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Abstract We explore the possibility that both the suppres-
sion of the � = 2 multipole moment of the power spectrum
of cosmic microwave background temperature fluctuations
and the possible dip for � = 10–30 can be explained as well
as a possible new dip for � ≈ 60 as the result of the res-
onant creation of sequential excitations of a fermionic (or
bosonic) closed superstring that couples to the inflaton field.
We consider a D = 26 closed bosonic string with one toroidal
compact dimension as an illustration of how string excita-
tions might imprint themselves on the CMB. We analyze the
existence of successive momentum states, winding states or
oscillations on the string as the source of the three possible
dips in the power spectrum. Although the evidence of these
dips are of marginal statistical significance, this might consti-
tute the first observational evidence of successive superstring
excitations in Nature.

1 Introduction

It is generally accepted that the energy scale of superstrings
is so high that it is impossible to ever observe a superstring
in the laboratory. There is, however, one epoch in which the
energy scale of superstrings was obtainable in Nature. That
is in the realm of the early moments of trans-Plankian [1]
chaotic inflation out of the string theory landscape.

There have been a number of papers exploring the possi-
ble impact of string theory on the cosmic microwave back-

a e-mail: mayukh.raj@saha.ac.in
b e-mail: gmathews@nd.edu
c e-mail: ichiki.kiyotomo@c.mbox.nagoya-u.ac.jp
d e-mail: kajino@nao.ac.jp

ground [2–10]. This paper explores the possibility that a spe-
cific sequence of super-string excitations may have made
itself known via its coupling to the inflaton field of infla-
tion. This may have left an imprint of “dips” [10] in the T T
and EE power spectra of the cosmic microwave background.
The identification of this particle as a superstring is possible
because there may be evidence for sequential oscillator states
of the same superstring that appear on different scales of the
sky. Nevertheless, the point of this paper cannot possibly be
to provide the final formulation of a string theoretic expla-
nation for deviations in the CMB power at low multipoles
within a model that is fully realistic as a particle physics
model. The aim of this paper is rather to point out a poten-
tially interesting cosmology that may have an implication
in a deeper string theory. Our goal is to provide a proof-of-
principle within a model that has most of the relevant coarse
features or a realistic string theory in hopes that this could
inspire further investigation.

The primordial power spectrum is believed to derive from
quantum fluctuations generated during the inflationary epoch
[12,13]. The various observed power spectra of the cos-
mic microwave background (CMB) are then modified by the
dynamics of the cosmic radiation and matter fluids as vari-
ous scales re-enter the horizon along with effects from the
transport of photons from the epoch of last scattering to the
present time. Indeed, the Planck data [14,15] have provided
the highest resolution yet available in the determination CMB
power spectra. Although the TT primordial power spectrum
is well fit with a simple tilted power law [15], there remain
at least two interesting features that may suggest deviations
from the simplest inflation paradigm.

One such feature is the well known suppression of the
� = 2 moment of the CMB power spectrum observed both
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by Planck [14] and by the Wilkinson Microwave Anisotropy
Probe (WMAP) [16]. There is also a feature of marginal sta-
tistical significance [15] in the observed power spectrum of
both Planck and WMAP near multipoles � = 10–30. Both of
these deviations occur in an interesting region in the CMB
power spectrum because they correspond to angular scales
that were not yet in causal contact when the CMB photons
were emitted. Hence, the observed power spectra are close
to the true primordial power spectrum for these features.

In the Planck inflation parameters paper [15], however,
the deviation from a simple power law in the range � = 10–
30 was deduced to be of weak statistical significance due to
the large cosmic variance at low �. In particular, a range of
models was considered from the minimal case of a kinetic
energy dominated phase preceding a short inflationary stage
(with just one extra parameter), to a model with a step-like
feature in the inflation generating potential and in the sound
speed (with five extra parameters). These modifications led
to improved fits of up to Δχ2 = 12. However, neither the
Bayesian evidence nor a frequentist simulation-based anal-
ysis showed any statistically significant preference over a
simple power law.

