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Abstract The masses of the D;‘O(2317) and Dy (2460)
resonances lie below the DK and D*K thresholds respec-
tively, which contradicts the predictions of naive quark mod-
els and points out to non-negligible effects of the D™ K
loops in the dynamics of the even-parity scalar (J* = 0™)
and axial-vector (J™ = 17) ¢5 systems. Recent lattice QCD
studies, incorporating the effects of the D™ K channels,
analyzed these spin-parity sectors and correctly described
the D};(2317) — Dy(2460) mass splitting. Motivated by
such works, we study the structure of the D},(2317) and
Dy 1(2460) resonances in the framework of an effective field
theory consistent with heavy quark spin symmetry, and that
incorporates the interplay between D™ K meson-meson
degrees of freedom and bare P-wave cs states predicted by
constituent quark models. We extend the scheme to finite
volumes and fit the strength of the coupling between both
types of degrees of freedom to the available lattice levels,
which we successfully describe. We finally estimate the size
of the D™ K two-meson components in the D},(2317) and
Dy 1(2460) resonances, and we conclude that these states
have a predominantly hadronic-molecular structure, and that
it should not be tried to accommodate these mesons within
cs constituent quark model patterns.

1 Introduction

The D;‘O(2317) and Dy (2460) mesons were discovered in
2003, the first one by the BABAR Collaboration in the D} 7°
invariant mass spectrum with J* = 07 quantum num-
bers [1] and the second one by the CLEO Collaboration in the
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J™ = 1% sector analyzing the D} * 7% channel [2]. The states
quickly raised attention due to their narrow widths and low
masses: the D;‘O(2317) meson has a width of I' < 3.8 MeV
(95% CL) and a mass of 2317.7 £ 0.6 MeV, 40 MeV below
the DK threshold, while the Dy (2460) width and mass are
' < 3.5 MeV (95% CL) and M = 2459.5 &+ 0.6 MeV,
45 MeV below the D*K threshold. Such low values could
not be accommodated in the predictions of the so far fruit-
ful quark models [3-8] and lattice QCD calculations [9-15],
that expected these resonances to lie well above the respec-
tive DK thresholds.

The presence of the heavy charm quark in the D; states
implies the validity, up to Agcp/m g corrections, of Heavy
Quark Spin Symmetry (HQSS) [16-20], with m o the heavy
quark mass (the charm quark mass in this case), and Aqcp a
typical scale related to the dynamics of the light degrees of
freedom. Thus, in good approximation, the spin of the heavy
quark 5o is decoupled from the total angular momentum of
the light degrees of freedom j;, and hence they are separately
conserved. This gives rise to the arrangement of charmed-
strange mesons in doublets, classified by the total angular
momentum and parity, j g , of their light degrees of freedom
content, and with total spin J = j; &= 1/2 and parity . For
the P-wave D mesons, the expected HQSS doublets are,! on
the one hand, jg = %Jr with J© = 01, 1T mesons, which
in S-wave couple to DK and D*K, respectively; and, on the
other hand, j(;' = %+ with J* = 1%, 2T mesons, where
the 1t (27) meson can couple to D*K (DK and D*K) in
D-wave. Axial 17 states will also couple to D*K states in
D-wave. In addition, D™ K* pairs in S and D waves might

! The parity of the light degrees of freedom in this case is +, that
corresponds to an odd parity s antiquark orbiting in P wave around the
heavy quark ¢, while the total angular momentum of the light degrees
of freedom is determined by the sum of the spin 1/2 of the 5 antiquark
and its orbital angular momentum (¢ = 1).
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also couple to the latter Dy states, but however the dynamics
of these pairs will not be governed by chiral symmetry since
light-vector mesons are involved.

Experimentally, the positive parity j; = % doublet would
be composed of the D},(2317) and Dy(2460) mesons,
which were expected to be almost degenerated and broad,
decaying to D® K through S-wave. However, neither of
these two properties are empirically observed. This caused
an intense debate on the nature of the resonances, producing
a wide variety of interpretations among which we highlight
their assignment to cs states [21-23] and two-meson or four-
quark systems [24-37].

The latest lattice QCD (LQCD) simulations [38—40] have
achieved a good description of these charmed-strange reso-
nances when D K interpolators are included in the set of used
operators. Notably, the mass of the D},(2317) was found
to be overestimated if the DK interpolators were omitted,
which gives further support to the idea of a necessary inter-
play between constituent quark model (CQM) configurations
and nearby D® K thresholds.

On the other hand, if one accepts the predictions of gen-
erally successful CQMs, one should expect the charmed-
strange J™ = 0T ground state to lie much closer to the DK
threshold than the physical D},(2317), so the latter meson
pair could act as an essential dynamical agent to reduce the
mass of the bare meson state closer to the experimental value,
as suggested by some authors [41]. Hence, in this picture,
the physical D},(2317) resonance would be the result of a
strong renormalization of a bare cs component, rather than
a new dynamical state generated from a strongly attractive
DK interaction. Nevertheless, since the required renormal-
ization would be quite significant, one would expect, even in
this context, that the D7,(2317) resonance will acquire a siz-
able two-meson molecular probability. Indeed, the low-lying
P-wave charmed-strange mesons were studied in Ref. [42]
employing a widely used CQM [43—45], where the coupling
between the quark-antiquark and meson—-meson degrees of
freedom was modeled with the 3 Py transition operator [46].
In that work, where all the parameters were constrained from
previous studies on hadron phenomenology, the bare 13 Py c§
state? developed a large mass-shift as a consequence of its
coupling with the D K -meson pair, becoming its mass closer
to that of the physical D},(2317) resonance. On the other
hand, the dressed state contained a large molecular compo-
nent that gave rise to a D K -meson pair probability of around
33% [42] in the final configuration of the meson.

In sharp contrast, the LQCD energy-levels reported in
Refs. [39,40] were analyzed in Ref. [47], employing an auxil-
iary potential method, where D K molecular probabilities for

2 We use the nomenclature n 2511, J+1 for the radial, spin, orbital and
total angular momentum quantum numbers of a quark-antiquark state.
In addition the parity of the state is (—1)“+1.
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the Djo (2317) much higher, of the order of 70%, were found.
This result was consistent with the previous values obtained
in Ref. [48]. The authors of this work performed a LQCD
calculation of several heavy-light meson—Goldstone boson
scattering lengths, that they used to fit the LECs entering
in the unitarized next-to-leading (NLO) heavy meson chiral
perturbation theory (HMChPT) coupled-channel 7 -matrix
derived in Ref. [49]. The latter amplitudes were employed
to estimate the D,(2317) molecular component. These high
values for the DK probabilities? are similar to those obtained
in Ref. [51] from the analysis of the experimental DK
invariant mass spectra of the reactions Bt — DYDOKT,
BY — D=DYK* [53] and BY — DK~ n* [54] measured
by the BaBar and LHCb Collaborations, respectively. In all
cases an enhancement right above the threshold is seen and
it is related in Ref. [51] to the presence of the D},(2317).
The latter is dynamically generated when the leading order
(LO) HMChPT amplitudes are used as the kernel of a Bethe—
Salpeter equation (BSE), whose renormalized solutions ful-
fill exact elastic unitarity in coupled-channels.

The predominantly molecular structure of the D;(2317)
and Dj1(2460) resonances has recently received an indi-
rect robust theoretical support in Refs. [55,56] (see also the
review of Ref. [57]). In the first of these two references,
the heavy-light pseudoscalar meson J* = 07 scattering in
the strangeness-isospin (S, I) = (0, 1/2) sector was stud-
ied, and a strong case for the existence of two poles in the
D;;(2400) energy-region was presented. The affirmative evi-
dence came from a remarkably good agreement between a
parameter-free predicted low-lying levels calculated using
NLO HMChHPT unitarized amplitudes [49] and the LQCD
results reported in Ref. [58]. The dynamical origin of this
two-pole structure was elucidated from the light-flavor SU(3)
structure of the interaction, and it was found that the lower
pole would be the SU(3) partner of the D},(2317). Thus,
this latter state will have also clear hadron-molecular origin.
A similar pattern was found for J* = 17 and in the bot-
tom sector. This in fact might solve a long-standing puzzle in
charm-meson spectroscopy, since it would provide an expla-
nation of why the masses, quoted in the PDG [59], of the non-
strange mesons DS (2400) and D{(2430) are almost equal to
or even higher than their strange siblings. In the second ref-
erence [56], it is shown that the well-constrained amplitudes
for Goldstone bosons scattering off charm mesons used in
Ref. [55] are fully consistent with recent high quality data on
the B~ — D7~ 7~ and B — D°K~ 7™ final states pro-
vided by the LHCb experiment in Refs. [54,60], respectively.

3 Note that Ref. [48] made use of the Weinberg compositeness rule [50],
which relates this probability to the scattering length in the limit of
small binding energies. However, the works of Refs. [47,51] employed
a generalization [52] that remains valid for bound states, independently
of their distance to threshold.
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Indeed, all these results suggest a new paradigm for heavy-
light meson spectroscopy that questions their traditional gg
CQM interpretation [56].

