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Abstract We compute double and triple inclusive gluon
production in p-A scattering beyond the so-called “glasma
graph” approximation. We consider quantum interference
effects and identify in this general setup the terms responsible
for the gluon HBT and initial wave function Bose enhance-
ment which lead to correlations in particle production. Both
of these terms originate from the factorizable part of the
quadrupole and sextupole terms in the production cross sec-
tion. We also show that the target Bose enhancement in this
regime is suppressed at large number of colors.

1 Introduction

The interest in correlated particle production in the recent
years has been triggered by the observation at the Large
Hadron Collider (LHC) of the so called ridge correlations
in p-p and p-Pb scattering [1–14]. Many features of the ridge
correlations are shared in these reactions with similar obser-
vations in Pb-Pb collisions at the LHC and earlier observa-
tions of the same structure in Au-Au collisions at the Rela-
tivistic Heavy Ion Collider, later observed in d-Au and 3He-
Au [15–19]. In heavy ion collisions the accepted explanation
of the origin of correlations is due to a collective behavior of
the final state of the dense system of gluons, which follows a
hydrodynamic evolution starting a short time after scattering.
A similar explanation has been put forward for the observed
ridge in p-A and p-p as well [20–22]. Nevertheless, the ques-
tion remains of whether the mechanism that leads to these
correlations in small systems (p-p and p-A) is of the same
origin.

It has been suggested that the structure of the wave func-
tion of the highly energetic proton can be nontrivial and con-
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tain preexisting correlations which are reflected in the final
state of the scattering [23,24]. Motivated by this idea, a rea-
sonable description of large parts of the data has been pro-
vided by calculations based on the Color Glass Condensate
(CGC) approach in [25–28]. This work used the so called
“glasma graphs” approximation which is based essentially
on the dilute-dilute limit of the CGC framework [23,24].

The physics of “glasma graph” approximation used in
[25–28] was elucidated later in [29,30]. There it was shown
that the physical origin of the correlations in the “glasma
graph” approach where the quantum interference effects that
unavoidably appear in a system of identical bosons, i.e. glu-
ons. The two distinct contributing quantum effects identi-
fied in [29,30] were the Bose enhancement of gluons in the
incoming projectile wave function and the Hanbury Brown–
Twiss (HBT) interference effect in the emission of gluons in
the final state. Diagrammatics of the HBT effect in QCD
was discussed in [31], and in the CGC framework more
recently in [32,33]. Similar effects (albeit with opposite sign)
have been later identified in the quark production in the
CGC based framework in [34], see also [35,36]. The glasma
graph approach was also used in [37,38] to study triple and
quadruple gluon correlations. However, these studies were
performed in the dilute-dilute limit of glasma graphs which
should be only applicable for p-p collisions at midrapidity,
while we aim to go beyond this limit and consider p-A.

We mention another recent paper [39] where quantum
interference effects for gluons were studied in a model cal-
culation from the point of view of multi parton interactions.
More recently a calculation of quantum interference effects
in forward quark production in the framework of multi par-
ton interactions has been performed in [40,41]. There it was
shown that these effects are ubiquitous in identical particle
production, and that in the framework of the eikonal multiple
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scattering approach are contained in the quadrupole ampli-
tude.

It is desirable to have a similar detailed understanding
of quantum interference effects in gluon production at mid
rapidity in the framework of the unabridged CGC formula-
tion, i.e., beyond the “glasma graph” approximation.1

The purpose of the present paper is precisely to provide
such a calculation for two and three particle inclusive produc-
tion. We perform it within the dilute-dense CGC approach
which is a fully consistent scheme for calculation of particle
production in p-A collisions. In this respect we follow the
same line as [54] and [32,33]. We generalize the recent work
along the same lines [55] (which is based on the approach of
[32,33]) by identifying more generally the origin of the var-
ious terms in the double inclusive gluon production as well
as calculating quantum interference effects in three gluon
production for the first time.

In order to identify various physical effects, in the present
paper we adapt the approach of [40,41] to production of par-
ticles in the adjoint representation. We use the insight of [32,
33,40,41] regarding the approximation of the quadrupole
amplitude in terms of dipoles and explain similarly to [40,41]
that this approximation correctly accounts for the quantum
interference effects. This considerably simplifies the color
algebra, which in general leads to several different Wilson
line ensembles [32,33,56] whose target averages have to be
modelled. It also allows us to identify in full generality the
Bose enhancement (both in the projectile and the target wave
function) as well as HBT contributions to particle produc-
tion within this general framework, besides providing results
beyond any approximation of large number of colors Nc.

We show that just like for fundamentally charged particles,
the effects due to the quantum statistics that are encoded in the
quadrupole amplitude are leading correlation effects at large
Nc. They contribute to the correlated production at order
1/N 2

c , while similar terms that arise from the dipole squared
(no color exchange) term are suppressed as 1/N 4

c . We also
observe that in the dilute-dense framework the terms in the
production amplitude that arise due to Bose enhancement
in the target are suppressed by 1/N 2

c relative to the Bose
enhancement terms in the projectile. This Nc counting is
quite different from that in the glasma graph approximation,
where both effects are of the same order in 1/Nc.

1 Note that several other attempts exist in the literature to go beyond
glasma graphs in multi particle production [42–44]. These works how-
ever do not include the quantum interference effects, but rather deal with
a more careful evaluation of non factorizable contributions to products
of dipoles within the McLerran–Venugopalan model [45,46]. There is
also a body of literature devoted to the evaluation of higher multipoles
within the same framework [47–53], as well as discussing their evolu-
tion with energy, however the relevance of these objects to multi gluon
production has not been elucidated.

The plan of this paper is the following. In Sect. 2 we per-
form the calculation of the double inclusive gluon produc-
tion at central rapidities in p-A. We describe the formalism
and set out the approximation that we are using for calcu-
lating the target averages for a saturated target with confine-
ment radius given by the inverse of saturation momentum.
Besides, we discuss the meaning of various contributions
to correlated production, identifying the Bose enhancement
and HBT ones. We also show that the interesting correlated
terms in this expression arise from the contribution of the
quadrupole in the cross section. Section 3 contains the cal-
culation for the triple inclusive gluon production. In Sect. 4
we provide a short discussion of our results.

2 The double inclusive gluon production in dilute-dense
scattering

The aim of this section is to calculate the double inclusive
gluon production in p-A collisions in terms of the dipole scat-
tering amplitude. Our starting point is the general expression
[57,58] for production of two gluons with pseudorapidities
η1, η2 and transverse momenta k1, k2

dσ

d2k1dη1d2k2dη2
= α2

s (4π)2
∫
z1 z̄1z2 z̄2

eik1·(z1−z̄1)+ik2·(z2−z̄2)

×
∫
x1x2y1y2

Ai (x1 − z1)A
i (z̄1 − y1)

× A j (x2 − z2)A
j (z̄2 − y2)

×
〈
ρa1(x1)ρ

a2(x2)ρ
b1(y1)ρ

b2(y2)
〉
P

×
〈[
U (z1) −U (x1)

]a1c[U †(z̄1) −U †(y1)
]cb1

× [
U (z2) −U (x2)

]a2d[U †(z̄2) −U †(y2)
]db2

〉
T
. (1)

Here, ρa(x) is the color charge density in the projectile,U (x)
is the adjoint Wilson line in the color field of the target rep-
resenting the scattering matrix of a gluon at transverse coor-
dinate x , a is the color index running from 1 to N 2

c − 1,∫
z ≡ ∫

d2z and the Weiszacker–Williams field Ai is given
by

Ai (x − y) = − 1

2π

(x − y)i
(x − y)2 =

∫
d2k

(2π)2 e
−ik·(x−y) k

i

k2 .

(2)

Equation (1) is graphically illustrated in Fig. 1.
The averaging over ρ, 〈· · · 〉P , in Eq. (1) will be performed

using the McLerran–Venugopalan (MV) model [45,46]. As
for averaging over U (x), 〈· · · 〉T , it will not be performed
explicitly but some properties of the distribution of U ’s will
be used to simplify and interpret our general expressions.
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Fig. 1 Graphical illustration of Eq. (1) with the vertical lines repre-
senting the rescatterings with the target through Wilson lines

2.1 Projectile averaging in double inclusive gluon
production

We start with averaging of the cross section with respect to the
projectile color charge distribution. We use the generalized
MV model where the weight functional is Gaussian. Thus the
average of any product of the color charge densities factorizes
into a product of all possible Wick contractions:

〈
ρa1(x1)ρ

a2(x2)ρ
b1(y1)ρ

b2(y2)
〉
P

=
〈
ρa1(x1)ρ

a2(x2)
〉
P

〈
ρb1(y1)ρ

b2(y2)
〉
P

+
〈
ρa1(x1)ρ

b1(y1)
〉
P

〈
ρa2(x2)ρ

b2(y2)
〉
P

+
〈
ρa1(x1)ρ

b2(y2)
〉
P

〈
ρa2(x2)ρ

b1(y1)
〉
P
. (3)

For the average of two projectile color charges we take a
general form:
〈
ρa(x)ρb(y)

〉
P

= δabμ2(x, y). (4)

We do not assume translational invariance of the projec-
tile wave function. This means that the function μ2(x, y)
depends both on the difference x − y and the center-of-mass
coordinate x+y

2 . The finite transverse size of the projectile R
is reflected in vanishing of μ2(x, y) for (x + y)2 > 4R2.