Nevertheless, a number of mechanisms have been pro-
posed [17] to deal with the possible suppression of the power
spectrum on large scales and low multipoles. In addition
to being an artifact of cosmic variance [15,18], large-scale
power suppression could arise from changes in the effec-
tive inflation-generating potential [19], differing initial con-
ditions at the beginning of inflation [10,20,21,24–29], the
ISW effect [30], effects of spatial curvature [31], non-trivial
topology [32], geometry [33,34], a violation of statistical
anisotropies [35], effects of a cosmological-constant type of
dark energy during inflation [36], the bounce due to a con-
tracting phase to inflation [37,38], the production of primor-
dial micro black-holes [39], hemispherical anisotropy and
non-gaussianity [40,41], the scattering of the inflationary
trajectory in multiple field inflation by a hidden feature in
the isocurvature direction [42], brane symmetry breaking in
string theory [43,44], quantum entanglement in the M-theory
landscape [45], or loop quantum cosmology [46], etc.

In a previous work [10], we considered another possibility,
i.e. that the suppression of the power spectrum in the range
� = 10–30 in particular could be due to the resonant creation
[48,49] of Planck-scale fermions that couple to the inflaton
field.

The present paper is an extension of that work. Here, we
propose that both the suppression of the � = 2 moment and
the suppression of the power spectrum in the range � = 10–
30 could be explained from the resonant coupling to succes-
sive excitations of a single closed fermionic or bosonic super-
string. Indeed, both the apparent amplitude and the location
of these features arise naturally in this picture. There is also
another possible string excitation for � ≈ 60.

This result is significant in that accessing the mass scales
of superstrings is impossible in the laboratory. Indeed, the
only place in Nature where such scales exist is during the
first instants of cosmic expansion in the inflationary epoch.
Here we examine the possibility that, of the myriads of string
excitations present in the birth of the universe out of the M-
theory landscape, it may be that one string serendipitously
made its presence known via a natural coupling to the inflaton
field during the ∼ 9 e-folds visible on the sky.

We emphasize, however, that the existence of such fea-
tures in the CMB power spectrum from string theory is not
unique. In [43,44] the suppression of the � = 2 and the dip
for � = 10–30 were simultaneously fit in a string-theory
brane symmetry breaking mechanism. In this case, how-
ever, the source of the features is due to the nature of the
inflation-generating potential in string theory. This mecha-
nism splits boson and fermion excitations, leaving behind
an exponential potential that is too steep for the inflaton to
emerge from the initial singularity while descending it. As a
result, the scalar field generically “bounces against an expo-
nential wall.” Just as in [19], this steepening potential then
introduces an infrared depression and a pre-inflationary break
in the power spectrum of scalar perturbations, reproducing
the observed feature.

In the present work, however, rather than to address
the implications for the inflation-generating potential, we
consider the possibility of the resonant creation of closed
fermionic (or bosonic) superstrings with sequential excita-
tions. We also note that there may be a third marginally
observable dip in the CMB power spectrum near � ≈ 60.
Our goal is to demonstrate a proof or principle that it may be
possible to identify string-like features in the CMB. The goal
here cannot be to provide the final formulation of a string the-
oretic explanation for deviations in the CMB power spectrum
that is a fully realistic particle physics model. This paper aims
at cosmology not particle physics. Hence we utilize a simple
model that has some of the relevant coarse features of string
theory.

2 Resonant particle production during inflation

The details of the resonant particle creation paradigm during
inflation have been explained in Refs. [10,48,49]. Indeed, the
idea was originally introduced [59] as a means for reheating
after inflation. Since Ref. [48], subsequent work [60–63] has
elaborated on the basic scheme into a model with coupling
between two scalar fields. Here, we summarize the essential
features of a single fermion field coupled to the inflaton as a
means to clarify the physics of the possible dips in the CMB
power spectrum.

In this minimal extension from the basic picture, the infla-
ton φ is postulated to couple to particles whose mass is of
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order the inflaton field value. These particles are then res-
onantly produced as the field obtains a critical value dur-
ing inflation. If even a small fraction of the inflaton field is
affected in this way, it can produce an observable feature in
the primordial power spectrum. In particular, there can be
either an excess in the power spectrum as noted in [48,49],
or a dip in the power spectrum as described in Ref. [10].
Such a dip offers important new clues to the trans-Planckian
physics of the early universe.