Most of these latter works [48,51,55,56] do not incorpo-
rate explicitly the bare cs degrees of freedom, whose effects
are, in principle, encoded in the low energy constants (LECs)
that appear beyond LO in the chiral expansion, and in the
non-perturbative re-summation employed to restore elastic
coupled-channels unitarity. However, and depending on the
proximity of the CQM states to the energy-region under
study, this approximation might not be sufficiently accurate.

Such radically different pictures of the inner structure of
the D},(2317) makes timely a re-analysis of this resonance,
paying special attention to the interplay between meson
molecular and CQM degrees of freedom. We will employ
here the scheme designed in Ref. [61] for its bottom heavy-
flavor partner, and we will try to describe the charm 0% and
1T LQCD energy-levels obtained in Ref. [38]. Such compar-
ison will also serve to further* constrain/determine the LECs
that appear in the approach. The scheme of Ref. [61] started
from a unitary ansatz for the heavy-light-meson-Goldstone-
boson 0" and 1+ amplitudes, based on LO HMChPT B™ K
interactions, and computed for finite volumes. In addition,
and for the very first time in this context, the two-meson
channels were coupled to the corresponding CQM P-wave
By scalar and axial mesons using an effective interaction
consistent with HQSS. In the my — oo limit and besides
HQSS, Quantum Chromodynamics (QCD) acquires also an
approximate heavy flavour symmetry that ensures that the
dynamics of the system containing a single heavy quark is,
up to O(Aqcp/m o) corrections, independent of the flavor of
the heavy quark [20]. As a consequence, the bottom-strange
and charm-strange systems are expected to have a similar
behavior. Hence, the analysis of the By low-lying spectrum
carried out in Ref. [61], can be readily used here to study the
charmed-strange jg = %Jr HQSS doublet.

The recent LQCD simulation of Ref. [38] reported finite
volume energy-levels from a high statistics study of the
J7 = 0% and 1 charmed-strange mesons, D¥;(2317) and
Dy1(2460), respectively, where the effects of the nearby DK
and D*K thresholds were taken into account by employing
the corresponding four-quark operators. As we will discuss
below, the work of Ref. [38] represents a clear improvement
on the pioneering ones of Refs. [39,40]. Some of the energy-
levels reported in Ref. [38] lie in the proximity of, when not
above, the expected CQM bare masses of the ground scalar
and axial charmed-strange states, being thus interesting to
include explicitly these degrees of freedom in the scheme,
since their effects might not be properly taken into account
by simply including LECs. Moreover, in the present study,

4 As it will be discussed below, LECs in the charm and bottom sectors
might be related by heavy-quark flavor symmetry.

we will also include the next (§ = 1, I = 0) higher thresh-
olds, D§*)n, since they appear at energies below some of the
finite-volume levels computed in Ref. [38].

This work is structured as follows. After this Introduc-
tion, the theoretical formalism is described in Sect. 2, where
details about the D™ K and D§*)n scattering amplitudes,
the coupling of the meson-pair degrees of freedom with the
bare CQM cs spectrum, the restoration of unitarity and the
extension of the scheme to finite volume are discussed. In
Sect. 3 our results for the finite volume 0T and 17 energy
levels are presented and compared with the ones reported in
Ref. [38]. The properties of the D;‘O(2317) and Dy1(2460)
mesons, in particular their molecular content, are discussed
in this section. We also compute the energy levels obtained
using the unitarized NLO HMChPT amplitudes derived in
Refs. [48,49], and extensively compare the predictions of this
latter scheme with those deduced by including a bare CQM
pole. The section concludes with predictions for DK S-wave
scattering phase-shifts, and a discussion about a few aspects
of the renormalization dependence of the results obtained in
this work. The conclusions and a summary of results are pre-
sented in Sect. 4. Finally, in Appendix A, we briefly study
the relation between the NLO LECs determined in Ref. [48]
and the parameters of the bare CQM pole found in this work.

2 S-wave Goldstone boson scattering off pseudoscalar
and vector charm mesons: the (S, I) = (1, 0) sector

As mentioned in the Introduction, we will extend the for-
malism of Ref. [61] for the B® K and b5 system to the
charm sector. We will briefly review here the most relevant
aspects, paying attention to the inclusion of the DS(*)r] chan-
nels, whose counterparts were not considered in Ref. [61].

2.1 Interactions

We are interested in the S-wave Goldstone boson (K, K 0
and n) scattering off charm mesons Pé*) = (D'® pt)
D;H*)). We will generically refer as ¢ to the former mesons
and P™ to the latter ones. The heavy-light charm mesons
are described in terms of HQSS matrix field H,,,

Sy

H, 5

P;uyu - Pa)/S), (1)
with v# the four-velocity of the heavy mesons, and a a light-
flavor SU(3) index. The HQSS field combines the isospin
doublet and singlet of pseudoscalar heavy-mesons Pa(c) =
(cﬁ, cd, cE) fields and their vector HQSS partners P; ©,
Transformations of these fields under parity and heavy spin
and chiral rotations can be found for instance in Ref. [61].
The Weinberg—Tomozawa Lagrangian (WTL) describes the

@ Springer
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S-wave P(*)¢ chiral interaction at LO, and it reads [62-65],
i 7a met T b
L= 3Te (A" Hyv [g O + EDE ] , )

with H¢ = yOH; y? the hermitian conjugate of H,, and &
the Goldstone-boson matrix field given by [63],

~

M
§ =exp <l\/_7f> ; 3)

with normalization f ~ 93 MeV and the matrix M reads,

0

o4 oMo, ML + +
atwtvua T K
v - _m_ 4 om8 o mp 0
M = T ﬁ+ﬁ+ﬁ K ,
_ -0 2
K K —\/;T]g-i-%

“

where we explicitly consider the 1y and ng unflavored SU(3)
states. Note that in our normalization the heavy-light meson
field, H, has dimensions of E3/2 (see Ref. [20] for details).
This is because we use a non-relativistic normalization for the
heavy mesons, which differs from the traditional relativistic
one by a factor /M. On the other hand, within the HQSS
formalism, the even parity CQM bare cqg states, associated
to the jg = %Jr HQSS doublet, are described by the matrix
field J, [66],

14y
T2

withv# Yy, = 0.The Y, and Y; fields respectively annihilate

Ja (Y vsv! +Ya), 5

the 0" and 17T bare states belonging to the %+ doublet. Since
in this work we will be interested in the (S, I) = (1, 0) sec-

tor, in what follows and for simplicity we will denote YC(; ) as

Y ) The mass of CQM bare states, l%cg, is arenormalization-
dependent parameter of the scheme [67] that will be dis-
cussed below. At LO in the heavy quark expansion, there
exists only one term invariant under Lorentz, parity, chiral
and heavy quark spin transformations [61],

ic - b
L= ST (H“be“)@ [g*aug - gausf]) +he., (6)
where c¢ is a dimensionless undetermined LEC that controls
the strength of the vertex. This LEC, though it depends on the
orbital angular momentum and radial quantum numbers of
the CQM state, is in principle independent of the spin of the
quark-model heavy-light meson, and of the light SU(3) flavor
structure of the vertex. Thus, up to Aqcp/m o corrections,
it can be used both for / = 0 and J = 1 in the charm and
bottom sectors. Moreover, in the SU(3) limit, the same LEC
governs the interplay between two-meson and quark model

degrees of freedom in all isospin and strangeness channels.
This LEC was found to be ¢ = 0.74 £ 0.05 in Ref. [61]
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from a fit to the LQCD isoscalar b5 0" and 1 energy-levels
computed in Ref. [68].

Let us consider the transitions involving pseudoscalar (P)
heavy-light and Goldstone (¢) mesons,

Pi¢; — Pror, @)

for which the tree level isoscalar’ amplitude (V,) deduced
from the WTL of Eq. (2) reads [69]

(s —u)
2f2’
(e )
W23 0 )

where channels 1 and 2 are DK and D;n, respectively, s and
u are the usual Mandelstam variables and we have considered
the n — n’ ideal mixing [70],°

V21,

1 2V2
m=zn + T’l’- 9)

After projecting into J = 0, we replace

Ve(is,u) =—A

®)

(s —u) 352 — 5% — AJAF
%

2 4s (10)

with £ = (M} +mj] + M} +m7) and Ajpy = (M ) —

m%(F)), where M;(r) and m(r) are the masses of the ini-
tial (final) heavy-light charm and Goldstone mesons, respec-
tively.

The WTL leads to similar isoscalar amplitudes for the
transitions involving vector (P*) heavy-light mesons,

Pior — Ppér. (11)

5 The phase convention for isospin states |/, /3) used in this workis u =
11/2,1/2) and d = —|1/2,1/2), which implies [DT) = — |1, +1),
while the other meson states are defined with a positive sign in front
of the |1, I3) state. Moreover, we use the order DK, as in Ref. [69], to
construct the isoscalar amplitudes.