Then the average of four projectile color charges reads
〈
ρa1(x1)ρ

a2(x2)ρ
b1(y1)ρ

b2(y2)
〉
P

= δa1a2δb1b2 μ2(x1, x2) μ2(y1, y2)

+ δa1b1δa2b2 μ2(x1, y1) μ2(x2, y2)

+ δa1b2δa2b1 μ2(x1, y2) μ2(x2, y1). (5)

Implementing this projectile averaging procedure we get

dσ

d2k1dη1d2k2dη2
= α2

s (4π)2
∫
z1 z̄1z2 z̄2

eik1·(z1−z̄1)+ik2·(z2−z̄2)

×
∫
x1x2 y1 y2

Ai (x1 − z1)A
i (z̄1 − y1)A

j (x2 − z2)A
j (z̄2 − y2)

×
{
μ2(x1, x2)μ

2(y1, y2)

〈
tr
{[
U (z1) −U (x1)

]

× [
U †(z̄1) −U †(y1)

][
U (z̄2) −U (y2)

]

× [
U †(z2) −U †(x2)

]}〉
T

+ μ2(x1, y1) μ2(x2, y2)

×
〈
tr
{[
U (z1) −U (x1)

][
U †(z̄1) −U †(y1)

]}

× tr
{[
U (z2) −U (x2)

][
U †(z̄2) −U †(y2)

]}〉
T

+ μ2(x1, y2) μ2(x2, y1)

〈
tr
{[
U (z1) −U (x1)

]

× [
U †(z̄1) −U †(y1)

][
U (z2) −U (x2)

]

× [
U †(z̄2) −U †(y2)

]}〉
T

}
. (6)

We define the dipole and the quadrupole amplitudes in the
standard way as

D(x, y) = 1

N 2
c − 1

tr
[
U (x)U †(y)

]
, (7)

Q(x, y, z, v) = 1

N 2
c − 1

tr
[
U (x)U †(y)U (z)U †(v)

]
, (8)

and the corresponding Fourier transforms as

D(x1, x2) =
∫

d2q1

(2π)2

d2q2

(2π)2 e
−iq1·x1+iq2·x2 D(q1, q2), (9)

Q(x1, x2, x3, x4) =
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2

× e−iq1·x1+iq2·x2−iq3·x3+iq4·x4 Q(q1, q2, q3, q4). (10)

The cross section is then written most conveniently as the
sum of three terms:

dσ

d2k1dη1d2k2dη2

∣∣∣∣
type A

= α2
s (4π)2(N 2

c − 1)

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2 〈Q(q1, q2, q3, q4)〉T
× μ2

[
(k1 − q1), (k2 + q4)

]
μ2

[
− (k1 − q2),−(k2 + q3)

]

× Li (k1, q1)L
i (k1, q2) L

j (k2,−q3)L
j (k2,−q4), (11)

dσ

d2k1dη1d2k2dη2

∣∣∣∣
type B

= α2
s (4π)2(N 2

c − 1)2

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2 〈D(q1, q2)D(q3, q4)〉T
× μ2

[
(k1 − q1),−(k1 − q2)

]
μ2

[
(k2 − q3),−(k2 − q4)

]

× Li (k1, q1)L
i (k1, q2) L

j (k2, q3)L
j (k2, q4) (12)
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Fig. 2 Diagrams of type A, Eq. (11)
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Fig. 3 Diagrams of type B, Eq. (13)

and

dσ

d2k1dη1d2k2dη2

∣∣∣∣
type C

= α2
s (4π)2(N 2

c − 1)

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2 〈Q(q1, q2, q3, q4)〉T
×μ2

[
(k1 − q1),−(k2 − q4)

]
μ2

[
(k2 − q3),−(k1 − q2)

]

×Li (k1, q1)L
i (k1, q2)L

j (k2, q3)L
j (k2, q4), (13)

where, for convenience, we have defined the Lipatov vertex

Li (k, q) ≡ (k − q)i

(k − q)2 − ki

k2 . (14)

The different contractions of the projectile color charge
density leading to the three terms are illustrated in Figs. 2, 3
and 4.
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ρb2(y

z̄2

k2

Fig. 4 Diagrams of type C, Eq. (13)

2.2 Target averaging in double inclusive gluon production

Our next step is to understand the general features of the
target averages. Here we follow the logic of [40,41].

The cross section involves integration over the four coor-
dinates of the product of the eikonal matrices U (x). One
therefore expects that the main contribution will come from
the region of the transverse plain where as many points are far
away from each other as possible. Configurations in which
points come close to each other in the transverse plain will
give contributions suppressed by powers of area of the pro-
jectile.

On the other hand, one cannot have all four points far away
from each other. This follows since the target field ensemble
has to be color invariant. As a mater of fact, it is reasonable
to assume that the color neutralization in the target ensem-
ble is achieved on transverse distance scales of order 1/Qs .
In order for the S-matrix on such a target to be non vanish-
ing, the objects that scatter must be color singlets of size of
order or smaller than 1/Qs . Thus, the maximal contribution
must come from the configurations where the four points are
combined into pairs, such that each pair is a singlet and the
distance between the pairs is large. Taking into account only
such configurations is equivalent to the calculation of target
averages in which one factorizes the average of a product of
any number of U matrices into averages of pairs with the
basic “Wick contraction” given by
〈
Uab(x)Ucd(y)

〉
T

= δacδbd
1

(N 2
c − 1)2

〈
tr [U (x)U †(y)]

〉
T

= δacδbd
1

N 2
c − 1

d(x, y), (15)

where

d(x, y) ≡ 〈D(x, y)〉T . (16)

Note that only one color structure appears in this expres-
sion, the one where the left and right indexes of the two
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U -matrices are in color singlets. The physical reason for this
is the following. Recall that the left index of U specifies the
color of the incoming gluon, while the right index the color
of the scattered gluon. We expect that on a saturated target
the S-matrix of any nonsinglet colored state vanishes (black
disk limit). The structure of Eq. (15) encodes precisely this
property.

With these physical assumptions on the target field ensem-
ble we have

〈Q(x, y, z, v)〉T −→ d(x, y)d(z, v) + d(x, v)d(z, y)

+ 1

N 2
c − 1

d(x, z)d(y, v), (17)

〈D(x, y)D(z, v)〉T −→ d(x, y)d(z, v)

+ 1

(N 2
c − 1)2 [d(x, v)d(y, z)

+ d(x, z)d(v, y)] . (18)

It is now straightforward to rewrite the double gluon inclu-
sive production cross section entirely in terms of the dipole
averages assuming translational invariance,

d(x1, x2) =
∫

d2q1

(2π)2

d2q2

(2π)2 e
−iq1·x1+iq2·x2

× d

(
q1 + q2

2

)
δ(2)(q1 − q2). (19)

We find

dσ

d2k1dη1d2k2dη2

∣∣∣∣
type A

= α2
s (4π)2

∫
d2q1

(2π)2

d2q2

(2π)2 d(q1)d(q2)

×
{
(N 2

c − 1)μ2
[
(k1 − q1), (k2 − q2)

]

×μ2
[
(q1 − k1), (q2 − k2)

]

×Li (k1, q1)L
i (k1, q1) L

j (k2, q2)L
j (k2, q2)

+ (N 2
c − 1) μ2

[
(k1 − q1), (k2 + q1)

]

×μ2
[

− (k1 − q2),−(q2 + k2)
]
Li (k1, q1)L

i (k1, q2)

×L j (k2,−q1)L
j (k2,−q2)

+ μ2
[
(k1 − q1), (k2 − q2)

]
μ2

[
− (k1 − q2), (q1 − k2)

]

×Li (k1, q1)L
i (k1, q2) L

j (k2, q1)L
j (k2, q2)

}
, (20)

dσ

d2k1dη1d2k2dη2

∣∣∣∣
type B

= α2
s (4π)2

∫
d2q1

(2π)2

d2q2

(2π)2 d(q1)d(q2)

×
{
(N 2

c − 1)2 μ2
[
(k1 − q1), (q1 − k1)

]

×μ2
[
(k2 − q2), (q2 − k2)

]

×Li (k1, q1)L
i (k1, q1) L

j (k2, q2)L
j (k2, q2)

+μ2
[
(k1 − q1),−(k1 − q2)

]
μ2

[
(k2 + q1),−(q2 + k2)

]

×Li (k1, q1)L
i (k1, q2) L

j (k2,−q1)L
j (k2,−q2)

+μ2
[
(k1 − q1),−(k1 − q2)

]

×μ2
[
(k2 − q2), (q1 − k2)

]
Li (k1, q1)

×Li (k1, q2) L
j (k2, q1)L

j (k2, q2)

}
, (21)

dσ

d2k1dη1d2k2dη2

∣∣∣∣
type C

= α2
s (4π)2

∫
d2q1

(2π)2

d2q2

(2π)2 d(q1)d(q2)

×
{
(N 2

c − 1) μ2
[
(k1 − q1), (q2 − k2)

]

×μ2
[
(k2 − q2), (q1 − k1)

]

×Li (k1, q1)L
i (k1, q1) L

j (k2, q2)L
j (k2, q2)

+ μ2
[
(k1 − q1), (q2 − k2)

]

×μ2
[
(k2 + q1),−(k1 + q2)

]

×Li (k1, q1)L
i (k1,−q2) L

j (k2,−q1)L
j (k2, q2)

+ (N 2
c − 1) μ2

[
(k1 − q1), (q1 − k2)

]

×μ2
[
(k2 − q2),−(k1 − q2)

]
Li (k1, q1)

×Li (k1, q2) L
j (k2, q1)L

j (k2, q2)

}
. (22)

Finally let us organize the terms in powers of N 2
c −1. Then

dσ

d2k1dη1d2k2dη2
= α2

s (4π)2(N 2
c − 1)2

×
∫

d2q1

(2π)2

d2q2

(2π)2 d(q1)d(q2)

×
{
I0 + 1

N 2
c − 1

I1 + 1

(N 2
c − 1)2 I2

}
,

(23)

with

I0 = μ2
[
(k1 − q1), (q1 − k1)

]
μ2

[
(k2 − q2), (q2 − k2)

]

× Li (k1, q1)L
i (k1, q1)L

j (k2, q2)L
j (k2, q2), (24)

I1 = μ2
[
(k1 − q1), (q2 − k2)

]
μ2

[
(k2 − q2), (q1 − k1)

]

× Li (k1, q1)L
i (k1, q1)L

j (k2, q2)L
j (k2, q2)

+ μ2
[
(k1 − q1), (q1 − k2)

]
μ2

[
(k2 − q2),−(k1 − q2)

]

× Li (k1, q1)L
i (k1, q2)L

j (k2, q1)L
j (k2, q2)

+ (k2 → −k2), (25)

123



702 Page 6 of 19 Eur. Phys. J. C (2018) 78 :702

I2 = μ2
[
(k1 − q1),−(k1 − q2)

]
μ2

[
(k2 − q2), (q1 − k2)

]

× Li (k1, q1)L
i (k1, q2)L

j (k2,−q1)L
j (k2,−q2)

+ (k2 → −k2)

+ μ2
[
(k1 − q1),−(k2 − q2)

]
μ2

[
− (k1 + q2), (q1 + k2)

]

× Li (k1, q1)L
i (k1,−q2)L

j (k2,−q1)L
j (k2, q2)

+ (k2 → −k2). (26)

2.3 Identifying terms in double inclusive gluon production

Given the expressions above it is quite straightforward to
identify the physical origin of the various terms above.