In the simplest slow roll approximation [11–13], the gen-
eration of primordial density perturbations of amplitude,
δH (k) when crossing the Hubble radius is just,

δH (k) ≈ H2

5πφ̇
, (1)

where H is the expansion rate, and φ̇ is the rate of change of
the inflaton field when the comoving wave number k crosses
the Hubble radius during inflation. The resonant particle pro-
duction could, however, affect the inflaton field such that the
conjugate momentum φ̇ is altered. This could cause either an
increase or a diminution in δH (k) (the primordial power spec-
trum) for those wave numbers which exit the horizon during
the resonant particle production epoch. In particular, when φ̇

is accelerated due to particle production, it may deviate from
the slow-roll condition. In [48], however, this correction was
analyzed and found to be << 20%. Hence, for our purposes
we ignore this correction.

Here as in [10,48,49], the effect of the resonant fermionic
particle production neglects the non-adiabatic effects on the
modes outside of the horizon. This leads to a dip-like struc-
ture in the primordial power spectrum. We caution, how-
ever, that in Ref. in [50] non-adiabatic effects on the modes
outside the horizon in the case of bosonic particle produc-
tion were considered. They deduced that the bosonic primor-
dial power spectrum is modified into a step-like structure
rather than a bump-like structure. This would slightly mod-
ify the fit parameters. For our purposes, however, we illustrate
fermionic resonant particle production, but keep in mind that
either a fermion or boson could produce the cosmological
effects of interest here.

Hence, as in [10] we write the total Lagrangian density
including the inflaton scalar field φ, a Dirac fermion field,
and the Yukawa interaction term as simply,

Ltot = 1

2
∂μφ∂μφ − V (φ) + iψ̄∂μγ μψ − mψ̄ψ

+Nλφψ̄ψ. (2)

For this Lagrangian, it is obvious that the effective fermion
mass is:

M(φ) = m − Nλφ. (3)

this vanishes for a critical value of the inflaton field, φ∗ =
m/Nλ. Resonant fermion production will then occur in a
narrow range of the inflaton field amplitude around φ = φ∗.

As in Refs. [10,48,49] we label the epoch at which par-
ticles are created by an asterisk. So, the cosmic scale fac-
tor is labeled a∗ at the time t∗ at which resonant particle
production occurs. Considering a small interval around this
epoch, one can treat H = H∗ as approximately constant
(slow roll inflation). The number density n of particles can
be taken [10,48,49] as zero before t∗ and afterwards as
n = n∗[a∗/a(t)]3. The fermion vacuum expectation value
can then be written,

〈ψ̄ψ〉 = n∗Θ(t − t∗) exp [−3H∗(t − t∗)]. (4)

where Θ is a step function.
Then following the derivation in [48,49], we can write the

modified equation of motion for the scalar field coupled to
ψ :

φ̈ + 3H φ̇ = −V ′(φ) + Nλ〈ψ̄ψ〉, (5)

where V ′(φ) = dV/dφ. The solution to this differential
equation after particle creation (t > t∗) is then similar to
that derived in Refs. [48,49] but with a sign change for the
coupling term, i.e.

φ̇(t > t∗) = φ̇∗ exp [−3H(t − t∗)]
−V ′(φ)∗

3H∗
[
1 − exp [−3H(t − t∗)]

]

+Nλn∗(t − t∗) exp [−3H∗(t − t∗)]. (6)

The physical interpretation here is that the rate of change of
the amplitude of the scalar field rapidly increases due to the
coupling to particles created at the resonance φ = φ∗.

Then, using Eq. (1) for the fluctuation as it exits the hori-
zon, and constant H ≈ H∗, one obtains the perturbation in
the primordial power spectrum as it exits the horizon:

δH = [δH (a)]Nλ=0

1 + Θ(a − a∗)(Nλn∗/|φ̇∗|H∗)(a∗/a)3 ln (a/a∗)
,

(7)

where Θ(a − a∗) is the Heaviside step function. It is clear
in Eq. (7) that the power in the fluctuation of the inflaton
field will abruptly diminish when the universe grows to some
critical scale factor a∗ at which time particles are resonantly
created.

Using k∗/k = a∗/a, then the perturbation spectrum
Eq. (7) can be reduced [49] to a simple two-parameter func-
tion.