6 The ideal mixing-angle turns out to be around —19.5 degrees, while
the global fit to determine the n — 1’ mixing angle carried out in [71]
provided a value of —13.3(5) degrees. There is an abundant literature on
this subject, and more recent theoretical works (see for instance [72] and
references therein) found higher absolute values for the mixing-angle,
and therefore closer to the ideal one. Thus for instance, the authors of
Ref. [73] quoted 716,23:8 degrees. Fine details of the n — n’ mixing
are irrelevant for the exploratory study carried out in this work, since,
as we will see, the influence of the va*)n channels on the D};(2317)
and Dy1(2460) dynamics is quite small, and can be taken into account
by mild variations of the rest of the LECs of the scheme. Thus, for sim-
plicity, we find sufficiently accurate to adopt the ideal mixing scheme.
However, n — ' mixing fine details are certainly relevant for studies
on the number of colors and/or pion mass dependencies of the prop-
erties of these resonances, as the one carried out in [72], where m is
extrapolated until values close to 700 MeV.
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Indeed, one gets in this case a potential7 like that of Eq. (8),
supplemented by a term —¢; - €, where €/ () is the polar-
ization four-vector of the initial (final) heavy-light meson.
This latter factor reduces, at LO, to 1 after projecting into
J = 1 (S-wave, i.e., zero orbital angular momentum). In
summary, the amplitudes given in Eq. (8), together with the
projection implicit in Eq. (10) provide the coupled-channel
contact potential, V,.(s), both in the 0" and 17 sectors.

Next, we consider transitions between CQM bare states
[Y®] and P™ ¢ meson pairs, Y — P®¢. From Eq. (6)
we find

Vi (s) A~ic Mo s+m?— M?
() =—A—\VMmiz;————,
cS f CcS ﬁ

5 (1) (12)
A= 1),
NG

with M an m the masses of the P® and ¢ mesons, respec-
tively.

Note that, here, by bare mass, we mean the mass of the
CQM states when the LEC c is set to zero, and thus it is
not a physical observable. In the sector studied in this work,
the coupling to the P )¢ meson pairs renormalizes this bare
mass, as we will discuss below. Since, in the effective theory,
the ultraviolet (UV) regulator is finite, the difference between
the bare and the physical resonance masses is a finite renor-
malization. This shift depends on the UV regulator since
the bare mass itself depends on the renormalization scheme.
The value of the bare mass, which is thus a free parameter,
can either be indirectly fitted to experimental observations,
or obtained from schemes that ignore the coupling to the
mesons, such as some CQMs. In this latter case, the issue
certainly would be to set the UV regulator to match the quark
model and the HMChPT approaches [67].

The vertices in Eq. (12) can be used to compute the con-
tribution [Vex(s)] to P(*)qb scattering via the exchange of
intermediate even-parity charmed-strange mesons. It is given
by [61,67]

Ves () V()

Vex(s) = 5 .
s — (mCE)Z

13)

Finally, the full effective potential, V (s), consistent with
HQSS is given by

Vi(s) = Ve(s) + Vex(s), (14)
that incorporates the interplay between meson-pairs and
CQM degrees of freedom in the P*)¢ dynamics [67].

Note that V.. (s) is obtained from V. (s, u) in Eq. (8) using
the projection implicit in Eq. (10). The LO potentials, V(s)

7 Now channels 1 and 2 are D*K and D}, respectively.

and Vi« (s), are identical in the heavy-quark limit in both the
0™ and 17 sectors. Here, we will include some HQSS break-
ing corrections stemming from the mass difference between
pseudoscalar and vector heavy-light mesons and the masses
of scalar and axial CQM bare states. The scheme derived here
is similar to that followed in Ref. [61], though here the D§*) n
channel has been also included, while the counterpart of this
channel in the bottom-strange sector was not considered in
the latter work.

2.2 Unitarity in coupled-channels

Elastic unitarity in coupled channels is restored by solving
for each J™ sector a BSE, using as kernel the HQSS effective
potential of Eq. (14). The BSE is solved within the so-called
on-shell approximation [74] and using a Gaussian cut-off, A,
to regularize/renormalize its UV behaviour. Thus, the unitary
scattering amplitude 7' (s) in coupled channels is obtained
from the matrix equation

T (s) = V7 I(s) — G(s), (15)

where G (s) is the regularized (A) two-meson loop function.
Normalizations are fixed thanks to the relation between the
S and T -matrices, and the relation of the latter matrix with
phase-shifts [§(s)] and inelasticities [1(s)]. Namely, we use

SG) =1 — —%3()T ()2 (s)
8
. >
1(s)e* %) =1—i8—“Taa(s>, a=1,2, (16)
T

with X (s) = diag(o1(s), 02(s)) and the function o;(s) is
defined as:

1/2 2 .2
M@[s_(m+mb)2] i=12,

(a7

oi(s) =

where A(x, y,z) = x> + y> + 72 — 2xy — 2xz — 2yz and
(a,b) = (D™, K) and (D§*), n) for i = 1 and 2, respec-
tively. Thus, unitarity in coupled-channels can be expressed
as

Y(s+ie)

ImT (s +ie) = —ImG(s + ie) =
167

(18)

The expression for G was given in Egs. (14) and (15) of
Ref. [61] for the B® K pair, and here in coupled channels
it is trivially modified to compute any of the elements of the

diagonal matrix G(s) = diag I:GD(*)K(S), GD§*);7(S)]'

@ Springer
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2.3 CQM states

We have seen that through the coupling of the CQM cs and
the P(*)q‘) degrees of freedom, the effective interaction incor-
porates a term (Vex (s)) driven by the exchange of bare CQM
states (Y *)). Such a term introduces a pole in the two-meson
tree-level amplitudes, Eq. (14), located at the bare mass value,
VA :?;)lcg-. As already mentioned, it should be interpreted as
the mass of the CQM state in the limit of vanishing coupling
to the P (*)qb meson-pairs (¢ — 0), and therefore it is not an
observable. The interaction with the meson cloud dresses the
CQM state through loops [Eq. (15)], renormalizing its mass,
and the dressed state might also acquire a finite width, when
it is located above threshold. At energies far enough I’;)’lcg, the
contribution of V¢« can be regarded as small contact inter-
action that can be accounted for by means of a LEC. How-
ever, the exchange contribution becomes more important for

higher energies approaching 1;)1(;5, and its energy dependence
might then not be safely ignored.

A priori, the value of I;lcg is a free parameter of the present
approach, and moreover it should depend on the renormal-
ization scheme [67]. We will take predictions from quenched
CQMs, which in principle do not include couplings with
nearby meson—-meson channels. In the J7 = 0t sector,
quark models predict, in general, c¢s bare masses well above
Mp+mg, which lead to attractive Vex exchange interactions
at DK threshold, which might help in forming the D (2317)
resonance. Most quark models predict masses in the range of
2.45 — 2.51 GeV for the 13P0 cs state [3,6-8], significantly
far from the D};(2317) experimental mass. With the aim
of improving these predictions, some other models [5,23]
incorporated a one-loop correction diagram to the one-gluon
exchange (OGE) potential, adding a spin-dependent term to
the quark-antiquark potential which affects mesons with dif-
ferent flavor quarks, such as the cs mesons. In these works, it
is shown that this correction is rather small except for the 0"
sector, where large shifts are found and the mass of the CQM
13 Py state is significantly lowered (~ 100 MeV). Indeed,
it is found in the 2.35-2.38 GeV region — closer to but still
above the experimental D};,(2317) mass. Nevertheless, these
predicted states would be still above the DK threshold and
their width would be large due to the decay into final DK,
and difficult to reconcile with the experiment that currently
provides an upper bound of a few MeV for its total width,®
as mentioned in the Introduction. Moreover, quark models
including these modified OGE potential will still face diffi-
culties to describe the J* = 171 sector, where these correc-

8 Being the D};(2317) resonance located below the DK threshold, all
its hadronic decays are suppressed by isospin symmetry. Depending
on different dynamical assumptions, decay widths, within molecular
schemes, from 10 keV to more than 100 keV have been predicted [75—
77].

@ Springer

Table 1 The two sets of l%cg CQM bare masses and the D™ K and
Df.*)n averaged threshold energies (in MeV units) used in this work,

taken from Ref. [78]. In addition, we take an average kaon mass of
mg = 495.6 MeV

JT [Set A] [Set B]
Mes Mes (Mpew +mg) — (Mpe +my)
ot 2510.7 2382.9 2362.8 2516.1
1+ 2593.1 2569.7 2504.2 2660.0
1t -0t 82.4 186.8

tions are quite small, and the experimental mass pattern is
similar to that found in the isoscalar-scalar sector.

One should bear also in mind, as the one-loop OGE correc-
tion brings the bare state closer to the D K threshold, the inter-
play between the two-meson channel and the CQM degrees
of freedom might have a major impact on the description of
the resonance properties and LQCD energy-levels.