First of all we note, that the cross section is symmetric
under the transformation (k1, k2) → (k1,−k2). This prop-
erty of the dilute-dense approximation is well known in the
literature. It is also known that the symmetry is “accidental”
and it disappears once one includes higher order perturbative
corrections [59–61]. We will therefore only consider half of
the terms in Eq. (24), namely those that are written out explic-
itly.

To understand the meaning of the various terms we have
to first of all specify μ2(k, p) a little further. Recall that it
is defined as thee correlation function of the color charge
density, which operationally reads

μ2(k, p) = 1

N 2
c − 1

〈ρa(k)ρa(p)〉P . (27)

In the hypothetical translational invariant limit, where the dis-
tribution of ρ is invariant under translations in the transverse
plain, we would have

μ2
T I (k, p) = T

(
k − p

2

)
δ(2)(k + p). (28)

The translationally invariant approximation is quite reason-
able if we are interested in production of high transverse
momentum gluons, however in a more accurate calculation
the transverse size of the projectile should be reflected in μ2.
A reasonable way to include it is to introduce a form factor
of the type

μ2(k, p) = T

(
k − p

2

)
F[(k + p)R], (29)

where R is the radius of the projectile. Here T is roughly
speaking the transverse dependent distribution of the valence
charges, and F(x) is a soft form factor which is maximal at
x = 0 and rapidly decreases to zero at |x | > 1. The exact
form of the function F(x) does not matter for our purposes,
it can be taken as a Gaussian FG(x) = exp (−x2) , or as
a Lorentzian FL(x) = 1/(1 + x2), or any other function

with these properties. The important property is that F(x)
vanishes when the sum of the transverse momenta is not soft.

Let us now examine the various terms in Eq. (24):

• First off, the term I0 obviously is just an uncorrelated
production cross section, which is equal to the square of
single gluon emission probability. It is not interesting from
the point of view of correlated production.

• The expression for I1 contains two distinct terms, and it is
easy to see that they have quite different origin. The first
term is proportional to

μ2
[
(k1 − q1), (q2 − k2)

]
μ2

[
(k2 − q2), (q1 − k1)

]

= T 2
(
k1 + k2 − q1 − q2

2

)
F2

×
[(

k1 − q1 − (k2 − q2)
)
R
]
. (30)

Note that the momenta k1−q1 and k2−q2 are the momenta
the two gluons have in the projectile wave function, since
k1 and k2 are the momenta in the final state, while q1 and
q2, being the arguments of the dipole scattering ampli-
tudes, are the momentum transfers imparted to the two
gluons during the propagation through the target. Due to
the properties of the form factor F , this term is sharply
peaked when the momenta of the two gluons in the projec-
tile wave function are very close to each other, i.e., within
the inverse projectile radius. This term therefore embod-
ies the Bose enhancement in the incoming projectile wave
function.

• The nature of the second term in I1 in Eq. (24) is defined
by the factor

μ2
[
(k1 − q1), (q1 − k2)

]
μ2

[
(k2 − q2),−(k1 − q2)

]

= T

(
k1 + k2

2
− q1

)
T

(
k1 + k2

2
− q2

)

×F2 [(k1 − k2)R] . (31)

This term enhances production of pairs of gluons with
equal (up to 1/R) transverse momenta in the final state.
This is a typical HBT contribution.

• The first term in I2 is proportional to

μ2
[
(k1 − q1),−(k1 − q2)

]
μ2

[
(k2 − q2),−(k2 − q1)

]

∝ F2 [(q1 − q2)R] . (32)

Here the momentum exchange in the scattering of two
gluons is the same. Naturally this term is associated with
Bose enhancement in the target wave function. This term is
somewhat different from the others in that it looks like the
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target gluon distribution here is regulated by the projec-
tile size R. This is in fact natural. The Bose enhancement
in the target wave function should be certainly regulated
by the target and not the projectile size. However, very
long transverse wave length gluons of the target are not
probed by a smaller projectile, and thus do not contribute
to the cross section. This is the reason why even though
the enhancement is due to the properties of the target wave
function, in the expression for the cross section the regu-
lator is the projectile size.
It is interesting to note that in the glasma graph approx-
imation the projectile and the target Bose enhancement
terms appear at the same order in 1/Nc. On the other
hand in the proper dilute-dense treatment the target Bose
enhancement terms come with further suppression fac-
tors. It is indeed a well known fact that some aspects of
1/Nc counting are different in the dilute and dense limits
[62,63].

• Finally the second term in I2 has the same structure,

μ2
[
(k1 − q1),−(k2 − q2)

]
μ2

[
− (k1 + q2), (q1 + k2)

]

∝ F2 [(k1 − k2 − q1 + q2) R] , (33)

as the projectile Bose enhancement term and constitutes
an 1/N 2

c suppressed correction to this effect.

3 The triple inclusive gluon production in dilute-dense
scattering

In this section, we study inclusive triple gluon production.
The set up of the process is illustrated in Fig. 5. The formal
expression of the three gluon production cross section, for
gluons with pseudorapidities ηi and transverse momenta ki ,
i = 1, 2, 3, can be simply written as

dσ

d2k1dη1 d2k2dη2 d2k3dη3
= α3

s (4π)3

×
∫
z1 z̄1z2 z̄2z3 z̄3

eik1·(z1−z̄1)+ik2·(z2−z̄2)+ik3·(z3−z̄3)

×
∫
x1y1x2 y2x3y3

Ai (x1 − z1)A
i (z̄1 − y1)A

j (x2 − z2)

×A j (z̄2 − y2) A
k(x3 − z3)A

k(z̄3 − y3)

×
〈
ρa1(x1)ρ

a2(x2)ρ
a3(x3)ρ

b1(y1)ρ
b2(y2)ρ

b3(y3)
〉
P

×
〈(
Uz1 −Ux1

)a1c1
(
U †
z̄1

−U †
y1

)c1b1

×(
Uz2 −Ux2

)a2c2
(
U †
z̄2

−U †
y2

)c2b2

×(
Uz3 −Ux3

)a3c3
(
U †
z̄3

−U †
y3

)c3b3

〉
T
, (34)

where the coordinate of each Wilson line is written as a sub-
script.

3.1 Projectile averaging in triple inclusive gluon production

We first perform the averaging over the projectile color
charge densities. As in the previous section we adopt the
generalized MV model for the average of two projectile color
charge densities and write down all possible Wick contrac-
tions of the product of the color charge densities. Then, the
average of six projectile color charges reads

〈
ρa1
x1

ρa2
x2

ρa3
x3

ρb1
y1

ρb2
y2

ρb3
y3

〉
P

= 〈
ρa1
x1

ρb1
y1

〉〈
ρa2
x2

ρb2
y2

〉〈
ρa3
x3

ρb3
y3

〉

+ 〈
ρa1
x1

ρb1
y1

〉[〈
ρa2
x2

ρa3
x3

〉〈
ρb2
y2

ρb3
y3

〉 + 〈
ρa2
x2

ρb3
y3

〉〈
ρa3
x3

ρb2
y2

〉]

+ 〈
ρa2
x2

ρb2
y2

〉[〈
ρa1
x1

ρa3
x3

〉〈
ρb1
y1

ρb3
y3

〉 + 〈
ρa1
x1

ρb3
y3

〉〈
ρa3
x3

ρb1
y1

〉]

+ 〈
ρa3
x3

ρb3
y3

〉[〈
ρa1
x1

ρa2
x2

〉〈
ρb1
y1

ρb2
y2

〉 + 〈
ρa1
x1

ρb2
y2

〉〈
ρa2
x2

ρb1
y1

〉]

+ 〈
ρa1
x1

ρa2
x2

〉[〈
ρa3
x3

ρb1
y1

〉〈
ρb2
y2

ρb3
y3

〉 + 〈
ρa3
x3

ρb2
y2

〉〈
ρb1
y1

ρb3
y3

〉]

+ 〈
ρa2
x2

ρa3
x3

〉[〈
ρa1
x1

ρb2
y2

〉〈
ρb1
y1

ρb3
y3

〉 + 〈
ρa1
x1

ρb3
y3

〉〈
ρb1
y1

ρb2
y2

〉]

Fig. 5 Graphical illustration of
Eq. (34) with the vertical lines
representing the rescatterings
with the target through Wilson
lines

ρa3(x3)

z3

k3

ρa2(x2)

z2

k2

ρa1(x1)

z1

k1

ρb1(y1)

z̄1

k1

ρb2(y2)

z̄2

k2

ρb3(y3)

z̄3

k3
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ρa3(x3)

z3

k3

ρa2(x2)

z2

k2

ρa1(x1)

z1

k1

ρb1(y1)

z̄1

k1

ρb2(y2)

z̄2

k2

ρb3(y3)

z̄3

k3

Fig. 6 Three-dipole (ddd) contribution to the three-gluon production
cross section

+ 〈
ρa2
x2

ρb1
y1

〉[〈
ρa1
x1

ρa3
x3

〉〈
ρb2
y2

ρb3
y3

〉 + 〈
ρa1
x1

ρb3
y3

〉〈
ρa3
x3

ρb2
y2

〉]

+ 〈
ρa2
x2

ρb3
y3

〉[〈
ρa1
x1

ρb2
y2

〉〈
ρa3
x3

ρb1
y1

〉 + 〈
ρa1
x1

ρa3
x3

〉〈
ρb1
y1

ρb2
y2

〉]
. (35)

Here, we introduce a compact notation and write the coor-
dinate of each color charge density as a subscript (and also
omitted the subscript P from the averages).