δH (k) = [δH (a)]Nλ=0

1 + Θ(k − k∗)A(k∗/k)3 ln (k/k∗)
. (8)

where the amplitude A and characteristic wave number k∗ can
be related to the observed power spectrum from the approx-
imate relation:
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k∗ ≈ �∗
rlss

, (9)

where rlss is the comoving distance to the last scattering
surface, taken here to be 13.8 Gpc [14]. For each resonance
the values of A and k∗ determined from the CMB power
spectrum relate to the inflaton coupling λ and fermion masses
m via Eqs. (7) and (8).

A = |φ̇∗|−1Nλn∗H−1∗ . (10)

The connection between resonant particle creation and
the CMB derives from the usual expansion in spherical har-
monics, ΔT/T = ∑

l
∑

m almYlm(θ, φ) (2 ≤ l < ∞ and
−l ≤ m ≤ l). The anisotropies are then described by the
angular power spectrum, Cl = 〈|alm |2〉, as a function of
multipole number l. One then merely requires the conversion
from perturbation spectrum δH (k) to angular power spectrum
Cl . This is easily accomplished using the CAMB code [65].
When converting to the angular power spectrum, the ampli-
tude of the narrow particle creation feature in δH (k) is spread
over many values of �. Hence, the particle creation features
look like broad dips in the power spectrum.

3 Toroidal compactification and the string mass
spectrum

As a minimal step toward an analysis of trans-plankian strings
coupled to inflation we consider the simplest compactified
superstring. The mass spectrum for the simplest case of a
closed bosonic string in 26 dimensions in which one of them
is compactified into a circle [22,23] is:

M2 = n2

R2 + w2R2

α′2 + 2

α′ (N + Ñ − 2). (11)

Here, the integer n labels the compact momentum eigenval-
ues. R is the radius of the compactified dimension, w is the
winding number describing the number of times the string
wraps around the compactified dimension so that the second
term gives the potential energy of the winding string. For the
last term Nosc ≡ (N+ Ñ−2) counts the leftward moving and
rightward oscillators along the dimensions of the string and
the zero point motion, where the oscillator number operators
N are

N =
∑

(α
μ
−nαnμ + α−nαn). (12)

Ñ =
∑

(−α̃
μ
−nα̃nμ + α̃−nα̃n). (13)

with,

N − Ñ + nw = 0, (14)

Note that for the α
μ
n and α̃

μ
n , the index μ is over the first 25-

dimensions, while αn and α̃n refer to the compactified 25th
dimension.

Equation (11) is a manifestation of the T-duality in string
theory whereby for small compact dimensions string excita-
tions are dominated by the momentum states of the compact
dimension, while for large dimensions the winding states
of the string become massive. Moreover, the R → 0 and
R → ∞ states are physically invariant in the mass spec-
trum, Eq. (11). That is, these states are invariant under the
coordinate transformation R → R′ = α′/R and n ↔ w.
Hence, in what follows states with different n could either
refer to momentum states or different winding numbers on
the superstring.

Although Eq. (11) is for a bosonic string, we note that
fermions are constructed from a combination of right going
and left going modes on the string while imposing the appro-
priate (NS-R, R-NS) boundary conditions on a bosonic string.
Then, to obtain closed fermionic strings, the theory needs to
be realized in the SU(n) or SO(2n) group. We take n = 5
M-theory. However, the same mass formula, Eq. (11) is valid
for an arbitrary compactification of fermionic strings as well
as bosonic strings. Although this is a very crude string theory,
we identify two cases of cosmological interest.

In the limit of a fixed winding number and/or momentum
state the string excitations can be identified with oscillations
on the string. Then one can approximately write:

M2 ≈
(
Nosc + ξ

α′

)
, Case I. (15)

with

ξ ≡ α′
(
n

R

)2

. (16)

The second case is that in which number of oscillations
is fixed and N − Ñ = 0. Then the spectrum of momentum
states on the string will be approximately

M2 ≈
(
n2 + ξ

R2

)
, Case II. (17)

with

ξ = 2R2

α′ (N + Ñ − 2) (18)

For special circumstance of the ground state one has N =
−Ñ = 1.