Thus, in this study we will explore both types of CQM:s.
On one side, we will take the noacg values for the qu’ = %+
charmed-strange meson doublet predicted in the CQM cal-
culations of Refs. [45,78] (Set A in Table 1). Such CQM
is based on the assumption that the light constituent quark
mass and the exchange of pseudo-Goldstone bosons arise as
aconsequence of the spontaneous breaking of the chiral sym-
metry in QCD. Besides, the dynamics is completed with a
perturbative OGE potential and a non-perturbative screened
confining interaction [43,45]. On the other hand, another set
of bare masses (Set B in Table 1) will be employed, pre-
dicted within the same CQM but supplemented by the one-
loop OGE corrections derived in Ref. [5] (see Ref. [78] for
further details).

In contrast to the bottom sector studied in Ref. [61], we
see in Table 1 how the values of the bare masses lie close to
the Dé*) n threshold and, consequently, this channel has been
incorporated to the formalism.

2.4 NLO corrections

We will also use the O(p?) (NLO) HMChPT amplitudes
derived in Ref. [49], with LECs determined from the lat-
tice calculation in Ref. [48] of the S-wave scattering lengths
in several (S, ) sectors. After unitarization, the scheme
provides an accurate description of the P¢ interactions in
coupled channels. For instance, as it is shown in Ref. [55]
and already mentioned in the Introduction, the finite volume
energy-levels in the (S, 1) = (0, 1/2) channel calculated
with the unitarized O(p?) amplitudes, without adjusting any
parameter, are in an excellent agreement with those recently
reported by the Hadron Spectrum Collaboration [58]. These
chiral amplitudes predict the existence of two scalar broad
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resonances, instead of only one, with masses around 2.1 and
2.45 GeV, respectively [55]. The lower pole would form,
together with the D},(2317) (also correctly predicted in
[55]), a SU(3) 3 multiplet. This scheme provides also an
excellent description of the recent LHCb data [60] on the
B~ — DT rm~n~ final states and give solution of a num-
ber of puzzles [56]. Moreover, these NLO unitarized ampli-
tudes have been used in Ref. [79], as input of coupled-
channel Muskhelishvili-Omnes integral equations, whose
solutions produced scalar form factors of the semileptonic
heavy meson decays D — mfv,, D — K{lv;, B — mliy
and By — K £y in good agreement with LQCD and light-
cone sum rule predictions.

The consideration of the contributions from explicit
exchanges of CQM states, in addition to the LO HMChPT
amplitudes, contemplated in the previous subsections pro-
vides a different perspective to the physiognomy of the P )¢
interactions. Thus, it is worth discussing if there exists an
energy-regime where the LO & CQM scheme might mimic
the NLO amplitudes, and when the CQM effects cannot be
properly accounted for by the LECs that appear beyond LO
in the chiral expansion. Such study could provide further
insights on the energy range of applicability of the unita-
rized effective theory. Hence, in addition to results obtained
with a LO and CQM interaction, we will also show results
from the (S, I) = (1, 0) NLO input derived in Refs. [48,49],
and will compare both sets of predictions with the LQCD
energy-levels reported in Ref. [38].

2.5 Poles, couplings and the compositeness condition for
bound states

The interplay between meson—-meson and CQM cs states
might dynamically generate new states that arise as poles
of the scattering amplitudes on the complex s-plane. There

exist two thresholds s_(:’z),
2
s = (Mpew £mk)”, (19)
@) 2
s = (Mpo £my) (20)

where, for future purposes we have also defined s"? Bound
states are identified as poles of the scattering amplitudes
located on the real axis, below the lowest threshold, sfrl),
on the first Riemann sheet (FRS).

Additionally, resonances are identified with poles on the
second Riemann sheet (SRS) of the amplitudes, below the
real axis and above sj_l). In our two-channel problem, Rie-
mann sheets (RSs) are denoted as (&1 &), & = 0,1, and
are defined in the whole complex plane through analytical
continuations of the loop functions [80]:

oi(s)

Gii(s) = Gii(s) +i s
T

&, seC, 2n

where the cuts for o; (s) go along the real axis for —oo < s <
s and sﬁ) < § < oo. The function is chosen to be real and
positive on the upper lip of the second cut, sﬁ) < § < 00.
Therefore, o;(s) satisfies 0 < o0y (s + i€) = —o;(s — ie) for
sﬁ) <selR.

With all these definitions, (00) is the physical RS, while
the SRS is defined by requiring continuity across the unitarity
cut between its fourth quadrant and the first one of the FRS.
Therefore, the definition of the SRS of the amplitudes varies
below and above the highest threshold (branch point of the
T-matrix) [80], and it corresponds to (10) or (11) when the
real part of s is above sil), but below sf), or above both
thresholds, respectively (see Ref. [80] for some more details).

The mass and the width of the bound state/resonance can
be found from the position of the pole on the complex energy
plane. Close to the pole, the T-matrix behaves as

8i8j

Tij(s) ~ -

(22)

The quantity \/sg = Mg — i I'g/2 provides the mass (Mg)
and the width (I"g) of the state, and g; is the complex cou-
pling of the resonance to the channel i that it is obtained
from the residue. The residues can be used to get informa-
tion on the compositeness of the bound states. Motivated by
the Weinberg compositeness condition [50,81,82], the prob-
ability of finding the D™ K or D5 molecular component
in the bound state wave function is given by [52,83],

_g2 %G

Pi=-gj as

, (23)
S:M}%

where M, is the bound state mass. The energy dependence
of the potential produces probabilities in Eq. (23) that devi-
ate from one. We will restrict the discussion to the case
of bound states. The evaluation of Eq. (23) for resonances
gives rise to complex values of P;, loosing then a straight-
forward probabilistic interpretation. (Further details can be
found, for instance, in Section 4.2 of Ref. [67]. See also
Refs. [84,85].)

2.6 Finite volume and details of the simulation of Ref. [38]

As mentioned in the Introduction, the simulation of Ref. [38]
reported finite volume energy-levels from a high statistics
study of the D;‘O(2317) and Dj1(2460) resonances, taking
into account effects of the nearby DK and D*K thresh-
olds by employing appropriate four-quark operators. Six
ensembles with Ny = 2 non-perturbatively O(a) improved
clover Wilson sea quarks at lattice-spacing a = 0.071 fm
were employed in Ref. [38], covering different spatial vol-
umes and pion masses: linear lattice size (L) of 1.7 fm
to 4.5 fm were realized for m, = 290 MeV and 3.4 fm

@ Springer
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and 4.5 fm for an almost physical pion mass of 150 MeV.
Thus, the work of Ref. [38] represents a clear improve-
ment on the pioneering ones of Refs. [39,40], where an
ensemble with m,; = 156 MeV, at a fairly coarse lat-
tice spacing of a = 0.09 fm and a small spatial lattice
extent of L = 2.9 fm (Lm, = 2.29) were analyzed using
the effective range approximation to extract infinite volume
results. Thus, the use of a finer lattice spacing in Ref. [38]
is important since discretization effects can be substantial
for observables involving charm quarks, while exploring the
dependence on the spatial volume is needed, since contri-
butions which are exponentially suppressed in Lm, (that
are ignored in the Liischer formalism) may not be small for
Lmy, =2.29.

Nevertheless, we should warn the reader that by employ-
ing Ny = 2 dynamical fermions, effects arising from strange
sea quarks are omitted in Ref. [38], with the expectation that
the valence strange quark provides the dominant contribu-
tion. This seems to be the case, as can be inferred from Fig. 10
of this latter reference, where the splittings found in Ref. [38]
of the two lowest states, with the noninteracting threshold for
the scalar and axial-vector channels, for m, =290 MeV and
150 MeV and various volumes are compared to the m, =
156 MeV 2+1 dynamical quarks results obtained in Ref. [40]
for Lm; = 2.29. The latter single-volume splittings lie in
the volume-dependence curves derived in Ref. [38], but with
significant larger errors. Firstly because the number of gauge
configurations used in Ref. [38] is around one order of mag-
nitude larger than that computed in Ref. [40], and secondly,
perhaps, as consequence of the discretization errors that
should be higher in this LQCD simulation (see for instance
the sizable breaking of Lorentz symmetry in the heavy-light
meson dispersion relation given in Eq. (2) and Table VI of
Ref. [40]).