These terms can be categorized in three main groups. We
have labeled the first term as three-dipole (ddd) contribution
since it leads to the product of three dipoles when multiplied
by the target scattering matrices U . The graphical illustra-
tion of this term is presented in Fig. 6. The next three terms
are named as dipole-quadrupole (dQ) contribution since they
generate a dipole and a quadrupole term after multiplication
byU ’s. One of these terms is illustrated in Fig. 7. The last four
terms in Eq. (35) are labeled as sextupole (X) contribution
since these terms generate the trace of all six Wilson lines.
One of these terms (the one that is proportional to

〈
ρ
a1
x1 ρ

a2
x2

〉
)

is illustrated in Fig. 8.
We start with the three-dipole contribution to the three-

gluon production cross section. We use Eq. (4) and substitute
the first term of Eq. (35) in the three-gluon production cross

section. A straightforward algebra gives the three-dipole con-
tribution as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
ddd

= α3
s (4π)3

∫
z1 z̄1z2 z̄2z3 z̄3

eik1·(z1−z̄1)+ik2·(z2−z̄2)+ik3·(z3−z̄3)

×
∫
x1y1x2 y2x3y3

Ai (x1 − z1)A
i (z̄1 − y1)

×A j (x2 − z2)A
j (z̄2 − y2) A

k(x3 − z3)A
k(z̄3 − y3)

×μ2(x1, y1)μ
2(x2, y2)μ

2(x3, y3)

×
〈
tr
{[Uz1 −Ux1][U †

z̄1
−U †

y1
]}

×tr
{[Uz2 −Ux2 ][U †

z̄2
−U †

y2
]}

×tr
{[Uz3 −Ux3][U †

z̄3
−U †

y3
]}
〉
T
. (36)

We can now Fourier transform the three-dipole contribu-
tion. Using the standard definition of the dipole amplitude,
Eq. (7), we can write the three-dipole contribution to the
three-gluon production as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
ddd

= α3
s (4π)3 (N 2

c − 1)3

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2

d2q5

(2π)2

d2q6

(2π)2

×〈
D(q1, q2)D(q3, q4)D(q5, q6)

〉
T

× μ2[k1 − q1, q2 − k1
]
μ2[k2 − q3, q4 − k2

]
×μ2[k3 − q5, q6 − k3

]
× Li (k1, q1)L

i (k1, q2) L
j (k2, q3)L

j (k2, q4)

×Lk(k3, q5)L
k(k3, q6), (37)

where the function Li , defined in Eq. (14), gives the trans-
verse momentum structure.

Next, we consider the dipole-quadrupole (dQ) contribu-
tion to the three-gluon production cross section. The second,

ρa3(x3)

z3

k3

ρa2(x2)

z2

k2

ρa1(x1)

z1

k1

ρb1(y1)

z̄1

k1

ρb2(y2)

z̄2

k2

ρb3(y3)

z̄3

k3

+

ρa3(x3)

z3

k3

ρa2(x2)

z2

k2

ρa1(x1)

z1

k1

ρb1(y1)

z̄1

k1

ρb2(y2)

z̄2

k2

ρb3(y3)

z̄3

k3

Fig. 7 Graphical illustration of the first term of the dQ-contribution to the three-gluon production cross section. It corresponds to the independent
emission of gluon k1 and interference of gluon k2 and gluon k3
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ρa3(x3)

z3

k3

ρa2(x2)

z2

k2

ρa1(x1)

z1

k1

ρb1(y1)

z̄1

k1

ρb2(y2)

z̄2

k2

ρb3(y3)

z̄3

k3

+

ρa3(x3)

z3

k3

ρa2(x2)

z2

k2

ρa1(x1)

z1

k1

ρb1(y1)

z̄1

k1

ρb2(y2)

z̄2

k2

ρb3(y3)

z̄3

k3

Fig. 8 Graphical illustration of the term that is proportional to
〈
ρ
a1
x1 ρ

a2
x2

〉
in the sextupole contribution

third and fourth terms in Eq. (35) fall into this category and,
using these three terms, we can write the dQ-contribution as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
dQ

= α3
s (4π)3

∫
z1 z̄1z2 z̄2z3 z̄3

eik1·(z1−z̄1)+ik2 ·(z2−z̄2)+ik3·(z3−z̄3)

∫
x1 y1x2 y2x3 y3

×Ai (x1 − z1)A
i (z̄1 − y1)A

j (x2 − z2)A
j (z̄2 − y2)

×Ak(x3 − z3)A
k(z̄3 − y3)

〈
μ2(x1, y1)tr

{[Uz1 −Ux1 ]

×[U †
z̄1

−U †
y1

]}
⎧⎩μ2(x2, x3)μ

2(y2, y3)

×tr
{[Uz̄2 −Uy2 ][U †

z2
−U †

x2
][Uz3 −Ux3 ][U †

z̄3
−U †

y3
]}

+μ2(x2, y3)μ
2(x3, y2) tr

{[Uz2 −Ux2 ][U †
z̄2

−U †
y2

]
×[Uz3 −Ux3 ][U †

z̄3
−U †

y3
]}
⎫⎭

+μ2(x2, y2)tr
{[Uz2 −Ux2 ][U †

z̄2
−U †

y2
]}

×
⎧⎩μ2(x1, x3)μ

2(y1, y3)tr
{[Uz̄1 −Uy1 ][U †

z1
−U †

x1
]

×[Uz3 −Ux3 ][U †
z̄3

−U †
y3

]} + μ2(x1, y3)μ
2(x3, y1)

×tr
{[Uz1 −Ux1 ][U †

z̄1
−U †

y1
][Uz3 −Ux3 ][U †

z̄3
−U †

y3
]}
⎫⎭

+μ2(x3, y3)tr
{[Uz3 −Ux3 ][U †

z̄3
−U †

y3
]}

×
⎧⎩μ2(x1, x2)μ

2(y1, y2)tr
{[Uz̄1 −Uy1 ][U †

z1
−U †

x1
]

×[Uz2 −Ux2 ][U †
z̄2

−U †
y2

]} + μ2(x1, y2)μ
2(x2, y1)

×tr
{[Uz1 −Ux1 ][U †

z̄1
−U †

y1
][Uz2 −Ux2 ][U †

z̄2
−U †

y2
]}
⎫⎭
〉
T
. (38)

The graphical illustration of the first term in Eq. (38) is
shown in Fig. 7. This term represents the independent emis-
sion of the gluon k1 while gluons k2 and k3 interfere. Indeed,
the interference of the gluons k2 and k3 are exactly the type
A and type C contributions introduced in the double inclu-
sive gluon production calculation. The remaining two terms
in Eq. (38) correspond to independent emission of the gluon
k2 with interference of gluons k1 and k3, and independent
emission of the gluon k3 with interference of gluons k1 and
k2, respectively.

Fourier transform of Eq. (38) can be performed in the same
way as before. Then, one can use the dipole (Eq. (9)) and
quadrupole (Eq. (10)) amplitudes in momentum space and

write the dipole-quadrupole contribution to the three-gluon
production cross section as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
dQ

= α3
s (4π)3 (N 2

c − 1)2

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2

d2q5

(2π)2

d2q6

(2π)2

×
{〈

D(q1, q2)Q(q3, q4, q5, q6)
〉
T

×LdQ(k2, q3, q4; k1, q1, q2; k3, q5, q6
)

+(k1, q1, q2) ↔ (k2, q3, q4)

+(k2, q3, q4) ↔ (k3, q5, q6)

}
, (39)

where the function LdQ is defined as

LdQ(k2, q3, q4; k1, q1, q2; k3, q5, q6
)

= μ2[k2 − q3, q4 − k2)
]
L j (k2, q3)L

j (k2, q4)

×
{
μ2[k1 + q2, k3 − q5

]
μ2

×[ − (k1 − q1), q6 − k3)
]
Li (k1,−q1)L

i (k1,−q2)

+μ2[k1 − q1, q6 − k3
]
μ2

×[
k3 − q5, q2 − k1

]
Li (k1, q1)L

i (k1, q2)
}

×Lk(k3, q5)L
k(k3, q6). (40)

Finally, let us consider the sextupole (X) contribution to
the three-gluon production cross section. This contribution
stems from the last four terms in Eq. (35). These are terms that
include interference of all the three gluons . We have shown
the illustration of the term that is proportional to

〈
ρ
a1
x1 ρ

a2
x2

〉
in

Fig. 8. After contracting the color indexes of these four terms
with the Wilson line structure from the target side, we can
write the X-contribution to the three-gluon production cross
section as
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dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
X

= α3
s (4π)3

∫
z1 z̄1z2 z̄2z3 z̄3

eik1·(z1−z̄1)+ik2·(z2−z̄2)+ik3·(z3−z̄3)

×
∫
x1y1x2 y2x3y3

Ai (x1 − z1)A
i (z̄1 − y1)A

j (x2 − z2)

×A j (z̄2 − y2)A
k(x3 − z3)A

k(z̄3 − y3)

×
〈
μ2(x2, x3)

⎧⎪⎪⎩μ2(x1, y2) μ2(y1, y3) tr
{[Uz̄1 −Uy1 ]

×[U †
z1

−U †
x1

][Uz̄2 −Uy2 ][U †
z2

−U †
x2

][Uz3 −Ux3 ]
×[U †

z̄3
−U †

y3
]} + μ2(x1, y3)μ

2(y1, y2) tr
{[Uz1 −Ux1 ]

×[U †
z̄1

−U †
y1

][Uz̄2 −Uy2 ][U †
z2

−Ux2 ]

×[Uz3 −Ux3 ][U †
z̄3

−U †
y3

]}
⎫⎪⎪⎭

+ μ2(x2, x1)

⎧⎪⎪⎩μ2(x3, y2)μ
2(y3, y1)

×tr
{[Uz̄3 −Uy3 ][U †

z3
−U †

x3
][Uz̄2 −Uy2 ]

×[U †
z2

−U †
x2

][Uz1 −Ux1 ][U †
z̄1

−U †
y1

]}
+μ2(x3, y1)μ

2(y3, y2) tr
{[Uz3 −Ux3 ][U †

z̄3
−U †

y3
]

×[Uz̄2 −Uy2 ][U †
z2

−U †
x2

][Uz1 −Ux1 ][U †
z̄1

−U †
y1

]}
⎫⎪⎪⎭

+ μ2(x2, y1)

⎧⎪⎪⎩μ2(x1, x3)μ
2(y2, y3)

×tr

{
[Uz1 −Ux1 ][U †

z̄1
−U †

y1
][Uz2 −Ux2 ]

×[U †
z̄2

−U †
y2

][Uz̄3 −Uy3 ][U †
z3

−U †
x3

]
}

+μ2(x1, y3)μ
2(x3, y2) tr

{
[Uz1 −Ux1 ][U †

z̄1
−U †

y1
]

×[Uz2 −Ux2 ][U †
z̄2

−U †
y2

][Uz3 −Ux3 ][U †
z̄3

−U †
y3

]
}⎫⎪⎪⎭

+ μ2(x2, y3)

⎧⎪⎪⎩μ2(x3, x1)μ
2(y2, y1)

×tr

{
[Uz3 −Ux3 ][U †

z̄3
−U †

y3
][Uz2 −Ux2 ]

×[U †
z̄2

−U †
y2

][Uz̄1 −Uy1 ][U †
z1

−U †
x1

]
}

+μ2(x3, y1)μ
2(x1, y2) tr

{
[Uz3 −Ux3 ][U †

z̄3
−U †

y3
]

×[Uz2 −Ux2 ][U †
z̄2

−U †
y2

][Uz1 −Ux1 ][U †
z̄1

−U †
y1

]
}⎫⎪⎪⎭

〉
T
.