In principle, one could distinguish between these two
cases if one could accurately determine the mass spectrum.
In the case of small R and small ξ , the mass spectrum of
momentum states should be regularly spaced, M ∝ n. On
the other hand, in the case of large R, the spacing of string
mass states should be proportional to the square root of the
number of oscillations M ∝ √

Nosc. Unfortunately, as noted
below, the uncertainty in the mass spectrum is too large to
distinguish which of these spectra best characterizes the devi-
ations in the primordial power spectrum.
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3.1 String excitations and the CMB

In our previous paper [10] we related the mass of the reso-
nant particle to the scale k∗ and the number of e-folds N∗
of inflation after the present associated scale left the hori-
zon [12]. This follows for any general monomial inflation
effective potential. That is, the resonance condition relates
the mass m to φ∗ via,

m = Nλφ∗, (19)

However, for a general monomial potential,

V (φ) = Λφm
4
pl

(
φ

mpl

)α

, (20)

there is an analytic solution for φ∗ for a given scale in terms
of the number of e-folds of inflation N∗

φ∗ =
√

2αN∗mpl , (21)

whereN∗ is the number of e-folds of inflation corresponding
to a given scale k∗,

N∗ = 1

m2
pl

∫ φ∗

φend

V (φ)

V ′(φ)
dφ = N − ln (k∗/kH ), (22)

where φend is the value of the scalar field at the end of infla-
tion, N is the total number of e-folds of inflation and the
Hubble scale is kH = h/2997.3 = 0.000227 Mpc−1 (for
h = 0.68) [14].

So, for the compactified superstrings we can write

M = Nλφ∗ = Nλ
√

2α
√
N − ln (k∗/kH ) mpl , (23)

and we can write the mass corresponding to a given multipole
on the sky

M(�∗)2 ∝ (N − ln (k∗/kH )). (24)

Next, we make the simplifying assumption that the res-
onant states in the spectrum differ only in the number of
excitations on the string. Then the coupling to the inflaton
field λ is the same, along with the number of degenerate
fermion states N at a given mass. We also keep the same
normalization of the mass scale α′.

Then if we take N = 50, we can write for the ratio of the
quadrupole (�∗ = 2) suppression resonance to the �∗ ≈ 20
resonance:

M2(�∗ = 2)

M2(�∗ = 20)
≡ R+1 ≈ N − ln (k∗(n + 1)/kH )

N − ln (k∗(n)/kH )
. (25)

Similarly for the higher multipoles we can define:

M2(�∗ = 20)

M2(�∗ = 60)
≡ R−1 ≈ N − ln (k∗(n)/kH )

N − ln (k∗(n − 1)/kH )
. (26)

Hence, from fits to the CMB, one can deduce the ratio of
excited states on the superstring in this simple model.

0 10 20 30 40 50 60 70
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l(l
+
1)
C
lTT
/2

π

Fig. 1 The fit (red line) to � ≈ 2, � ≈ 20 and � ≈ 60 suppression of
the TT CMB power spectrum as described in the text. Points with error
bars are from the Planck Data Release [14]. The green line shows the
best standard ΛCDM power-law fit to the Planck CMB power spectrum

4 χ2 Fit to the CMB

We have made a straightforward χ2 minimization to fit the TT
CMBPlanckpower spectrum [14] for the �∗ = 2 and �∗ ≈ 20
resonances. We also searched for a possible third dip in the
spectrum. For simplicity and speed we fixed all cosmological
parameters at the values deduced by Planck [14] and only
searched over a single amplitude. We note, however, that
this straightforward fit does not take into account the off-
diagonal � − � terms. This approximation is reasonable in
the TT case where these terms can be negligible (however,
they are not exactly zero because of the the presence of a
Galactic mask). On the other hand, in the polarization case
(EE power spectrum) those terms are expected to be much
more important. This is addressed in the following section
where we make a separate Markov Chain Monte-Carlo fit to
the combined TT, TE, and EE power spectrum in which the
full correlation matrix is incorporated.