To compare with the energy-levels reported in Ref. [38],
we consider our scheme, based on unitarized HMChPT and
the contribution of CQM states, in a cubic box of side L,
and periodic boundary conditions for the fields. The three
momentum is quantized g = 2T”ﬁ (7 € 7). The integrals in
the loop functions G(s) are replaced by their finite volume
versions, 5(5, L) = diag [GD(*)K(S, L), éDﬁ*)n(s’ L)] [86,

871, involving the sum over all possible g,

QG )6—2(?1'2—122)/1\2

~ 1
Gj(va):ﬁng } REEk
nert s — [ijm (q) + wg,;(q )}
Wpe Wy,

Q@G)=——1——,
(C]) ZwP(*>a)¢j
J

(24)

1
where w;(§) = (/\/l,2 +G?)?, with M; the mass of the
heavy-light meson or the Goldstone boson for i = P®

@ Springer

or ¢, respectively. (We have adopted relativistic dispersion
relations as in Ref. [38].) Up to the order considered in this
work, there are no finite volume corrections to the potential,
so the full volume dependence is carried by the loop func-
tion G defined in a finite box. The T-matrix in finite volume,
f(s, L), is given by,

T s, L) =V~'(s) = G(s, L). (25)

Thus, the energy-levels E(L) (s = E2, E € R) are com-
puted from the poles of T(s, L) for each size of the box.
The spectrum becomes discrete, with levels that, in princi-
ple, can be associated to two-meson (P ) ¢) scattering states.
In the non-interacting case, the free energies, ET¢ (7 ) and

DWK
E'™ () are recovered,
Dy™'n
E = o P (q) +wp;(q). (26)

Hence, the continuous volume dependent curves that will be
presented below are essentially the Liischer curves obtained
from the phase shift by solving

8(q) + ¢(q) = nm 27

with § = gL /27 and ¢ (¢) determined by the Liischer func-
tion (see Eq. (6.13) of Ref. [88]).

On the other hand, for a proper comparison with the results
of Ref. [38], it is necessary to use the lattice meson masses
obtained in that simulation. That work reported two dif-
ferent sets of results that correspond to two different pion
masses used to compute the energy-levels. We will label
here the two sets of LQCD levels by Ensembles I and II,
for m; = 290 MeV and 150 MeV, respectively. We take
the 7w, K, D and D* masses, for the different box-sizes con-
sidered in each of the ensembles, from Table I of Ref. [38].
Besides, the 0~ and 1~ DS(*) masses for the Ensemble II are
taken from Table VII (L/a = 64) of Ref. [38], while for
Ensemble I the masses of the charmed-strange heavy-light
mesons have been obtained using the values of (my+ —mg-)
and (m+ —m-) displayed in Fig. 13 of the latter reference,
and taking for the mg+ and m |+ masses the L /a = 64 values
reported in Table III of the same work (Ref. [38]). Hence, we
neglect any dependence on L in the masses of 0~ and 1~ ¢s
ground states.” The masses used in this work are compiled in
Table 2.

9 It is not straightforward to extract the masses of the 0~ and 1~ Dg*)
mesons, for each of the pion masses and volumes studied in Ref. [38],
from the results reported in that work. Note, however, that volume
effects in the masses of these mesons are expected to be even smaller
than for the D-meson, and that these masses enter only through the
small effects originated from the coupled-channels dynamics, when the

DAE*)n components are considered.
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Table 2 LQCD masses (in MeV units) of the 0~ and 1~ D_g*) mesons
used in this work. They have been obtained from Tables III, VII and
Fig. 13 of Ref. [38] [we always use the results corresponding to the
highest volume (L/a = 64); see discussion in the text for details].
We also give experimental masses, taken from the Review of Particle
Physics [59], and the difference between the experimental and lattice
spin-averaged Dy masses

Ensemble I Ensemble II Exp
Mp, 1978(4) 1976.9(2) 1968.28
Mpx 2100(7) 2094.9(7) 2112.1
MeP — pplat 5(5) 9.6(7)

The mass of the n meson is not reported in Ref. [38] either,
so we estimated its value, as function of the volume and pion
mass, using the Okubo mass formula [89] as follows
m}ft =my " +mgt — mg ", (28)
with m% = 4(m%( — m%)/3. Finally for unphysical pion
masses, the CQM bare masses are also corrected using
the difference between the experimental and lattice spin-
averaged Dy masses,

olat o

Mz =me5 +M™ — MP, (29)

with M = (Mp, +3M ) /4.

Uncertainties in all insput lattice mesons masses (Table I
o lat

of Ref. [38] and Table 2 of this work), as well as in m_;, are
taken into account in the error budget of our final results, as
we will detail in the next section.

To end this subsection, we would like to stress that con-
sidering the LQCD meson masses, for finite volumes and
unphysical pions, it is important to set up correctly the thresh-
olds and to properly compute the loop function in a finite box.
However, the current approach will still suffer from some sys-
tematic errors, mostly because we have not considered the
dependence of the Goldstone decay constant, that appear in
the WTL interaction, on the volume and the unphysical pion
mass (such information is not given in Ref. [38]), and we
still use its value in the infinite-volume chiral limit.'" Nev-
ertheless, some of this dependence might be partially reab-
sorbed in the parameters fitted to the LQCD energy-levels,
and we certainly benefit from the fact that the pions simu-
lated in Ref. [38] are quite light and close to the physical
one.

10" We have simplified the discussion and have focused on f. An accu-
rate treatment might require to go beyond LO in the chiral expansion,
which in turn might create some problems of double counting with the
contribution from CQM states. We will come back to this point below.

3 Results and discussion
3.1 LO HMChPT+CQM analysis
3.1.1 Fit details

The S-wave D™ K interaction in the LO+CQM interaction
scheme depends on three, a priori, free parameters: the Gaus-
sian cut-off A, the LEC ¢ (Eq. (12)) and the masses of the
bare CQM cs state, ;;lcg. Nevertheless, we will consider dif-
ferent CQM meson masses in the 07 and 17 sectors (Sets A
and B in Table 1), as discussed in Sect. 2.3.

To determine the values of the LEC ¢, that controls the
interplay between CQM and meson-pairs degrees of free-
dom, and the Gaussian cut-off, we perform, for each set (A
and B) of bare CQM masses and lattice ensembles (I and
II) a combined fit to the 0" and 1 energy-levels, using an
uncorrelated merit function defined as,

2
E{at _ El‘h
2 _
X‘Z<}w5)’ (30)
L

i

where the sum spans over the 0" and 11 energy-levels com-
piled in Table III of Ref. [38]. For both 0" and 17 sectors,
only two energy-levels for each volume are fitted. We have
not considered in the fits the third 17 level given in the last
column of that table. It is rather insensitive to the spatial vol-
ume, suggesting only a small coupling to the D*K threshold
and, in Ref. [38], it is identified with the D;1(2536) reso-
nance, that would presumably have a large overlap with the
jg = %Jr HQSS state.

We show in Figs. 1 and 2 the 0" and 17 energy-levels
obtained using sets A and B of CQM bare masses, respec-
tively. Fitted parameters and best fit x2/dof values are col-
lected in Table 3.

We see that the Set A of bare CQM masses provides
a fairly good description of the volume dependence of the
LQCD energy-levels in both the J* = 0T and 17 sectors,
despite the large deviations from the free levels. There exists
a very mild dependence of the UV cutoff and LEC ¢ on the
pion mass, which however is not statistically significant. The
D§*)n coupled channel effects are negligible, except perhaps
for the highest levels calculated with the heaviest pion mass
ensemble at the smallest of the volumes, since that threshold
is located sufficiently more higher than the measured levels in
Ref. [38]. (Note that DS(*)n correlators are not considered in
the LQCD study of the latter reference.) We find ¢ = 0.61(9)
and A = 710(70) MeV from the fit to the lightest pion mass
ensemble. This parameter was also determined in Ref. [61]
from a similar analysis of the LQCD low-lying 0 and 17
Bs-energy-levels calculated in Ref. [68]. There, it was found
¢ = 0.75(6), with an UV cutoff in the range 620-770 MeV,
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Fig. 1 Black points: LQCD J* = 07 (bottom panels) and J* = 17
(top panels) energy-levels, taken from Ref. [38], for different volumes
and pion masses. LQCD data for Ensembles I and II are depicted in the
left and right panels, respectively. Solid lines: Energy-levels obtained
from 0 and 1+ combined fits to Ensembles I and II using the Set A of
CQM bare masses, as a function of the box-size, L (some volume inter-
polated meson masses are used to compute the continuous energy-levels
for values of L different than those employed in Ref. [38]). Details of
the fits and some derived quantities are collected in Table 3. Statisti-
cal 68%-confident level (CL) bands are also shown. They are calculated

from the distributions obtained from a sufficiently large number of fits to
synthetic sets of LQCD data, randomly generated assuming that each
of the LQCD energy-levels is Gaussian distributed. (Note that possi-
ble correlations between the different energy-levels are not considered,
since these are not provided in Ref. [38].) In addition, in all synthetic
fits, the LQCD meson masses for each volume are randomly chosen as
well. For comparison, the free energies Eﬁree, j = DWK, Dﬁ*)n, for
each volume and set of LQCD meson masses are also shown (dashed
lines)
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Fig. 2 Same as Fig. 1, but in this case the predictions have been obtained using the Set B of CQM bare masses
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Table 4 Infinite volume

T R R
properties of the second pole, Set Ensemble / Mg [MeV] g [MeV] 18 o | [GeV] g Di*)ﬂl[GeV]
resonance located above the
DWK threshold, that appearsin A I 0* 2689173 85+4 35703 3.7+02
the unitarized amplitudes 1+ 2772 +24 0845 43101 38402
considered in Table 3. Note that . 5 " o
now the couplings are complex Bl 0 2684755 85713 36745 3.6+£04
in general, and we only give 1+ 2767151 og+10 44101 3.8+0.4
here the moduli - 16 o

B I 0t 2602 + 8 97+3 34+0.2 42+0.1
1" 2797 +£7 91+2 22403 4.6+0.1
11 ot 252713 10117, 4.9792 32403

36 5 0.2 0.4

I 2713132 881, 4.5%03 3.570%

which points out to some small dependence of the LEC ¢ on
the heavy-flavor mass.