(41)

The sextuple amplitude is defined in the usual way as

X(x1, x
′
1, x2, x

′
2, x3, x

′
3)

= 1

N 2
c − 1

tr
[
U (x1)U

†(x ′
1)U (x2)U

†(x ′
2)U (x3)U

†(x ′
3)
]

(42)

and its momentum space expression can be written as

X(x1, x
′
1, x2, x

′
2, x3, x

′
3)

=
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2

d2q5

(2π)2

d2q6

(2π)2

× e−iq1·x1+iq2 ·x ′
1−iq3·x2+iq4 ·x ′

2−iq5·x3+iq6·x ′
3 X(q1, q2, q3, q4, q5, q6).

(43)

Finally, we can write the sextupole contribution the three-
gluon production as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
X

= α3
s (4π)3 (N 2

c − 1)

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

d2q4

(2π)2

d2q5

(2π)2

d2q6

(2π)2

×
{〈

X(q1, q2, q3, q4, q5, q6)
〉
T

×
[
LX

1

(
k1, q1, q2; k2, q3, q4; k3, q5, q6

)

+LX
2

(
k1, q1, q2; k2, q3, q4; k3, q5, q6

)]

+ (k1, q1, q2) ↔ (k3, q5, q6)

}
, (44)

where

LX
1

(
k1, q1, q2; k2, q3, q4; k3, q5, q6

)
= μ2[k2 − q3, q2 − k1

]
Li (k1, q1)

×Li (k1, q2)L
j (k2, q3)L

j (k2, q4)

×
{
μ2

[
k1 − q1, k3 + q6

]
μ2

[
q4 − k2,−k3 − q5

]

×Lk(k3,−q5)L
k(k3,−q6)

+μ2
[
k1 − q1, q6 − k3

]
μ2

[
k3 − q5, q4 − k2

]

×Lk(k3, q5)L
k(k3, q6)

}
(45)
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and

LX
2

(
k1, q1, q2; k2, q3, q4; k3, q5, q6

)
= μ2[k2 + q6, k1 − q1

]
Li (k1, q1)L

i (k1, q2)

×L j (k2,−q5)L
j (k2,−q6)

×
{
μ2

[
k3 + q4,−k2 − q5

]
μ2

[
− k3 − q3, q2 − k1

]

×Lk(k3,−q3)L
k(k3,−q4)

+μ2
[
k3 − q3, q2 − k1

]
μ2

[
q4 − k3,−k2 − q5

]

×Lk(k3, q3)L
k(k3, q4)

}
. (46)

3.2 Target averaging in triple inclusive gluon production

In this Subsection we perform the target averaging for the
three-gluon production cross section by adopting the same
procedure introduced in Sect. 2.2. We use Eq. (15) for the
product of two Wilson lines and calculate the pairwise fac-
torized expressions for the three-dipole, dipole-quadrupole
and sextuple contributions to the triple inclusive gluon pro-
duction cross section. In order to identify the “irreducible”
quantum interference effects that involve all three gluons, we
need to calculate the triple inclusive gluon production cross
section to O[(N 2

c − 1)−2]. Therefore, we will present the
results for the pairwise contraction of three-dipoles, dipole-
quadrupole and sextuple amplitudes to all orders in number
of colors but we will only take into account the relevant terms
when calculating the explicit expressions for each contribu-
tion. We will assume translational invariance for the dipole,
Eq. (19), when computing the cross sections.

Let us start with the three-dipole contribution. The result
for the pairwise factorization of a generic three-dipole ampli-
tude to all orders in Nc reads

〈
D(x1, x

′
1)D(x2, x

′
2)D(x3, x

′
3)
〉
T

−→ d(x1, x
′
1)d(x2, x

′
2)d(x3, x

′
3)

+ 1

(N 2
c − 1)2

{
d(x1, x

′
1)
[
d(x2, x3)d(x ′

2, x
′
3) + d(x2, x

′
3)d(x ′

2, x3)
]

+ d(x2, x
′
2)
[
d(x1, x3)d(x ′

1, x
′
3) + d(x1, x

′
3)d(x ′

1, x3)
]

+ d(x3, x
′
3)
[
d(x1, x2)d(x ′

1, x
′
2)

+ d(x1, x
′
2)d(x ′

1, x2)
]}

+ 1

(N 2
c − 1)4

{
d(x1, x2)

[
d(x3, x

′
1)d(x ′

2, x
′
3) + d(x ′

1, x
′
3)d(x3, x

′
2)
]

+ d(x1, x
′
2)
[
d(x3, x

′
1)d(x2, x

′
3) + d(x ′

1, x
′
3)d(x3, x2)

]

+ d(x1, x3)
[
d(x2, x

′
1)d(x ′

3, x
′
2) + d(x ′

1, x
′
2)d(x2, x

′
3)
]

+ d(x1, x
′
3)
[
d(x2, x

′
1)d(x3, x

′
2) + d(x ′

1, x
′
2)d(x2, x3)

]}
. (47)

Substituting this factorized expression into Eq. (36) we
write the three-dipole contribution to the triple inclusive
gluon production cross section as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
ddd

= α3
s (4π)3 (N 2

c − 1)3
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2 d(q1)d(q2)d(q3)

×
{
Iddd,0 + 1

(N 2
c − 1)2

[
Iddd,1 + Iddd,2 + Iddd,3

]

+O
(

1

(N 2
c − 1)4

)}
, (48)

where we have defined Iddd,0 as

Iddd,0 = μ2(k1 − q1, q1 − k1)

×μ2(k2 − q2, q2 − k2) μ2(k3 − q3, q3 − k3)

×Li (k1, q1)L
i (k1, q1) L

j (k2, q2)L
j (k2, q2)

× Lk(k3, q3)L
k(k3, q3). (49)

Moreover, for the O
(

1
(N2

c −1)2

)
terms we have introduced a

compact notation

Iddd,1 = Ĩddd,1 + (k3 → −k3), (50)

with

Ĩddd,1 = μ2(k1 − q1, q1 − k1) μ2(k2 − q2, q3 − k2) μ2

×(k3 − q3, q2 − k3) L
i (k1, q1)L

i (k1, q1)

×L j (k2, q2)L
j (k2, q3)L

k(k3, q3)L
k(k3, q2). (51)

The remaining terms can be defined by using the explicit
expression of Iddd,1 and the symmetry properties:

Iddd,2 ≡ Ĩddd,1(1 ↔ 2) + (k3 → −k3), (52)

Iddd,3 ≡ Ĩddd,1(1 ↔ 3) + (k2 → −k2). (53)

The pairwise contraction of a generic dipole-quadrupole
term can be written as

〈
D(x1, x

′
1)Q(x2, x

′
2, x3, x

′
3)
〉
T

−→ d(x1, x
′
1)
[
d(x2, x

′
2)d(x3, x

′
3) + d(x2, x

′
3)d(x3, x

′
2)
]

+ 1

N 2
c − 1

d(x1, x
′
1)d(x2, x3)d(x ′

2, x
′
3)

+ 1

(N 2
c − 1)2

{
d(x1, x2)

[
d(x ′

1, x
′
2)d(x3, x

′
3)

+ d(x ′
1, x

′
3)d(x ′

2, x3)
]

+ d(x1, x
′
2)
[
d(x ′

1, x2)d(x3, x
′
3) + d(x ′

1, x3)d(x2, x
′
3)
]

+ d(x1, x3)
[
d(x ′

1, x
′
3)d(x2, x

′
2) + d(x ′

1, x
′
2)d(x ′

3, x2)
]

+ d(x1, x
′
3)
[
d(x ′

1, x3)d(x2, x
′
2) + d(x ′

1, x2)d(x3, x
′
2)
]}
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+ 1

(N 2
c − 1)3

{
d(x ′

2, x
′
3)
[
d(x1, x2)d(x ′

1, x3)

+ d(x1, x3)d(x ′
1, x2)

]
+ d(x2, x3)

[
d(x1, x

′
2)d(x ′

1, x
′
3)

+ d(x ′
1, x

′
2)d(x1, x

′
3)
]}

. (54)

Using Eqs. (54) in (38), one can organize this contribution
to the triple inclusive gluon production cross section as

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
dQ

= α3
s (4π)3 (N 2

c − 1)2

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2 d(q1)d(q2)d(q3)

×
{[

IdQ,1 + IdQ,2 + IdQ,3

]

+ 1

N 2
c − 1

[
I ′
dQ,1 + I ′

dQ,2 + I ′
dQ,3

]

+O
(

1

(N 2
c − 1)2

)}
, (55)

where we have introduced the same notation used in the three-
dipole contribution and we define

IdQ,1 = ĨdQ,1 + (k2 → −k2), (56)

I ′
dQ,1 = Ĩ ′

dQ,1 + (k2 → −k2), (57)

with

ĨdQ,1 = μ2(k1 − q1, q1 − k1) μ2(k2 − q2, q3 − k3)

×μ2(k3 − q3, q2 − k2) L
i (k1, q1)L

i (k1, q1)