From this simple χ2 fit we deduce the following resonance
parameters:

� ≈ 2, A = 1.7 ± 1.5, k∗(n + 1) = 0.0004 ± 0.0003 h Mpc−1

� ≈ 20, A = 1.7 ± 1.5, k∗(n) = 0.0015 ± 0.0005 h Mpc−1

� ≈ 60, A = 1.7 ± 1.5, k∗(n − 1) = 0.005 ± 0.004 h Mpc−1

Figure 1 illustrates the best fit to the TT CMB power spec-
trum that includes both the � ≈ 2, � ≈ 20 and � ≈ 60
suppression of the CMB.

It is obvious from Fig. 1 that that the evidence for this
fit is statistically weak due to the large errors in the data.
Indeed, the total reduction in χ2 is Δχ2 = −9 for a fit with
an addition of 3 degrees of freedom, i.e. the amplitude A and
two independent values for k∗.
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Fig. 2 Same as Fig. 1 but in this case the lines are the derived EECMB
power spectrum based upon the fits to the TT power spectrum shown in
Fig. 1

Figure 2 similarly illustrates the derived EE CMB power
spectrum based upon the fits to theTT power spectrum shown
in Fig. 1. Although this fit is not optimized, and the uncer-
tainty in the data is large, there is a reduction in total χ2

by Δχ2 = −5 for the line with resonant superstring cre-
ation. Hence, the EE spectrum is at least consistent with this
paradigm and in fact slightly favors it.

Under the assumption that the model errors are indepen-
dent and obey a normal distribution, then the Bayesian infor-
mation criterion (BIC) can be written [10] in terms of Δχ2 as
ΔBIC≈ Δχ2 + (p · ln n), where p is the number of parame-
ters in the test and n is the number of points in the observed
data. When selecting the best model, the lowest BIC is pre-
ferred since the BIC is an increasing function of both the
error variance and the number of new degrees of freedom p.
In other words, the unexplained variation in the dependent
variable and the number of explanatory variables increase the
value of BIC. Hence, a negative ΔBIC implies either fewer
explanatory variables, a better fit, or both. For the ≈ 140 data
points in the range of the fits of Fig. 1 plus 2, the inferred total
improvement is Δχ2 = −14 with the introduction of 3 new
parameters. This corresponds to a ΔBIC= +0.8. Generally,
ΔBIC> 2 is required to be considered evidence against a par-
ticular model. Hence, one must conclude that although the fit
including the superstring resonances produces an improve-
ment in χ2, it is statistically equivalent to the simple power-
law fit. Nevertheless, it is worthwhile to examine the possible
physical meaning of the deduced parameters. Based upon our
fit to the three possible resonances in the CMB, we deduce
from Eqs. (25) and (26) the following ratio of excited states:
M2(�∗=2)

M2(�=20)
≡ R+1 = 1.024 ± 0.050. Surprisingly, we also

obtain M2(�∗=20)

M2(�=60)
≡ R−1 = 1.024±0.030. Hence we deduce

that there is a regular spacing in the mass spectrum of these
three states.

As an illustration of how the results of the χ2 fit might
relate to string parameters let us consider the simplest possi-
ble example. For Case I simple oscillations on a string in the
limit of large R then one simply has

R+1 = (Nosc + 1)

Nosc
. (27)

From which one could deduce

Nosc = 1

R+1 − 1
. (28)

For R+1 = 1.024 ± 0.050 one could then deduce Nosc =
42+∞

−28 for the number of oscillations on the compactified
fermionic string. Obviously, the uncertainty is quite large.
Nevertheless, this illustrates the possibility to identify the
string excitation.

One can also place some constraint on the mass and cou-
pling constant. The amplitude A can be related directly to the
coupling constant λ using the following approximation for
the particle production Bogoliubov coefficient [48,68–70]

|βk |2 ≈ exp

( −πk2

a2∗λ|φ̇∗|
)

. (29)

Then,

n∗ = 2

π2

∫ ∞

0
dkp k

2
p |βk |2 = Nλ3/2

2π3 |φ̇∗|3/2 . (30)

This gives,

A = Nλ5/2

2π3

√
|φ̇∗|
H∗

(31)

≈ Nλ5/2

2
√

5π7/2

1√
δH (k∗)|λ=0

. (32)

where we have used the usual approximation for the primor-
dial slow roll inflationary spectrum [12,13].