On the other hand, when the Set B of 0" and 1™ CQM bare
masses are used, we find unacceptable fits, with x> /dof val-
ues above 18 for both pion mass ensembles. Indeed, as can
be seen in Fig. 2, the set B leads to a really poor descrip-
tion of the LQCD data. For the latter, the HQSS breaking
corrections thus look (i) compatible with those encoded in
the current scheme when the Set A of bare masses is used,
but (ii) much smaller than those implemented by the Set B
of bare masses. The one-loop corrections [5] to the OGE
potential implemented in Ref. [78] produce a 17 — 07 shift
of the bare CQM masses of around 190 MeV, while it is
around only 80 MeV when these corrections are neglected
(see Table 1). This is because, as we already mentioned, this
correction mostly affects the 07 sector [5]. Actually, because
of the denominator in Eq. (13) and for fixed ¢ and A, the
decrease of the 0T bare mass produces an enhancement of
the attraction close to the DK threshold from the exchange
of the CQM state. This effect is much less important in the
1T sector, and thus the current scheme using Set B of bare
masses produces a visible tension between the predicted 0"
and 17 levels and the LQCD data (Fig. 2). The scheme tends
to overestimate (underestimate) the attraction in the former
(latter) energy-levels by around 10-20 MeV, amount signifi-
cantly larger than the errors of the LQCD data. Therefore, this
study strongly disfavors the bare masses found in Ref. [78],
where the one-loop corrections derived in Ref. [5] are taken
into account. These one-loop corrections to the OGE poten-
tial produced a much smaller HQSS breaking of the bare
masses in the bottom sector, and thus nothing statistically
meaningful could be concluded about this issue in the analy-
sis carried out in Ref. [61] of the B;-energy-levels reported in
Ref. [68]. Due to the former discussion, we will always make
reference to the results obtained from the Set A of CQM bare
masses in the rest of the work.

Next, and once the parameters of the model have been
fixed, we search for poles in the FRS (bound states) and
SRS (resonances) of the isoscalar S-wave D™ K and DS(*)n
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amplitudes for the infinite volume case and using physi-
cal meson masses. For both sets of CQM bare masses, and
in both J© = 0T and 17 sectors, we find a bound state
(FRS) and a resonance (SRS). The masses and couplings
[see Eq. (22)] of the lowest-lying jg = %Jr charm-strange
meson doublet are compiled in Table 3, together with the
0% and 17 isoscalar D) K scattering lengths and the proba-
bilities of the molecular D™ K and DS(*)n components [see
Eq. (23)]. The properties of the additional 0" and 17 states,
resonances located above the D® K threshold, are compiled
in Table 4 for the different schemes presented in the previous
table.

3.1.2 Properties of the lowest-lying states: masses,
molecular probabilities and couplings

We first pay attention to the mesons of the lowest-lying
iy = 1+ Dy doublet. We see that the predicted mass of
the 0T bound state, using Set A of CQM bare masses, is
only around 15 MeV higher than the experimental mass of
the D}(2317) and 75-80 MeV smaller than the CQM bare
mass, while that of the 17 nicely agrees, taking into account
the errors, with the experimental mass of the Ds1(2460)
state. Nevertheless, this level of discrepancy can be well
attributed to the presence of discretization errors, or some
uncertainties in the determination of the mass of the charm
quark in the lattice simulation. Actually, the results com-
piled in Table I of Ref. [38] show discrepancies of the order
of 10 MeV between the experimental masses of the D and
D* mesons and the LQCD ones, determined from the light-
est quark mass, which provides almost physical pion masses.
We should also note some differences (1-2 o’s) between the
0" and 17 masses found in this work and those reported in
Table VII of Ref. [38], taken from the m, = 150 MeV and
L = 64a ensemble. These might be due to the use here of
physical meson masses, and also because the LQCD ones
are accessed via the Liischer’s relation [Eq. (27)] using the
effective range approximation. The approach followed here,
where the two meson loop function is computed in a finite
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volume, the unknown LECs are determined from fits to the
LQCD data, and finally poles are searched for in the infi-
nite volume unitarized chiral amplitudes, provides a theoret-
ically sound tool to analyze the LQCD energy-levels. A good
example of the latter affirmation can be found in Ref. [55],
where such approach led to the existence of two D (2400)-
poles, instead of only one reported in the original lattice
work of the Hadron Spectrum Collaboration [58], where the
LQCD energy-levels were calculated (see also the discus-
sion in Ref. [56], where it is emphasized how the two-pole
pattern of the DS (2400), together with their SU(3) structure,
provides a natural solution to a number of puzzles).

Interestingly, we appreciate in Fig. 1 a quite significant
dependence of the lowest-lying LQCD energy-levels on the
pion mass (differences between left and right plots), as it is
also evident in the results of Table IV of Ref. [38]. Thus, the
LQCD 07 and 17 masses reported in that table vary between
30 to 50 MeV, when the pion mass is reduced from 290 MeV
down to 150 MeV. These changes are likely related to the
modifications of the DK and D*K thresholds. All of this
clearly indicates that the D:‘O(2317) and Dy (2460) states
should have a sizable molecular component, and that any
CQM c5 component in their dynamics cannot be dominant,
because it could not accommodate such visible dependence
of their masses on the light quark mass, as exhibited by the
LQCD data. These findings are corroborated by the molec-
ular probabilities collected in Table 3. Using the modified
Weinberg compositeness condition of Eq. (23), we derive
the molecular S-wave D™ K probabilities for the D}, (2317)
and Dy1(2460), which turn out to be around 65 and 56% for
the scalar and axial states, respectively. On the other hand,
D§*)n components are small for both mesons, of the order of
2%. The LQCD studies of Refs. [38—40] showed a non-zero
overlap of the energy-levels related to the D},(2317) and
Dy1(2460) and meson—meson lattice interpolating fields, but
no precise information was provided on the percentage of
meson—meson channels in the wave function of these states.
Only in the latest work of Ref. [38], the compositeness prob-
ability is studied, and found to be 1 within errors (around
20-30%) for both states.

The large molecular probabilities found in this work
confirm those reported in previous works [47,48,51] that,
employing also unitarized meson—-meson amplitudes, had
already obtained molecular components of around 70% for
the D},(2317), as mentioned in the Introduction. In what
respects the D;1(2460), the authors of Ref. [47] found a
molecular probability of 0.57 £0.22 also in good agreement
with our findings, although with a much larger error. The
interesting and novel aspect of the present calculation is that
the LO HMChPT interactions have been supplemented by
those driven by the exchange of even-parity charmed-strange

CQM mesons, and thus the couplings of CQM ¢35 and P ¢
degrees of freedom have been explicitly taken into account.!!

In Ref. [42] two-meson loops and CQM bare poles are
also coupled. For the latter, the values of the bare masses
are the same as those used here. The D™ K interactions
are derived from the same CQM used to compute the bare
states, instead of using HM x PT. The 3 Py model is employed
to couple both types of degrees of freedom, and the quark
model wave functions provide form-factors that regularize
the meson loops. Thus, all the inputs in this approach are
constrained/determined from previous studies. The masses
of the 0" and 17 states found in Ref. [42] are about 10 and
25 MeV higher than the experimental ones, respectively. The
coupling of the CQM mesons to the DK and D*K thresholds
is crucial to simultaneously lower the masses of the corre-
sponding D7(2317) and Dy (2460) states predicted by the
naive quark model. Such effects are of the order of 60 and
85 MeV in the 0" and 17 sectors, respectively. However,
in the study carried out in Ref. [42], the one-loop correc-
tions derived in Ref. [5] are taken into account, and they
lower the predicted mass of the D};(2317) by more than
100 MeV. At this respect, we should repeat once more that
the simultaneous analysis of the 0 and 17 LQCD energy-
levels of Ref. [38] carried out in this work strongly disfa-
vors such corrections. Molecular probabilities are reported
in Ref. [42] to be around 33 and 54% for the D;‘O(2317)
and Dy (2460), respectively. Though the latter one turns out
to be in a nice agreement with our results, the former one
is around twice smaller than that found here and in previ-
ous works [47,48,51], and it would contradict a dominant
molecular picture for the Ds0(2317). Moreover, this dispar-
ity between the molecular components in the scalar and axial
states might also question that the D},(2317) and D; (2460)
could form a HQSS doublet. Within our scheme, it is however
natural to assign these two states to the jg = 1/27 HQSS
doublet, assignation that gets further support from the obser-
vation that the experimental mass splitting between these
two resonances is remarkably similar to that between the
D and D* mesons. Furthermore, interpreting the D, (2317)
and Dy1(2460) as DK and D*K bound states, the binding

