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Abstract We consider a generalized uncertainty principle
(GUP) corresponding to a deformation of the fundamen-
tal commutator obtained by adding a term quadratic in the
momentum. From this GUP, we compute corrections to the
Unruh effect and related Unruh temperature, by first follow-
ing a heuristic derivation, and then a more standard field
theoretic calculation. In the limit of small deformations, we
recover the thermal character of the Unruh radiation. Cor-
rections to the temperature at first order in the deforming
parameter are compared for the two approaches, and found
to be in agreement as for the dependence on the cubic power
of the acceleration of the reference frame. The dependence
of the shifted temperature on the frequency is also pointed
out and discussed.

1 Introduction

In the last 30 years, many studies have converged on the idea
that the Heisenberg uncertainty principle (HUP) [1] should be
modified when gravitation is taken into account. In micro-
physics, gravity is usually neglected on the ground of its
weakness, when compared with the other fundamental inter-
actions. However, this argument should not apply when one
wants to address fundamental questions in Nature. In this per-
spective, gravity should be included, especially when we dis-
cuss the formulation of fundamental principles like Heisen-
berg’s principle. And in fact, gravitation has always played a
pivotal role in the generalization of the HUP, from the early
attempts [2-5], to the more recent proposals, like those in
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string theory, loop quantum gravity, deformed special rela-
tivity, non-commutative geometry, and studies of black hole
physics [6-18].

A possible way for this generalization is to reconsider
the well-known classical argument of the Heisenberg micro-
scope [1]. The size §x of the smallest detail of an object,
theoretically detectable with a beam of photons of energy
E, is roughly given by (if we assume the dispersion relation
E=p)

h

ox >~ ,
2FE

ey

so that increasingly large energies are required to explore
decreasingly small details. In its original formulation, Heisen-
berg’s gedanken experiment ignores gravity. Nevertheless,
gedanken experiments involving formation of gravitational
instabilities in high energy scatterings of strings [6-9], or
gedanken experiments taking into account the possible for-
mation, in high energy scatterings, of micro black holes with a
gravitational radius Ry = Rg(E) proportional to the (centre-
of-mass) scattering energy E (see Ref. [15]), suggest that the
usual uncertainty relation should be modified as

h
Sx =~ ﬁJrﬁRs(E), @)

where S is a dimensionless parameter. Recalling that Rg ~
2GNE = ZEI% E /h, we can write

1 'We shall always work with ¢ = 1, but explicitly show the Newton
constant Gn and the Planck constant 7. The Planck length is defined
as £, = GNI/c3 = 10735 m, the Planck energy as Elp =hc/2,
and the Planck mass as m, = &,/c? = 1078 kg, so that £, = 2Gn m,
and 2 £, mp = h. The Boltzmann constant kg will be shown explicitly,
unless otherwise stated.
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sx~ T yopgrE (Mg E 3)
T 2E vn = P\E TP, )

This kind of modification of the uncertainty principle was
also proposed in Ref. [16].

The dimensionless deforming parameter 8 is not (in prin-
ciple) fixed by the theory, although it is generally assumed to
be of order one. This happens, in particular, in some models
of string theory (see again for instance Refs. [6-9]), and has
been confirmed by an explicit calculation in Ref. [19]. How-
ever, many studies have appeared in literature, with the aim
to set bounds on 8 (see, for instance, Refs. [20-24]).

The relation (3) can be recast in the form of an uncertainty
relation, namely a deformation of the standard HUP, usually
referred to as Generalized Uncertainty Principle (GUP),

h[ (Ap)2j|
AxAp =S| 1+8— ) |- )
2 mp

For mirror-symmetric states (with (p) = 0), the inequality
(4) is equivalent to the commutator

AN 2
[)e,ﬁ]=ih[1+ﬂ<mﬁ> } 3)
p

since Ax Ap > (1/2) |([£, ﬁ])‘. Vice-versa, the commuta-
tor (5) implies the inequality (4) for any state. The GUP is
widely studied in the context of quantum mechanics [25-27],
quantum field theory [28], quantum gravity [29,30], and for
various deformations of the quantization rules [29-31].