× L j (k2, q2)L
j (k2, q2) L

k(k3, q3)L
k(k3, q3)

+μ2(k1 − q1, q1 − k1) μ2(k2 − q2, q2 − k3)

×μ2(k3 − q3, q3 − k2) L
i (k1, q1)L

i (k1, q1)

× L j (k2, q2)L
j (k2, q3)L

k(k3, q3)L
k(k3, q2), (58)

Ĩ ′
dQ,1 = μ2(k1 − q1, q1 − k1) μ2(−k2 − q3, q2 + k3)

×μ2(k2 − q2, q3 − k3) L
i (k1, q1)L

i (k1, q1)

× L j (k2, q2)L
j (k2,−q3)L

k(k3, q3)L
k(k3,−q2). (59)

The remaining terms can again be written by using the sym-
metry properties and they are defined as

IdQ,2 = ĨdQ,1(1 ↔ 2) + (k1 → −k1) ,

IdQ,3 = ĨdQ,1(1 ↔ 3) + (k1 → −k1), (60)

I ′
dQ,2 = Ĩ ′

dQ,1(1 ↔ 2) + (k1 → −k1) ,

I ′
dQ,3 = Ĩ ′

dQ,1(1 ↔ 3) + (k1 → −k1). (61)

In a similar manner, one can calculate the pairwise con-
traction of a generic sextupole term:
〈
X(x1, x

′
1, x2, x

′
2, x3, x

′
3)
〉
T

−→ d(x1, x
′
1)d(x2, x

′
2)d(x3, x

′
3)

+ d(x1, x
′
3)d(x2, x

′
1)d(x3, x

′
2)

+ d(x1, x
′
1)d(x2, x

′
3)d(x3, x

′
2)

+ d(x2, x
′
2)d(x3, x

′
1)d(x1, x

′
3)

+ d(x3, x
′
3)d(x1, x

′
2)d(x2, x

′
1)

+ 1

N 2
c − 1

{
d(x1, x

′
1)d(x2, x3)d(x ′

2, x
′
3)

+ d(x2, x
′
2)d(x3, x1)d(x ′

3, x
′
1)

+ d(x3, x
′
3)d(x1, x2)d(x ′

1, x
′
2)

+ d(x2, x3)d(x1, x
′
3)d(x ′

1, x
′
2)

+ d(x3, x1)d(x2, x
′
1)d(x ′

2, x
′
3)

+ d(x1, x2)d(x3, x
′
2)d(x ′

3, x
′
1)

}

+ 1

(N 2
c − 1)2

{
d(x1, x2)d(x3, x

′
1)d(x ′

2, x
′
3)

+ d(x2, x3)d(x1, x
′
2)d(x ′

3, x
′
1)

+ d(x3, x1)d(x2, x
′
3)d(x ′

1, x
′
2)

+ d(x1, x
′
2)d(x3, x

′
1)d(x2, x

′
3)

}
. (62)

We can now substitute Eq. (62) into the sextupole contri-
bution to the triple inclusive gluon production cross section
given by Eq. (41). The result reads

dσ

d2k1dη1 d2k2dη2 d2k3dη3

∣∣∣∣
X

= α3
s (4π)3 (N 2

c − 1)

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2 d(q1)d(q2)d(q3)

×
{[

IX,1 + IX,2 + IX,3 + IX,4 + IX,5

]

+O
(

1

(N 2
c − 1)

)
+ O

(
1

(N 2
c − 1)2

)}
, (63)

where

IX,1 =
[
ĨX,1 + (k3 → −k3)

]
+
[
Ĩ ′
X,1 + (k1 → −k1)

]

(64)

with ĨX,1 and Ĩ ′
X,1 defined as

ĨX,1 = μ2(k2 − q2, q2 − k1) μ2(k1 − q1, q3 − k3)

×μ2(k3 − q3, q1 − k2) L
i (k1, q1)L

i (k1, q2)

× L j (k2, q2)L
j (k2, q1)L

k(k3, q3)L
k(k3, q3)

+ μ2(k2 + q2, k1 − q2) μ2(k3 − q3, q1 − k1)
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×μ2(q3 − k3,−q1 − k2) L
i (k1, q1)L

i (k1, q2)

× L j (k2,−q1)L
i (k2,−q2)L

k(k3, q3)L
k(k3, q3) (65)

Ĩ ′
X,1 = μ2(k1 − q2, q2 − k2) μ2(k2 − q1, k3 − q3)

×μ2(q1 − k1, q3 − k3) L
i (k1, q1)L

i (k1, q2)

× L j (k2, q1)L
j (k2, q2)L

k(k3, q3)L
k(k3, q3)

+ μ2(−k1 − q2, q2 − k2) μ2(k2 + q1, q3 − k3)

×μ2(k3 − q3, k1 − q1) L
i (k1,−q2)L

i (k1, q1)

× L j (k2,−q1)L
j (k2, q2)L

k(k3, q3)L
k(k3, q3). (66)

The terms IX,2 and IX,3 can again be defined by using the
symmetry properties as

IX,2 =
[
ĨX,1(1 → 2, 2 → 3, 3 → 1) + (k3 → −k3)

]

+
[
Ĩ ′
X,1(1 → 2, 2 → 3, 3 → 1) + (k1 → −k1)

]
,

(67)

IX,3 =
[
ĨX,1(1 → 3, 3 → 2, 2 → 1) + (k3 → −k3)

]

+
[
Ĩ ′
X,1(1 → 3, 3 → 2, 2 → 1) + (k1 → −k1)

]
.

(68)

The explicit expressions for the remaining two terms read

I[X,4] = μ2(k2 − q2, q1 − k1) μ2(k1 − q1, q3 − k3)

× μ2(k3 − q3, q2 − k2) L
i (k1, q1)L

i (k1, q1)L
j (k2, q2)

× L j (k2, q2)L
k(k3, q3)L

k(k3, q3) + (k3 → −k3)

+μ2(k2 − q2, q3 − k3) μ2(k3 − q3, k1 − q1)

× μ2(q1 − k1, q2 − k2) L
i (k1, q1)

× Li (k1, q1) L
j (k2, q2)L

j (k2, q2)

× Lk(k3, q3)L
k(k3, q3) + (k1 → −k1)

+μ2(k2 − q2, k1 − q1)

× μ2(k3 − q3, q1 − k1) μ2(q3 − k3, q2 − k2) L
i (k1, q1)

× Li (k1, q1) L
j (k2, q2)L

j (k2, q2)

× Lk(k3, q3)L
k(k3, q3) + (k3 → −k3)

+μ2(q1 − k1, q3 − k3) μ2(k1 − q1, q2 − k2)

× μ2(k2 − q2, k3 − q3) L
i (k1, q1)L

i (k1, q1)L
j (k2, q2)

× L j (k2, q2)L
k(k3, q3)L

k(k3, q3) + (k1 → −k1), (69)

I[X,5] = μ2(k2 − q2, q2 − k1) μ2(k1 − q1, q1 − k3)

×μ2(k3 − q3, q3 − k2) L
i (k1, q1)L

i (k1, q2)L
j (k2, q2)

× L j (k2, q3)L
k(k3, q3)L

k(k3, q1) + (k3 → −k3)

+μ2(k2 − q2, q2 − k3)

× μ2(k3 − q3, q3 + k1) μ2(q1 − k2,−k1 − q1)

× Li (k1,−q1)L
i (k1,−q3) L

j (k2, q2)L
j (k2, q1)

× Lk(k3, q3)L
k(k3, q2) + (k1 → −k1)

+μ2(k2 + q1, k1 − q1)

× μ2(k3 − q3, q3 − k1) μ2(q2 − k3,−k2 − q2)

× Li (k1, q1)L
i (k1, q3) L

j (k2,−q2)L
j (k2,−q1)

× Lk(k3, q3)L
k(k3, q2) + (k3 → −k3)

+μ2(k2 + q3, k3 − q3) μ2(−k1 − q1, q1 − k3)

× μ2(k1 − q2, q2 − k2) L
i (k1,−q1)L

i (k1, q2)

× L j (k2, q2)L
j (k2,−q3)

× Lk(k3, q3)L
k(k3, q1) + (k1 → −k1). (70)

Finally, the triple inclusive gluon production cross section
can be organized according to the powers in the number of
colors and the result reads

dσ

d2k1dη1 d2k2dη2 d2k3dη3

= α3
s (4π)3 (N 2

c − 1)3

×
∫

d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2 d(q1)d(q2)d(q3)

×
{
Iddd,0 + 1

N 2
c − 1

[
IdQ,1 + IdQ,2 + IdQ,3

]

+ 1

(N 2
c − 1)2

⎧⎪⎩[Iddd,1 + Iddd,2 + Iddd,3

]

+
[
I ′
dQ,1 + I ′

dQ,2 + I ′
dQ,3

]

+
[
IX,1 + IX,2 + IX,3 + IX,4 + IX,5

]⎫⎪⎭
+O

(
1

(N 2
c − 1)3

)
+ O

(
1

(N 2
c − 1)4

)}
. (71)

This is our final result for the triple inclusive gluon produc-
tion cross section explicitly written up to order (N 2

c −1)−3. It
is straightforward to calculate the (N 2

c −1)−3 and (N 2
c −1)−4

terms with all the ingredients introduced in this Subsection.
However, as mentioned earlier, in order to observe the quan-
tum interference effects it is enough to calculate the triple
inclusive gluon production cross section to order (N 2

c −1)−2.
Thus, we have not written the higher order terms explicitly.

3.3 Identifying terms in triple inclusive gluon production

Now, we can take a closer look at each term in the triple inclu-
sive gluon production cross section separately and identify
them one by one. We will follow the same logic that was
introduced in Sect. 2.3 to perform this analysis, i.e., we will
use the fact that

μ2(k, p) ∝ F[(k + p)R], (72)

where function F is a soft form factor that is peaked around
zero and R is the radius of the projectile.
(i) O(1) terms:

• The only contribution that we get at O(1) is the Iddd,0

term. It is clear that this term is the classical contribution
to triple inclusive gluon production cross section and it is
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equal to the product of three single inclusive gluon pro-
duction cross sections. It is responsible for independent
emission of all three gluons, with transverse momenta k1,
k2 and k3, and does not generate any correlations.