1" Other studies have done something similar (e.g. Ref. [47]) by includ-
ing in the interactions a Castillejo—Dalitz—Dyson pole [90] to visualize
a genuine (CQM) state that couples weakly to a meson—meson compo-
nent. However, those studies do not make use of the HQSS to relate the
interplay between both types of degrees of freedom in the 0" and 17
sectors, which will be fundamental to disfavor the Set B of CQM bare
masses used in the study of Ref. [42], that will be discussed in the next
paragraph, and that claimed a much smaller (~30%) molecular com-
ponents for the D,(2317). Moreover, in some of these studies chiral
symmetry is not fully used to constraint the P ¢ interactions, and dif-
ferent solutions were obtained with many sets of parameters, obviously
correlated, though the claim in Ref. [47] was that the particular values
of the parameters did not have a special significance, and all of them
led to similar hadronic-molecular probabilities [47].
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energies of both states will be very similar (approximately
46 MeV versus 54 MeV).

The couplings of the D¥,(2317) and Dy (2460) to D™ K
and DAS*)n are also compiled in Table 3. We see that the
coupling of both states to the latter channel, though around
a factor two smaller than to D™ K, is not negligible.'? The
analysis adopted in the original LQCD work of Ref. [38] led
to g pw g couplings of 11.0 £ 1.3 GeV and 13.8 = 1.3 GeV
for the D},(2317) and Dy (2460), respectively. These values
are in good agreement with the values found in this work.
We would like to stress that the clear similarities between
the couplings of both resonances reinforces our conclusion
that they form a HQSS doublet. Moreover, the D},(2317)
and D;1(2460) should be heavy-flavor partners of the B
scalar and axial mesons found in Ref. [61] at 5709 4 8 and
5755 £ 8 MeV, respectively. Note that the mass shift, due
to the breaking of HQSS, is much smaller in the bottom
sector, and it turns out to be quite similar to (M 3. — M), as
expected. Note that the predictions of Ref. [61] for the bottom
sector agree quite well with those found in Ref. [36], obtained
within a covariant formulation of unitary chiral perturbation
theory involving charm mesons.

3.1.3 DWK scattering lengths

The D™ K scattering lengths are negative (see Table 3),
compatible with the interpretation of the D},(2317) and
Dy1(2460) as bound states. Indeed, the zero-range approxi-
mation, ag = —1/(2pLB)% [B > Oand p are the D™ K bind-
ing energy and reduced mass, respectively], provides already
the first significant digit (—1 fm). This simple formula also
anticipates that |apg| > l|ap+k|. Our predictions for the
scattering lengths are consistent, within errors, with previ-
ous lattice determinations [38—40], and the bulk of the small
differences existing among central values can be explained in
terms of the differences between binding energies. The uncer-
tainties on our estimates are significantly smaller than those
affecting the LQCD ones. This is in line with the previous
discussion about the errors on the masses of the D};(2317)
and Dy (2460) resonances, and it shows, once more, that the
present analysis of the LQCD energy-levels leads to more
precise results than those based on the Liischer’s relation
using the effective range approximation.

3.1.4 Second pole: resonances

Within the current scheme, the amplitudes include an explicit
pole. It is therefore reasonable to assume that the CQM bare

12 The much larger differences found for the molecular probabilities
are due, not only because it appears the square of the couplings, but

also because the large distance of the Df*) n thresholds to the masses of
the resonances.
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state does not disappear, but it gets dressed by the meson—
meson interaction moving into the complex plane. In addi-
tion to a mass shift, the new state acquires a width since it
can decay into S-wave D®) K and Ds(*)n meson-pairs. The
position and couplings of these extra poles, located in the
SRS of the amplitudes, are collected in Table 4. We see that
both in the 07 and 17 sectors, the resonances are relatively
broad (85(4) and 98(5) MeV), respectively) and have simi-
lar couplings'3 to D™ K and Dﬁ*)n. On the other hand, the
couplings of these resonances to D™ K are around a factor
of three smaller than those of the D;‘O (2317) and Dy (2460)
states.

The masses of these higher states are 175 (330) and 110
(270) MeV above the Dy (D™ K) threshold. Thus, we
should take these results with some caution, since most likely
they should be affected by sizable higher order chiral cor-
rections and higher threshold-channels corrections. In other
words, they are not as theoretically robust as those concern-
ing the lowest-lying D}(2317) and Dy (2460) states. As
mentioned, these additional resonances are likely originated
from the bare cs-quark-model poles that are dressed by the
D™K and DS(*)n meson loops. In that case, the bare poles
have been highly renormalized, moving to significant higher
masses and acquiring a significant width. We should also bear
in mind that radial excitations (23 Py) of the CQM states [8] or
D® K* two-meson loops, neither of them taken into account
in this study, might lie in this region of energies, then having
a certain impact in the dynamics of these resonances.

3.2 LO and NLO unitarized HMChPT analysis
3.2.1 LO HMChPT energy-levels

In addition to the results shown in the previous sections,
where a CQM pole was added to the LO D™ K interac-
tion, it is enlightening to discuss whether we are able to
describe the lattice data without any CQM cs contribution. To
explore this scenario, we have performed an additional one-
parameter (UV cutoff A)-fit, where the LQCD energy-levels
are described using finite-volume untarized LO HMChPT
amplitudes. Thus the LEC c is set to zero, and consequently
the contribution to the amplitudes of the exchange of the
CQM mesons vanish as well. This fit is labeled as Set C
in Table 3, and the obtained 0" and 17 energy-levels, as a
function of the box-size, are shown in Fig. 3.

We find a quite reasonable description of the LQCD data,
and the infinite volume properties of the lowest-lying states
agree well with those deduced using the Set A of CQM bare
masses, though molecular probabilities and couplings of the

13 The couplings are now complex in general, and we refer to the mod-
uli.
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Fig. 3 Same as Fig. 1, but in this case the predictions have been
obtained after neglecting the contribution to the amplitudes of the
exchange of intermediate even-parity charmed-strange CQM mesons,
i.e., setting ¢ = 0 and evaluating the energy-levels using finite-volume

Dy;1(2460) and D;‘O(2317) are now much more similar.'*
Note that the CQM exchange potential induces some HQSS
breaking corrections, driven by the 0" and 17 ¢5 bare mass-
shift, and the fact that these contributions have been elim-
inated might explain the found pattern of probabilities and
couplings. The more distinctive difference, however, is that
the UV cutoff is around 1100 MeV. This is to say, the new
UV cutoff is around 400 MeV higher than the values needed
when the contribution of the CQM meson exchanges are kept.
That reveals that higher order chiral corrections, previously
effectively accounted for by means of the CQM pole, are
not negligible. Conversely, taking into account explicitly the
exchange of (bare) CQM mesons is not crucial to describe
the D;‘O (2317) and Dy (2460) states, because such contribu-
tions can be accommodated by appropriately modifying the
finite contributions derived from short-distance physics. This
is expected since the CQM bare states lie far from the latter
physical states, for which the unitarity meson loops play a
fundamental role.

The UV cutoff A is expected to be larger than the wave
number of the states (~ 200 MeV) and, at the same time,
small enough to prevent it from inducing large HQSS break-
ing corrections. From this perspective, one might think that
14 We find Ppwg ~ 65% and PD.ﬁ*)r; ~ 6% for both states, and adding
the probabilities, we obtain molecular components above 70% in the

wave-functions of both mesons. On the other hand, the higher fo“) n
channel becomes also more important in their dynamics.
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unitarized LO HMChPT amplitudes. The bestfit UV cutoff in this sce-
nario and some derived quantities are given in the Set C rows of Table 3

values in the range of 1.1 GeV, comparable to the mass of
the charm quark, do not seem appropriate within the spirit of
an EFT based on HQSS. However, one should bear in mind
that here we are using a Gaussian UV regulator, which will
approximately correspond to a sharp-cutoff, gmax, smaller by
a factor!® /7 /8 [52]. Thus, in terms of a sharp-cutoff, we are
dealing with values of the order of 700 MeV that are more
acceptable from the point of view of a HQSS EFT.

The Set A of Gaussian regulators found in Sect. 3.1 would
correspond to sharp cutoffs of the order of 400450 MeV,
which are still larger than the wave number of the D};(2317)
and Dy1(2460) states. Nevertheless, we should remind here
that the CQM bare masses are not observables, and they
depend on the UV renormalization. Here we have fixed the
CQM masses, and thus the fitted cutoffs should be understood
as those needed to effectively account for higher order chiral
corrections, when these bare poles are incorporated [67]. This
also hints to a certain scale for which the CQM of Ref. [42]
might match the chiral EFT.