The above B-deformed commutator (5) will be the starting
point of the present investigation. In what follows, using (5),
we shall describe the Unruh effect (known also as Fulling—
Davies—Unruh effect [32-34]), thereby calculating correc-
tions to the Unruh temperature to first order in 8. A direct
derivation of the Unruh effect from the HUP has been given
in Ref. [35]. On the other hand, the necessity of this effect
for the internal consistency of QFT has been confirmed by
arguments based both on general covariance [36-39] and
thermodynamic [40]. Moreover, non-trivial modifications to
the Unruh spectrum have been pointed out also, in the GUP
context, in Refs. [41-44], and in different contexts in Refs.
[45,46]. For instance, it has been shown that flavor mix-
ing does spoil the thermal character of the Unruh radiation
[47,48], thus opening new stimulating scenarios.

2 Heuristic derivation of Unruh effect from uncertainty
relations

In this section we derive the Unruh temperature [34] start-
ing directly from the HUP. Simple classical physics relations

@ Springer

will be used together with the quantum principle, following
closely Ref. [35] (see also the recent Ref. [49]). This proce-
dure will then allow us to estimate what kind of corrections
are induced by a GUP.

Let us consider some elementary particles, for example
electrons, kept at rest in an uniformly accelerated frame. The
kinetic energy acquired by each of these particles while the
accelerated frame moves a distance x will be given by

Ey =madx, (6)

where m is the mass of the particle and a the acceleration of
the frame, and therefore of the particle. Now, suppose this
energy is sufficient to create N pairs of the same kind of
particles from the quantum vacuum. Namely, we set

Er ~2Nm, (N

and find that the distance along which each particle must be
accelerated in order to create N pairs is

N
ox ~2 —. 3)
a
The original particles and the pairs created in this way are
localized inside a spatial region of width éx, therefore the
fluctuation in energy of each single particle is
hha

SE >~ ——

Yox AN ©

If we interpret this fluctuation as a classical thermal agitation
of the particles, we can write

3 ha

—kgT ~0F >~ —, 10
2B 4N 10
or
ha
T = . (11)
6 N kg

On comparing with the well-known Unruh temperature [34],

ha
U ks (12)
we can set the arbitrary parameter N and obtain an effective
number of pairs N = /3 >~ 1.
Now we repeat the same argument using the GUP. Upon
replacing Eq. (8) into Eq. (3), and interpreting the energy
fluctuation § E in terms of a classical thermal bath, we find

2N"“ i + B¢
a  3kgT

Pop

13)
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Requiring that the T equals the Unruh temperature (12) for
B — 0 again fixes N = /3 =~ 1, and we finally obtain

27 h kg T 2m,
9B — =zp<

kg T
ks T +98 ).(14)

kg T 2my

This relation can be easily inverted for T = T (a). However,
it is reasonable to assume that 8 kg T /mp ~ B m/m, is very
small for any fundamental particle with m < mp. We can
therefore expand in 8 m/m,, and find

98 tpa® 98 (ke Tu\>
T ~ Tq 1+ ———)=Ty |1+ — .
U(+4 2 u +4 ey

15)

We also notice an interesting physical property suggested
by Eq. (14), that is, by the GUP. In order to maintain the
inverted relation 7 = T (a) physically meaningful (i.e. the
temperature must be a real number), there will be a maximal
value for the acceleration, namely

<
aN3«/3£p’ (16)

and a corresponding maximal value for the Unruh—Davies
temperature,

kg Ty S a7

mp
3VB
These ideas and estimates naturally make contact with those
reported, for example, in Refs. [50,51].

3 Quantization of a massive scalar field in accelerated
frames

In this section we briefly review the quantization of a massive
scalar field for an accelerated observer. This will serve as a
basis for the analysis of Sect. 4, where the deformation of
the algebra discussed above is implemented. For the sake
of simplicity, we will work in 1 + 1-dimensions, using the
Minkowski metric with the conventional signature ds> =
Nuv dx* dx” = dt*> — dx>. In this section we set i = ¢ =
kg = 1, unless otherwise explicitly stated.