(ii) O(1/N 2
c ) terms:

At this order, we have three different terms: IdQ,1, IdQ,2

and IdQ,3. Let us start with IdQ,1 whose explicit expression
can be read off from Eqs. (56), (57), (58) and (59).

• IdQ,1 term has two contributions:
The first one is proportional to

μ2(k1 − q1, q1 − k1) μ2(k2 − q2, q3 − k3)

×μ2(k3 − q3, q2 − k2) ∝ μ2(k1 − q1, q1 − k1)

× F2 {[(k2 − q2) − (k3 − q3)] R} . (73)

The form factor is peaked around k2−q2 = k3−q3 while
the gluon k1 does not interfere with the remaining two
gluons. Thus, it is clear that this term is a contribution
to forward peak of Bose enhancement of gluons k2 − q2

and k3 − q3 in the projectile with the third gluon emitted
independently. The mirror image of this term, given by
the transformation k2 → −k2, contributes to the back-
ward peak of the Bose enhancement of the gluons k2 −q2

and k3 − q3 in the projectile. Obviously, in this case the
third gluon is emitted independently as well.
The second term of IdQ,1 is proportional to

μ2(k1 − q1, q1 − k1) μ2(k2 − q2, q2 − k3)

×μ2(k3 − q3, q3 − k2) ∝ μ2(k1 − q1, q1 − k1)

× F2 [(k2 − k3)R] . (74)

In this contribution the form factor is peaked around k2 =
k3. Therefore, it is clear that this term is a contribution to
the forward peak of the HBT correlations of the gluons k2

and k3 while the third gluon is emitted independently. The
mirror image of this term is given by the transformation
k2 → −k2 and will be a contribution to the backward
peak of the HBT correlations of the gluons k2 and k3.
Since IdQ,2 and IdQ,3 are related to IdQ,1 by symmetry, it
is obvious that these terms exhibit the same behavior as
IdQ,1 but with gluons interchanged (1 ↔ 2 and 1 ↔ 3
respectively).

(iii) O(1/N 4
c ) terms:

• Iddd,1 term:
This term is proportional to

μ2(k1 − q1, q1 − k1) μ2(k2 − q2, q3 − k2)

×μ2(k3 − q3, q2 − k3) ∝ μ2(k1 − q1, q1 − k1)

× F2 [(q3 − q2)R] . (75)

In this term, the form factor is peaked around q2 = q3

where q2 and q3 are the momenta of the gluons in the
target wave function. Therefore, this term is clearly a
contribution to the forward peak of the Bose enhance-
ment of the gluons q2 and q3 in the target wave function
while the third gluon is emitted independently. Its mirror
image given by the transformation k3 → −k3 is a con-
tribution to the backward peak of the Bose enhancement
of the gluons q2 and q3 in the target wave function.
The remaining two terms that stem from the three-
dipole contribution at O(1/N 4

c ) are Iddd,2 and Iddd,3.
These terms can be obtained by exchanging (1 ↔ 2)
and (1 ↔ 3). Hence, they exhibit the same behavior
as Iddd,1. Namely, Iddd,2 is a contribution to the (for-
ward/backward peaks) Bose enhancement of the gluons
q1 and q3 in the target wave function while gluon q2 is
emitted independently, and Iddd,3 is a contribution to the
(forward/backward peaks of the) Bose enhancement of
the gluons q1 and q2 in the target wave function while
the gluon q3 is emitted independently.

• I ′
dQ,1 term:

This term is proportional to

μ2(k1 − q1, q1 − k1) μ2(−k2 − q3, q2 + k3)

×μ2(k2 − q2, q3 − k3) ∝ μ2(k1 − q1, q1 − k1)

× F2 {[(k2 − q2) − (k3 − q3)] R} . (76)

The form factor is again peaked around k2−q2 = k3−q3.
Therefore, this term contributes to the forward peak of
the Bose enhancement of the gluons k2−q2 and k3−q3 in
the projectile wave function with the third gluon emitted
independently. Clearly, the mirror image is a contribution
to the backward peak. I ′

dQ,2 and I ′
dQ,3 exhibit the same

behavior with the exchange of (1 ↔ 2 ) and (1 ↔ 3).
We would like to emphasize that these three terms are Nc-
suppressed corrections to the (forward/backward peaks
of the) Bose enhancement of the two gluons in the projec-
tile wave function while the third gluon is emitted inde-
pendently, which was the behavior that we have observed
in the first part of the IdQ,1, IdQ,2 and IdQ,3 terms.

• IX,1 term:
This is the first term that we are analyzing which stems
from the sextupole contribution. Unlike the previous
terms that we have analyzed, all the terms that originate
from the sextupole contribution lead to the interference of
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all three gluons and there are no independent emissions.
After this short comment, let us take a closer look at IX,1

term. It is composed of four different contributions. The
first contribution is proportional to

μ2(k2 − q2, q2 − k1) μ2(k1 − q1, q3 − k3)

×μ2(k3 − q3, q1 − k2) ∝ F [(k2 − k1)R]

×F2 {[(k1 − q1) − (k3 − q3)] R} . (77)

The first form factor is peaked around k1 = k2 while
the other two form factors peaked around k1 − q1 =
k3 − q3. Thus, this term is a contribution to the forward
peak of the HBT correlations of gluons k1 and k2 together
with the forward peak of the Bose enhancement of gluons
k1 − q1 and k3 − q3 in the projectile wave function. Its
mirror image, given by the transformation k3 → −k3, is a
contribution to backward peak of the Bose enhancement
of k1 − q1 and k3 − q3 in the projectile wave function
together with a contribution to the forward peak of the
HBT correlations of gluons k1 and k2.
The second term in IX,1 is proportional to

μ2(k2 + q2, k1 − q2) μ2(k3 − q3, q1 − k1)

× μ2(q3 − k3,−q1 − k2) ∝ F [(k2 + k1)R]

× F2 {[(k1 − q1) − (k3 − q3)] R} . (78)

The first form factor is peaked around k1 = −k2 and the
remaining two form factors are the same as the previous
contribution. Therefore, one can identify this term as a
contribution to the backward peak of the HBT correla-
tions of the gluons k1 and k2 together with the forward
peak of the Bose enhancement of the gluons k1 − q1 and
k3 − q3 in the projectile wave function. Obviously, its
mirror image, given by the transformation k3 → −k3, is
a contribution to the backward peak of HBT correlations
of gluons k1 and k2 together with the contribution to the
backward peak of the Bose enhancement of the gluons
k1 − q1 and k3 − q3 in the projectile wave function.
The third term in IX,1 is proportional to

μ2(k1 − q2, q2 − k2) μ2(k2 − q1, k3 − q3)

×μ2(q1 − k1, q3 − k3) ∝ F [(k2 − k1)R]

× F2 {[−(k1 − q1) − (k3 − q3)] R} . (79)

The first form factor in this term is peaked around k1 =
k2 while the other two form factors are peaked around
k1 − q1 = q3 − k3. Thus, it is clear that this term is a
contribution to the forward peak of HBT correlations of
gluons k1 and k2 together with the backward peak of the
Bose enhancement of gluons k1 − q1 and k3 − q3 in the
projectile. Its mirror image, given by the transformation

k1 → −k1, is a contribution to the backward peak of
HBT correlations of gluons k1 and k2 together with the
forward peak of the Bose enhancement of gluons k1 −q1

and k3 − q3.
The last term in IX,1 is proportional to

μ2(−k1 − q2, q2 − k2) μ2(k2 + q1, q3 − k3)

×μ2(k3 − q3, k1 − q1) ∝ F [(−k2 − k1)R]

× F2 {[(k1 − q1) + (k3 − q3)] R} . (80)

The first form factor is peaked around k1 = −k2 and the
remaining two form factors are peaked around k1 −q1 =
q3 − k3. Therefore, it is a contribution to the backward
peak of HBT correlations of gluons k1 and k2 together
with the backward peak of the Bose enhancement of glu-
ons k1 − q1 and k3 − q3 in the projectile wave function.
Its mirror image, given by the transformation k1 → −k1,
is a contribution to the forward peak of HBT correlations
of gluons k1 and k2 together with the forward peak of the
Bose enhancement of gluons k1 − q1 and k3 − q3 in the
projectile wave function.
It can easily be shown that IX,2 and IX,3 exhibit a simi-
lar behavior as IX,1 with gluons interchanged. IX,2 con-
tributes to (backward/forward) HBT correlations of glu-
ons k2 and k3 together with (backward/forward) Bose
enhancement of gluons k1 − q1 and k2 − q2 in the pro-
jectile wave function. Finally, IX,3 contributes to (back-
ward/forward) HBT correlations of gluons k1 and k3

together with (backward/forward) Bose enhancement of
gluons k2−q2 and k3−q3 in the projectile wave function.