Now, given that the CMB normalization requires that
δH (k)|λ=0 ∼ 10−5, we have

A ∼ 1.3Nλ5/2. (33)

Hence, for the maximum likelihood value of A ∼ 1.7 ± 1.5,
we have

λ ≈ (1.1 ± 1.0)

N 2/5
. (34)

The fermion particle mass m can then be deduced from the
resonance condition, m = Nλφ∗.

From Eq. (34) then we have m ≈ φ∗/λ3/2. For the � ≈ 20
(k∗ = 0.0015 ± 0.0005 h Mpc−1) resonance, and kH =
a0H0 = (h/2997.9) Mpc−1 ∼ 0.0002, we have N −N∗ =
ln(kH/k∗) < 1. Typically one expects N (k∗) ∼ N ∼
50 − 60.

We can then apply the resonance condition [Eq. (19)] to
deduce the approximate range of masses for the string exci-
tations. Monomial potentials [Eq. (20)] with α = 2/3 or
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α = 1 correspond to the lowest order approximation to the
string theory axion monodromy inflation potential [76,77].
Moreover, the limits on the tensor to scalar ratio from the
Planck analysis [15] are more consistent with α = 2/3 or 1.
If we fix the value of A = 1.7, then from the range of 50-60
e-folds we would have φ∗ = (8 − 9) mpl for α = 2/3 or
φ∗ = (10 − 11) mpl for α = 1. Hence, we have roughly the
constraint,

m ∼ (8 − 11)
mpl

λ3/2 . (35)

We note, however, that if the uncertainty in the normalization
parameter A is taken into account, this range increases. This
illustration is simply meant to demonstrate that the mass of
the string excitation can be determined once the coupling
constant is known.

To find the coupling constant via Eq. (34), one must know
the degeneracy of the string states. However, the degener-
acy of string states can be enormous, and is dependent upon
a detailed model which is beyond the scope of this paper.
For our purpose it is sufficient that the degeneracy is large,
implying a small coupling consistent with our application of
this simple resonant coupling model.

5 MCMC fit to the CMB

The statistical significance of the χ2 fit is marginal. How-
ever, as demonstrated above it could indicate some physical
insight into the nature of the stringy landscape out of which
the universe inflated. As a next step in the analysis we also
performed an independent multi-dimensional Markov Chain
Monte Carlo (MCMC) fit to the Planck 2015 [15] TT, TE,
EE power spectra [15]. These fits are based upon the the pub-
licly available CosmoMC [47]. This analysis complements
the straight forward analysis carried out above and leads to
a somewhat different possible physical implication.

We utilized the Planck results [15] along with the
results of the χ2 analysis as priors. We then sample
over the standard cosmological parameters (Ωbh2,Ωch2,

τ, ns, θ, log(1010As)) where, Ωbh2 and Ωbh2 (where h is
related to the present Hubble parameter) represent baryon
and dark matter densities respectively, while ns and τ

are the scalar spectral index and the reionization optical
depth respectively. Also, the other two parameters, θ is the
angle subtended by the sound horizon at recombination and
log(1010As) is the logarithmic amplitude of the primordial
perturbations. We also sample over the resonance parameters,
(p1, p2, q1, q2, r1, r2) where p1, q1, r1 are the amplitudes of
the resonances and p2, q2, r2 are the respective resonance
locations l∗. We considered cases both with the amplitude of
the resonance dips Ai = p1, q1, r1 fixed at a common value

Fig. 3 Contours for the 68% and 95% confidence limits for the reso-
nance parameters A∗ = p1 = q1 = r1 and multipoles �∗ = p2, q2, r2
for the three dips in the CMB power spectrum

and with the amplitudes allowed to vary from one resonance
to the next.

Figure 3 illustrates contours of marginalized probability
densities for the cosmological and resonance parameters for
the case in which the 3 amplitudes are at a fixed single value
A = p1 = q1 = r1 for the three resonances at l∗ = p2, q2,
and r2 respectively. This plot confirms that there are no sig-
nificant correlations among parameters except for the famil-
iar one between Ns and Ωch2, and a very slight correlation
between A and ns . There is also a striking result compared
to the χ2 analysis that the amplitude A for the resultant fit
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is diminished by an order of magnitude to A ≤ 0.16. The
reason for this can be traced to to the fact that statistical
power around � = 60 is much larger than at � = 20 or
� = 2. Hence, if we impose a common amplitude A, then
data around � = 60 do not allow for a large amplitude.