3.1 Minkowski space-time

For an inertial observer, the scalar field in the usual plane-
wave representation reads

60 = [ ak [a U0 + o U 0] (18)

where x = {r, x} denotes the set of Minkowski coordi-
nates. The positive frequency plane-waves of momentum k
are given by

Ur(x) = (47 ay) "2 ek xox ), (19)

where w; = v/m? + k2, m being the mass of the field. Within
the framework of canonical quantum field theory (QFT), the
annihilation and creation operators for Minkowski quanta, to
wit a; and a,:, satisfy the standard commutation relation

[ak, a,f,] =5k — k), 20)

with all other commutators vanishing. The ordinary Min-
kowski vacuum is accordingly defined by ay [0)) = O for
all modes k.

As a tool for extending this quantization scheme to an
accelerated observer, let us now introduce the less familiar
Lorentz-boost eigenfunctions [47]. Boost modes are related
to the plane-waves in Eq. (19) by

T x) = / dk p0* (k) Uy (x), 1)
where

1 o + k1722
p?‘;%k):m (wk_k> , (22)

and 0 = £, 0 < £2 < oco. The physical meaning of the
quantum numbers £2 and o will be discussed in the next sec-
tion. In terms of the modes (21), the spectral representation
of the field operator can be written as’

+o00
¢ (x) = / e Z[d};” U5 ® +dy" ﬁ};)*@].
0 o
(23)

It is easy to prove that the two quantum constructions
introduced above are equivalent to each other. For this pur-
pose, let us equate the field-expansions (18) and (23) on a
space-like hypersurface. By using Eq. (21), it follows that

dyg) = / dk 9 (k) ay. (24)

2 Note that, although the plane-wave field expansion in Eq. (18) applies
to the whole of the Minkowski space-time, the representation (23) in
terms of boost-modes does hold only in the Rindler manifold x >
[t|] U x < —|t| (see Fig. 1). A globally well-defined expansion can
be obtained by analytically continuing the modes (21) across the null
asymptotes x = ¢ (see Ref. [52]). For our purposes, however, it is
enough to consider the definition (21) of boost modes.

@ Springer
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Since the operators df(;) are linear combinations of the
Minkowski annihilators a; alone, they also annihilate the
Minkowski vacuum |0,/). Moreover, by exploiting the com-

pleteness and orthonormality of the set of functions { pg)}

(see Ref. [54]), it can be shown that the transformation (24)
is canonical, so that

(4,45 = bp0r 82 - 21, 5)
with all other commutators vanishing. Equations (24) and
(25) allow us to interpret also the d _g’) as annihilation oper-
ators of Minkowski quanta. This implies that the field-
expansions Eqgs. (18) and (23) can be used equivalently
within the framework of canonical quantization in Min-

kowski space-time. For our purposes, in what follows it will
be convenient to employ the latter.

3.2 Rindler space-time

The foregoing discussion applies to inertial observers in
Minkowski space-time. In order to investigate GUP effects
on the Unruh radiation [34], let us now review the Rindler—
Fulling field-quantization in a uniformly accelerating frame
[32]. By introducing the usual Rindler coordinates {1, £}, in
place of {z, x}, we have

t = & sinhn, (26)

x = & coshn, —00 <1, & <00,

and the Minkowski line element takes the well-known form

ds®> = dt* — dx? = > dn® — dg>. (27)
As & and n range from —oo to oo, the Rindler coordinates
cover only two sections of Minkowski space-time, specif-
ically the right wedge Ry = {x|x > |t|} for £ > 0, and
the left wedge R_ = {x|x < —|[t|} for & < O (see Fig. 1).
Since the components of the metric in these coordinates do
not depend on 7, Eq. (27) describes a static spacetime with
Killing vector B = 9,,.