• IX,4 term:
This term has four different contributions and they all
contribute to the Bose enhancement of all three gluons.
The first contribution in IX,4 is proportional to

μ2(k2 − q2, q1 − k1) μ2(k1 − q1, q3 − k3)

× μ2(k3 − q3, q2 − k2) ∝ F{[(k2 − q2) − (k1 − q1)]R}
× F{[(k1 − q1) − (k3 − q3)]R}
× F{[(k3 − q3) − (k2 − q2)]R}. (81)

The first form factor is peaked around k1 −q1 = k2 −q2,
the second one is peaked around k1−q1 = k3−q3 and the
last one is peaked around k2 −q2 = k3 −q3. Therefore, it
is clear that this term is a contribution to the forward peak
of the Bose enhancement of gluons k1 − q1 and k2 − q2,
gluons k1−q1 and k3−q3, and gluons k2 −q2 and k3−q3

in the projectile wave function. Its mirror image, given
by the transformation k3 → −k3, is a contribution to
the forward peak of the Bose enhancement of the gluons
k2 − q2 and k1 − q1 together with the backward peak of
the Bose enhancement of the gluons k1 −q1 and k3 −q3,
and gluons k2 − q2 and k3 − q3 in the projectile wave
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function.
The second contribution in IX,4 is proportional to

μ2(k2 − q2, q3 − k3) μ2(k3 − q3, k1 − q1)

× μ2(q1 − k1, q2 − k2) ∝ F{[(k2 − q2) − (k3 − q3)]R}
× F{[(k1 − q1) + (k3 − q3)]R}
× F{[(q1 − k1) + (q2 − k2)]R}. (82)

Clearly, this is a contribution to the forward peak of Bose
enhancement of gluons k2 −q2 and k3 −q3 together with
the backward peak of the Bose enhancement of gluons
k1 −q1 and k2 −q2, and gluons k1 −q1 and k3 −q3 in the
projectile wave function. Its mirror image is given by the
transformation k1 → −k1. Therefore, it contributes to
the forward peak of Bose enhancement of gluons k2 −q2

and k3−q3, gluons k1−q1 and k2−q2, and gluons k1−q1

and k3 − q3 in the projectile wave function.
The third contribution in IX,4 is proportional to

μ2(k2 − q2, k1 − q1) μ2(k3 − q3, q1 − k1)

× μ2(q3 − k3, q2 − k2) ∝ F{[(k2 − q2) + (k1 − q1)]R}
× F{[(k3 − q3) − (k1 − q1)]R}
× F{[(q3 − k3) + (q2 − k2)]R}. (83)

By looking at the peaks of the form factors, it is straight-
forward to see that this is a contribution to the forward
peak of the Bose enhancement of the gluons k1 − q1

and k3 − q3 together with a backward peak of the Bose
enhancement of the gluons k1 − q1 and k2 − q2, and glu-
ons k3−q3 and k2 −q2 in the projectile wave function. Its
mirror image is given by the transformation k3 → −k3.
Therefore, it contributes to the forward peak of the Bose
enhancement of the gluons k2 − q2 and k3 − q3 together
with a backward peak of the Bose enhancement of the
gluons k1 − q1 and k3 − q3, and gluons k1 − q1 and
k2 − q2 in the projectile wave function.
The last contribution in IX,4 is proportional to

μ2(q1 − k1, q3 − k3) μ2(k1 − q1, q2 − k2)

× μ2(k2 − q2, k3 − q3) ∝ F{[(q1 − k1) + (q3 − k3)]R}
× F{[(k1 − q1) − (k2 − q2)]R}
× F{[(k2 − q2) + (k3 − q3)]R}. (84)

Clearly, this term is a contribution to the forward peak
of the Bose enhancement of gluons k1 − q1 and k2 − q2

together with a backward peak of the Bose enhancement
of the gluons k1 − q1 and k3 − q3, and gluons k2 − q2

and k3 − q3 in the projectile wave function. Its mirror
image is given by the transformation k1 → −k1. Thus, it
contributes to the forward peak of the Bose enhancement
of gluons k1 − q1 and k3 − q3 together with a backward

peak of the Bose enhancement of the gluons k1 − q1 and
k2 − q2, and gluons k2 − q2 and k3 − q3 in the projectile
wave function

• IX,5 term:
The last term that stems from the sextupole contribution
at O(1/N 4

c ) is the IX,5 term. It has four different contri-
butions and all of them contribute to the HBT correlations
of all three gluons.
The first contribution in IX,5 is proportional to

μ2(k2 − q2, q2 − k1) μ2(k1 − q1, q1 − k3)

× μ2(k3 − q3, q3 − k2) ∝ F[(k2 − k1)R]
× F[(k1 − k3)R] F[(k3 − k2)R]. (85)

In this term, the form factors are peaked around k2 = k1,
k1 = k3 and k3 = k2. Thus, it is a contribution to the
forward peak of the HBT correlations of gluons k1 and k2,
gluons k1 and k3, and gluons k2 and k3. The mirror image
of this term is given by the transformation k3 → −k3 and
it contributes to the forward peak of the HBT correlations
of k1 and k2 together with backward peak of the HBT
correlations of the gluons k1 and k3, and gluons k2 and
k3.
The second contribution in IX,5 is proportional to

μ2(k2 − q2, q2 − k3) μ2(k3 − q3, q3 + k1)

× μ2(q1 − k2,−k1 − q1) ∝ F[(k2 − k3)R]
× F[(k1 + k3)R] F[(−k2 − k1)R]. (86)

The form factors in this term are peaked around k2 = k3,
k1 = −k2 and k1 = −k3. Hence, this term contributes
to the forward peak of the HBT correlations of gluons
k2 and k3 together with the backward peak of the HBT
correlations of gluons k1 and k2, and gluons k1 and k3. The
mirror image of this term is given by the transformation
k1 → −k1. Therefore, it contributes to the forward peak
of the HBT correlations of gluons k1 and k3, gluons k2

and k3, and gluons k1 and k2.
The third contribution in IX,5 is proportional to

μ2(k2 + q1, k1 − q1) μ2(k3 − q3, q3 − k1)

× μ2(q2 − k3,−k2 − q2) ∝ F[(k2 + k1)R]
× F[(k3 − k1)R] F[(−k2 − k3)R]. (87)

In this term the form factors are peaked around k2 = −k1,
k3 = k1 and k2 = −k3. It contributes to the forward
peak of HBT correlations of gluons k3 and k1 together
with a backward peak of the HBT correlations of gluons
k1 and k2, and gluons k2 and k3. On the other hand, its
mirror image (given y the transformation k3 → −k3)
contributes to the forward peak of the HBT correlations
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of gluons k3 and k2 together with the backward peak of
the HBT correlations of gluons k1 and k2, and gluons k1

and k3.
Finally, the last contribution in IX,5 is proportional to

μ2(k2 + q3, k3 − q3) μ2(−k1 − q1, q1 − k3)

× μ2(k1 − q2, q2 − k2) ∝ F[(k2 + k3)R]
× F[(−k3 − k1)R] F[(k1 − k2)R]. (88)

Clearly, this term contributes to the forward peak of the
HBT correlations of the gluons k1 and k2 together with the
backward peak of the HBT correlations of the gluons k2

and k3, and gluons k3 and k1. Its mirror image is given by
the transformation k1 → −k1. Therefore, it contributes
to the forward peak of the HBT correlations of the gluons
k1 and k3 together with the backward peak of the HBT
correlations of the gluons k2 and k3, and gluons k1 and
k2.

4 Conclusions

To conclude, we have calculated the inclusive two and three
gluon production in p-A collisions at mid rapidity in the CGC
formalism. We use the generalized McLerran–Venugopalan
model to perform the projectile averaging. This model allows
for accounting for the finite transverse size of the projectile.

We observe that in the full dilute-dense limit that goes
beyond the glasma graphs, the expression for the cross sec-
tion double inclusive gluon production contains two types of
terms: a product of two dipole amplitudes and a quadrupole.
The origin of the quadrupole term is the contribution to scat-
tering where the two incoming gluons exchange color while
propagating through the target.

We further used simple physical assumptions about the
target structure to express the quadrupole average in terms
of products of averages of two dipoles. We stress that this
factorization is not a result of the large Nc limit and is, in
fact, completely unrelated with the large Nc expansion. It
is rather the result of the physical expectation that the color
neutralization of the target ensemble happens on transverse
scales of order 1/Qs . As discussed in [40,41], this approxi-
mation does not take into account the “classical” correlated
term arising from the contributions to transverse integrals
where the produced particles have to be close to each other
in the incoming projectile wave function.

The resulting expression for double inclusive production
is quite simple, see Eq. (23). It exhibits very similar terms to
those obtained for double inclusive quark production in [40,
41]. Just like there, we find that all the quantum interference
effects that constitute the genuine multiparticle correlations
(as can be extracted e.g. using the cumulant method [64–67])

at order 1/N 2
c , given by the I1 term in (23), originate from the

quadrupole. Our results in this part of the paper are consistent
with [55]. We observe two types of quantum interference
effects – the Bose enhancement of gluons in the projectile
wave function and the Hanbury–Brown–Twiss interference
effect. In the case of gluons (differently from the production
of identical quarks) the two effects enhance the production
of gluons which are both collinear and anticollinear in the
transverse plane. These same effects have been observed in
the glasma graph calculation earlier [25–30,32,33].

Additionally to [55] we identify the Bose enhancement
terms in the target wave function. There is an interesting
difference in this aspect between the full dilute-dense calcu-
lation presented here, and the glasma graphs of [25–30]. In
the glasma graph calculation, which is based on the dilute-
dilute limit, and is therefore symmetric between the projec-
tile and the target, the Bose enhancement in the target wave
function is of the leading order in 1/Nc, just like the Bose
enhancement in the projectile. In the complete dilute-dense
framework utilized in the present paper this effect, although
present, is suppressed as 1/N 2

c relative to the projectile Bose
enhancement effect.

We have also computed the triple inclusive gluon produc-
tion in the dilute-dense limit for the first time. Our result
is given in Eq. (71). Although the expressions are lengthy,
the basic physics is very simple. One observes terms in the
production which involve the interference between two of
the gluons, and independent emission of the third one. Such
terms would be subtracted if one would calculate the three
particle cumulant rather than write up the three particle inclu-
sive cross section. Additionally, there are genuine three par-
ticle correlation terms which appear at order 1/N 4

c – these
are the IX,i terms in (71). These terms originate solely from
the sextupole in the cross section. They include interference
due to Bose enhancement and HBT contributions of all three
particles, as well as “mixed” terms where two of the particles
are coupled via Bose enhancement, and other two due to the
HBT effect.

These features are very similar to those observed in three
quark production in [40,41]. There is one interesting albeit
expected difference. In production of three quarks the cor-
rection due to interference of all three quarks has an opposite
sign to the term where one quark is emitted independently
of the other two (which interfere). It therefore has a flavor of
“unitarization correction” as discussed in [40,41]. For gluon
production this is not the case. All terms in the cross section
are positive, and thus the genuine three gluon interference
term enhances the correlations rather than weakening them.

Correlations among more than two particles have been
studied at RHIC and the LHC, e.g., in the context of the
study of properties of the produced medium [68–70], for
the study of HBT correlations [71] or for extraction of the
azimuthal asymmetries [72,73]. Without some simplifica-
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tions and implementation of models for the proton and nuclei,
it is very difficult to provide definite predictions beyond the
long range pseudorapidity nature of our correlations. Such
study and the computation of several gluon inclusive pro-
duction that is paved by the present work, with the obvious
extension to the four gluon inclusive case, are left for future
work.
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