Hence, it is illustrative to consider the case in which all
three amplitudes are allowed to vary. Figure 4 shows contours
of marginalized probability densities for fits to the TT power
spectrum for the case in which the 3 amplitudes, Ai = p1,
q1, and r1 are allowed to vary independently for the three
resonances at l∗ = p2, q2, and r2, respectively. Similarly,
Fig. 5 shows the likelihood functions both for the resonances
and the cosmological parameters for this case.

Figures 4 and 5 show that unlike straightforward χ2 anal-
ysis, at best only an upper limit to the amplitude for the
� = 60 resonance can be estimated. The best-fit values of the
multipoles (�) representing the three dips are respectively
� = 1.7 ± 4, 16 ± 3 and 60 ± 4. However, the amplitude
for the 3 resonances differ significantly, i.e. p1 = 1.7 ± 4,
q1 = 1.0 ± 6, and r1 ≤ 0.1.

If we take these amplitudes seriously, then there could
be a physical interpretation. Since A ∝ Nλ2/3, where N is
the degeneracy, then we might be seeing a progression of
the degeneracy of the string (for λ fixed). For example, If
N ∝ Nosc from Eq. 11 where Nosc is the number of oscilla-
tions and the the � = 60 represents a zero point with N = 0
then the amplitude for the � = 60 resonance would be small
while the resonance with � ≈ 20 would have, Nosc = 1,
and the resonance with � ≈ 2. would have, Nosc = 2. This
implies that the ratio of the amplitude for the � ≈ 2 resonance
to the � ≈ 20 should be about A(� = 2)/A(� = 20) = 2.
This is the progression we see in the MCMC analysis. Obvi-
ously, there is much uncertainty remaining in the analysis
and the interpretation. Our goal here is only to illustrate the
possibility to uncover the physical properties of a superstring
resonantly coupled with the inflaton during inflation.

6 Conclusion

We have analyzed dips in the Planck [15] CMB power spec-
trum at � ≈ 2, 20 and � ≈ 60 as possible evidence for
successive excitations of a superstring resonantly coupled
with the inflaton during inflation. In a simple χ2 analysis
the best fit to these features implies dips in the primordial
power spectrum with an amplitude of A ≈ 1.7 ± 1.5 cor-
responding to ∼ 40 oscillations on the string. An MCMC
analysis, however, prefers a fit with significant changes in
the amplitude from one resonance to the next. In a simplified
string model this is suggestive of what could be expected
for the first few oscillation states on a superstring. Although
of marginal statistical significance, we suggested that these
results are consistent with a simplified model for the res-

Fig. 4 Contours for the 68% and 95% confidence limits for the reso-
nance parameters A = p1, q1, r1 and multipole �1,2,3 ≡ p2, q2, r2 for
the three dips in the CMB power spectrum

onant creation of successive excitations on a toroidal com-
pactified superstring during inflation. For string-theory moti-
vated axion monodromy inflation potentials consistent with
the Planck tensor-to-scalar ratio, these features would cor-
respond to the resonant creation of successive superstring
momentum (or winding) states or oscillations with a large
trans-Plankian mass.

Obviously this simple phenomenological analysis should
be done in the context of a more realistic string theory. Also,
there is a need for more precise determinations of deviations
of the CMB power spectrum for particularly in the range of
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Fig. 5 Marginalized likelihood functions of the resonance parameters
and some cosmological observables as labeled. The resonance param-
eters are the same as in Fig. 3

� = 2 − 100, although this may ultimately be limited by the
cosmic variance. Nevertheless, in spite of these caveats, we
conclude that if the present analysis is correct, this may be the
first hints at observational evidence of successive excitations
of a superstring present at the Planck scale.

Indeed, one expects a plethora of superstring excitations to
be present when the universe exited from the M-theory land-
scape. Perhaps, the presently observed CMB power spectrum
contains the first suggestion that one of those many ambient
superstrings may have coupled to the inflaton field during the

∼9 e-folds of inflation visible on the horizon, thereby leaving
behind a relic signature of its existence.
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