The worldline of a uniformly accelerated (Rindler) observer
with proper acceleration |a| is given by

&(t) = const = al, (28)

where T = n/a is the proper time along the accelerated
trajectory (restoring ¢ # 1, one has &£(7) = ¢*/a, and T =
nc/a; that is, n = at/c is dimensionless). This is a branch
of hyperbola in the (¢, x) plane, whose null asymptotes ¢ =
+x act respectively as future and past event horizons for the
Rindler observer.

Because of the non-trivial structure of Rindler space-time,
the wedges Ry are causally disconnected from each other

@ Springer

Fig. 1 The proper coordinate system of a uniformly accelerated
observer in the Minkowski spacetime. The branch of hyperbola & = a~!
represents the worldline of an observer with proper acceleration a

[53]. The positive frequency solutions of the Klein—-Gordon
equation in Rindler coordinates thus take the form?
ug () = Ng 0(0 &) K[ (m&) e 727, (29)
where §2 is the Rindler frequency with respect to the time
n,4 o = = refers to the right/left wedges Ry and K; o is
the modified Bessel function of the second kind. In this con-
text, we do not need to specify the normalization factor Ng
(for more details, see Ref. [54]). Furthermore, the Heaviside
function 0 (o &) was inserted into Eq. (29) in order to con-
strain the Rindler modes to only one of the two disconnected
wedges R+.

Using Eq. (29), we can now expand the scalar field oper-
ator in the Rindler space-time as follows

400
b0 = [ ae 3 [ g 00+ "]
(30)

where the ladder operators b};) and b_g’ﬁ are assumed to
satisfy the canonical commutation relations

(69687 = 800802 — 20, (1)

3 In what follows, the set of Rindler coordinates {1, &} will be also
denoted by x; therefore, such a symbol will refer to a space-time point,
rather than its representative in a particular coordinate system.

4 Using ¢ # 1 for sake of clarity, the proper frequency  measured by a
Rindler observer is obtained from w T = w(nc/a) = (wc/a)yn = 2 1.
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with all other commutators vanishing. The Rindler vacuum
is accordingly defined by bg)IOR) = 0, for all values of o
and 2.

The connection between the two quantization schemes, for
inertial and accelerated observers, can now be investigated
in detail. Specifically, we compare the field expansions (23)
and (30) on a spacelike hypersurface X lying in the Rindler
manifold Ry. A straightforward calculation leads to the fol-
lowing Bogoliubov transformation [54]

bS) =1+ N1 dS + N(2)'? a7, (32)
where
1

is the Bose—Einstein distribution. Using Eq. (32), we can now
calculate the spectrum of Rindler quanta in the Minkowski
vacuum |Opp),

OmI ST bG) 10M) = N(£2) 8507 8(2 — 27). (34)

It then follows that a uniformly accelerated observer per-
ceives the Minkowski vacuum as a thermal bath of Rindler
quanta with a temperature proportional to the acceleration
(the Unruh effect [34]). Restoring our standard units (¢ = 1,
h # 1, kg # 1), we can in fact write

21 ha$2 how
2n 2 =—af2 = = —,
a kBTU kBTU

(35)

where w = a §2 is the frequency measured by the Rindler
observer and Ty the Unruh temperature (12).

4 GUP and modified Unruh temperature

In the previous section, the Unruh temperature (12) has just
been re-derived within the framework of canonical QFT. At
this stage, one may wonder how such a result gets mod-
ified when starting from the GUP commutator in Eq. (5).
To answer this question, an intermediate step concerning
the effects of GUP on a quantum one-dimensional harmonic
oscillator turns out to be useful. In this context, we note that
the ladder operators A and A' of the deformed algebra for
the one-dimensional harmonic oscillator are linked to £ = £
and p = p' by the usual relations

1
R R
NI T AR
1
A= —— x—1p), 36
—2mha)(mwx lp) (36)

and their inverse relations

A n
x=,/—(A"+ A)
2mw

(37)
. . Imhow §
p=i,/— (A" —A).
2
It is then easy to see that
1= Lo s
[A,A"] = E[x,p] (38)

and, due to the modified commutator (5) between X and p, the
deformed algebra for the one-dimensional harmonic oscilla-
tor should be written as

