + c̃d (t − 2m2

π )
)
,

(C.14)

and

TΛ
πη = 2m2

πΛ2

3F2
π

sin θ
(

2 sin θ − √
2 cos θ

)
. (C.15)

The πη scattering loop contribution, T Loop
πη in Eq. (C.12), is

small and its expression it is not shown due to its length
but rather can be provided by the authors upon request. The
Tmixing

πη contribution is also tiny and we therefore refrain to
show it.
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