[A, AT] = L[l —a(ATAT+AA-2ATA)], (39

l—«o
where
5 mhw 40)
o= ,
2 m%

with m and w being the mass and frequency of the harmonic
oscillator, respectively. The modified quantization rules (39)
can be now extended in a natural way to a scalar field in the
plane-wave representation, if we consider that, for a given
momentum k, the energy 7 wy of the scalar field plays the role
of the mass m of the harmonic oscillator. The deformation
parameter « can be then suitably redefined as

2.2
h-wy

2m

a=p

T =2B0w; (41)
p

and the commutator between ladder operators becomes
[Ar, ALl = #[1 —a(Al Al
I B Kok
F A Ay =2 AL A)1S(k — k). (42)

In Sect. 3, we have seen that the scalar field for an iner-
tial observer can be quantized both using plane-waves and
boost-modes (see Eqgs. (18) and (23), respectively). In that
context, the choice between these two representations is just
a matter of convenience, since the corresponding sets of lad-
der operators ay and d g’ ) are related by the canonical trans-
formation (24). With deformed quantization rules, however,
Lorentz invariance is violated and such an equivalence is not
guaranteed. Nevertheless, in the limit of very small deforma-
tion (that is, S p2 < mg), it appears reasonable to assume
the same structure of the modified algebra for the two sets of
operators. According to this argument, we thus conjecture the

@ Springer



728 Page 6 of 8

Eur. Phys. J. C (2018) 78:728

following deformation for the commutator in the boost-mode
representation

[0’ Dgpf]

_ 1 [1

_p©T D) pLot Lo ))] 8o 8(2 — 2)), (43)

@)1 p(=o"t | @) p(=0")
(PSP + DY DY,

where Ds(;) and D_gm_ are the ladder operators in the
deformed algebra and the deforming parameter y is defined
by

h2a? 2
Zm%

=280 a” 2°, (44)

being w = a$2 the Rindler frequency.

Some comments about Eq. (43) are needed. First, in order
to adapt the deformed commutator (42) to the boost operators
D, we have modified ad hoc the definition of the deforming
parameter & by replacing the plane-frequency wy with the
boost-mode frequency w = a 2 [see Eq. (44)]. Furthermore,
the commutator (43) has been multiplied by 8.,/ to ensure
that the ladder operators in the right wedge R are still com-
muting with the corresponding operators in the left wedge
R_. In addition, we symmetrized it with respect to o and
—o, so that

[D(O) D(U )T] [D( o) D( o)t ] (45)

By exploiting this property and recasting the Bogoliubov
transformation (32) in the form

one can verify that the deformation (43) induces an identical
modification to the algebra of the Rindler operators B.

GUP effects on the Unruh temperature can now be inves-
tigated by calculating the distribution of B-quanta in the
Minkowski vacuum |Opg). By use of the transformation (46),
it can be shown that

1

(@)t p”)
Om| B By, ' |IOM) = 55—
(OmI B, " By~ |0m) @21 1-y)

800 8(£2 — 2,

(47)

to be compared with the standard Bose—Einstein distribu-
tion in Eq. (34). As expected, the Unruh spectrum gets non-
trivially modified by the deformed algebra (43) and loses
its characteristic thermal behavior. However, for Rindler fre-
quencies §2 such that y « 1, namely (since B ~ 1) for
ho <K mp, we have eV ~ 1— 1y, and Eq. (47) can be
approximated as

@ Springer

(Oml BT B 0p) ~ 800 8(2-Q2'). (48)

e2n2—y _

where we neglected the term linear in y in the denominator
of the r.h.s. We can interpret Eq. (48) as a shifted Bose—
Einstein thermal distribution by introducing a shifted Unruh
temperature 7" such that the term (27 §2 — y) can be rewritten
as

haf
M2 —y = o= 22 (49)
kg T

We thus find for the shifted Unruh temperature

Ty
| — B 2k Tg/m?

2
~ Ty |:l+/37t.<2(kBTU) ]
myp

62 2
—TU<1+/3n.Q P ) (50)

T =

We notice that such a modified temperature 7' contains an
explicit dependence on the Rindler frequency £2. This is
due to the deformed structure of the commutator (5), which
explicitly depends on p?2, that is, essentially, on the energy
of the considered quantum mode. So, it is not surprising to
recover such an explicit dependence in the final formulae.
Nevertheless, a simple thermodynamic argument allows us to
get rid of this £2-dependance. In fact, for small deformations,
we are still close to the thermal black body spectrum. There-
fore the vast majority of the Unruh quanta will be emitted
around a Rindler frequency w such that 7 w >~ kg Ty, which
means §2 ~ 1/(2m). For this typical frequency, Eq. (50)
reproduces quite closely the heuristic estimate (15). In fact

2
T:TU[1+E<kBTU>:|=TU<1+’Bp ) (51)
2 mp 2

Moreover, we can notice that, if we repeat the heuristic
derivation of Sect. 2 in a (14 1)-dimensional framework (like
the QFT calculation has been performed in Sect. 3), then in
place of Eq. (10) we should write kg7 /2 ~ §E >~ ha/4N.
This would yield a correction of a factor 9 in Eq. (15), which
would now read

2
T ~ TU(1+'3 ki ):TU[HE(]‘BTU)] (52)
w2 4 my

In this way the heuristic estimate (52) is even closer to the
field theoretic calculation in Eq. (51).

It should be noted also that the deformation of the alge-
bra (43) should also affect the Hamiltonian. Therefore, the
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Rindler frequency £2 in Eq. (49) should in principle be mod-
ified accordingly. In the present analysis, however, since we
consider only small deformations of the quantization rules,
we have reasonably neglected those corrections, thus approx-
imating the modified Rindler Hamiltonian with the original
one.

Concluding, for small deviations from the canonical quan-
tization, we have found that the Unruh distribution maintains
its original thermal spectrum, provided that a new tempera-
ture 7 is defined as in Eq. (50).

5 Conclusions

In the context of the Generalized Uncertainty Principle, we
have computed the correction induced on the Unruh tempera-
ture by a deformed fundamental commutator. This result has
been obtained by following two independent paths. First, we
proceeded in a heuristic way, using very general and reason-
able physical considerations. Already at this stage however
we have been able to point out a dependence of the deformed
Unruh temperature on the cubic power of the acceleration.
These considerations have been substantiated and confirmed
by means of a full-fledged Quantum Field Theory calcula-
tion. This has been achieved by taking into account modified
commutation relations for the ladder operators compatible
with the GUP in Eq. (5). In the limit of a small deformation
of the commutator, we obtained again a dependence of the
first correction term on the third power of the acceleration.
Besides, the more refined formalism of QFT has helped us
to point out an explicit dependence of the deformed Unruh
temperature on the Rindler frequency £2, which, on the other
hand, was reasonably expected. A simple and effective ther-
modynamic argument has then been used to identify the val-
ues of the Rindler frequency §2 corresponding to the most
probable emission. As a consequence, the QFT calculation
is seen to match the heuristic estimate, indeed with almost
the same numerical coefficients.

Of course, many avenues for further investigations appear
now in front of us. On a technical side, for example, one
would like to check whether the QFT corrections to the Unruh
temperature are left unchanged if the algebra is deformed at
the level of field rather than ladder operators. Further light
should be thrown on the relation between the deviation from
thermality of the Unruh radiation discussed in this paper, and
those found in different contexts (e.g. Refs. [47,48]). It could
also be interesting to extend our formalism to the Hawking
effect, for which a heuristic derivation of the temperature
from HUP has already been performed in Ref. [35].

Finally, two examples (among the many possible) of appli-
cations that could be affected by the results of this paper on a
modified Unruh temperature are, broadly speaking: the field
of relativistic quantum information theory (e.g. entanglement

degradation, entanglement satellite experiments [55,56]); the
corrections induced on analogue gravity experiments (e.g.
analogue Unruh radiation in fluids, in BEC, etc. [57,58]).
Much work is still in progress along these directions.
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