3.2.2 NLO HMChPT energy-levels

Within this context, it seems appropriate to calculate the
energy-levels obtained from the unitarized HMChPT NLO

15 Note that the Gaussian regulator introduced in [52] and that used
here are related by an extra factor 1/+/2.
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Fig. 4 Volume dependence of the energy levels predicted using the
unitarized NLO HMChPT amplitudes of Refs. [48,49] compared to the
lattice results of Ref. [38]. Exchanges of intermediate CQM mesons
are not included, and the distribution of panels is the same as in Fig. 1.
There are no fitted parameters involved in these predictions since all

amplitudes [49] described in Sect. 2.4. As in the previous sub-
section, the exchanges of CQM bare poles are not included.
Indeed, as we have discussed above, considering such con-
tributions, together with the NLO corrections, might lead to
some double-counting problems. In Appendix A, we briefly
study the relation between the NLO LECs determined in
Ref. [48] and the parameters of the bare CQM pole found
in this work.

The UV divergences are renormalized in Ref. [49] by
using subtracted meson loop functions instead of a sharp-
cutoff. However, both schemes can be related (see for
instance the discussion in Appendix A of Ref. [79]), and the
subtraction constants determined in [48] correspond, in good
approximation, to a sharp-cutoff gmax = O.721L8:82 GeV, sim-
ilar to the values mentioned in the previous discussion.

Results are shown in Fig. 4, where we see that this scheme
provides a more than acceptable description of the 0" and 17
LQCD data, for both pion mass ensembles, despite having set
all LECs to the values determined in Ref. [48]. We empha-
size that, therefore, the energy levels shown in the different
panels of the figure are predictions and do not imply any fine
adjustment of any type of parameter.'® We find this remark-

16 We should mention that the untarized NLO HMChPT description
of the LQCD energy levels shown in Fig. 4 might be improved by
allowing for a slight variation of the LECs, which could, for example,
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LECs that appear in the definition of the chiral amplitudes were deter-
mined from the lattice calculation [48] of the S-wave scattering lengths
in several (S, I) sectors. The 68% CL uncertainty bands depicted in the
plots are inherited from the errors on the LECs quoted in Ref. [48]

able, and together with the similar good description found in
Ref. [55] of the (S, I) = (0, 1/2) LQCD low-lying energy
levels calculated in Ref. [58], provides a great support for
the finite-volume amplitudes obtained after unitarizing the
NLO HMChPT amplitudes derived in Refs. [48,49]. Hence,
the D§(2400) two-pole structure and the SU(3) pattern17 of
the 0" and 1T heavy-light sectors claimed in Ref. [55] seem
rather robust from the theoretical point of view. All these
results reinforce the new paradigm to study the spectrum
of heavy-light mesons [56], and that questions its traditional
interpretation in terms of constituent Qg degrees of freedom.

Footnote 16 continued

effectively account for some discretization/finite volume errors etc. Note
that, in addition, these systematic errors could be also different to those
affecting the lattice study of scattering lengths carried out in Ref. [48].
Nevertheless, the second levels are quite far from the thresholds, and
one might need to explicitly include higher order chiral corrections.
Otherwise, the re-fitted NLO LECs would be biased, since they would
effectively account for those contributions. All of this is beyond the
scope of the present work.

17" Among other predictions, we point out that the lower D(;(2400)
resonance (located at 2105(8) — i102(12) MeV) and the D},(2317)
state would be siblings forming a 3 SU(3) multiplet. The same can be
said of the new Dj resonance (located at 2240(6) —i93(9) MeV) and the
D;1(2460) state in the 11 sector. All these features have counterparts
in the bottom sector as well.
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3.3 DK S-wave phase shifts

Here we will show predictions for DK S-wave scattering
phase-shifts [see Eq. (16)], and will take the opportunity to
discuss few aspects of the renormalization dependence of the
scheme. For the sake of brevity, we will not address the rest
of channels. In this subsection, we will always show results
obtained for infinite volume, using physical meson masses,
and the Set A of bare masses to incorporate the CQM degrees
of freedom.

The behavior of the phase shifts at threshold depends
strongly on the position of the S-wave DK pole, as can be
seen in the bottom panel of Fig. 5. Thus, and to make the
discussion meaningful, we will consider approaches leading
to the same D;‘O (2317) mass value, 231533, obtained in the
unitarized NLO HMChPT approach [48,49], and whose cen-
tral value is quite close to the experimental one. Details can
be found in Table 5, while the related phase shifts are shown
in the left panels of the first two rows in Fig. 5.

Looking at the results of Table 5, we first stress the depen-
dence of the UV cutoff on the LEC ¢, or viceversa the depen-
dence of c on A, for a fixed CQM bare mass. The latter should
be also understood as a renormalization scheme dependent

quantity. All these three parameters (c, A, l%cg) should effec-
tively incorporate higher order chiral corrections beyond LO,
and not accounted by the unitarity loops (see also the dis-
cussion in Appendix A). One expects that these further cor-
rections should be rather independent of the short distance
physics at energies moderately far from threshold. However
predictions might significantly differ, lets us say above 2450
or 2500 MeV. Indeed, we have an indication from the masses
and widths of the possible second (higher resonance) state
compiled in the table. We see that for ¢ = 0.3, a narrow reso-
nance (28 MeV) is generated at around 2557 MeV, that would
produce clear signatures, not seen, in the second energy level
calculated in Ref. [38]. The other schemes either do not gen-
erate any resonance (¢ = 0 and NLO) or it is located close to
2700 GeV (c = 0.61) and it is sufficiently broad to become
unnoticed for energies below 2600 MeV. The conclusion is
that the ¢ = 0.3 predictions above 2500 MeV are unreliable,
and that the exact location of the resonance generated for
¢ = 0.61 is not well constrained by the data of Ref. [38]. On
the other hand, we appreciate a variation pattern for ¢ con-
sistent with the physical interpretation of this LEC, and thus
the total molecular probability decreases from (67 + 10)%
down to (60 = 9)%, when c varies from 0 to 0.61. Scattering
lengths are mostly determined by the common D};(2317)
mass and do not show statistically significant variations, as
it also occurs for the couplings. Paying attention now to the
NLO results, we find that they coincide reasonably well with
those found using LO HMChPT amplitudes, thanks to the
freedom in the latter to re-adjust the cutoff. Finally, it could

be surprising that the DK molecular probability, obtained
within the NLO scheme, is only 54 4+ 4%, when a value
of ~ 70% was claimed in the original work of Ref. [48].
This discrepancy is due to the use in the latter work of the
Weinberg compositeness rule [50], that provides the molec-
ular probability in terms of the scattering length and the DK
wave number yp,

apk

——, v =+/2uB, (€29)
apk +2/ys

Ppg ~

which leads to one, in the limiting case when the scattering
length is approximated by —y 5 ! (very loosely bound states),
neglecting finite effective range corrections. Indeed, using the
relation of Eq. (31), one obtains Ppg ~ 70+4 %, as obtained
in Ref. [48]. Note, however, that Eq. (31) has corrections due
to the D7,(2317) binding energy [47], which is not too small
(~ 46 MeV), and possible inelastic effects [82], which should
bring the 70% down to the more accurate estimate found in
the present work.

Coming back to the phase shifts shown in the left panels
of Fig. 5, we see that different schemes produce compatible
phase shifts close to threshold, while the differences become
larger as the energy increases. Thus for instance, the ¢ = 0.3
phase shifts suddenly change curvature above 2500 MeV, but
as we discussed above such behaviour, produced for a nar-
row resonance at 2557 MeV (see Table 5), is not compatible
with the higher 07 LQCD energy level reported in Ref. [38].
Above 2450 MeV the rest of schemes lead to differences in
the phase shifts of few degrees, and at most of around 15° at
2550 MeV. However, taking into account the uncertainties of
the different predictions, phase shifts are almost compatible
up to this latter energy.

We now discuss about the dependence of the analysis on
the regulator scheme. To this end, we consider the loop matrix
function G renormalized by one subtraction, as in Refs. [48,
49]. Suppressing the indices, the loop function is written for
each channel as,

G(s) = G(s) + G[(M + m)?]. (32)

The finite function G (s) can be found in Eq. (A9) of Ref. [80].
On the other hand, the constant G[(M -+m)?] contains the UV
logarithmic divergence. After renormalizing using dimen-
sional regularization, one finds,

1
1672 <a(v)
r ™ ™ (33)
n— min —
M+m p2 v2

where v is the scale of the dimensional regularization.
Changes in the scale are, in principle, reabsorbed in the sub-
traction constant a(v), so that the results remain scale inde-

G[(M +m)?] =
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Fig. 5 First two rows of plots: energy dependence of the DK S-
wave phase shifts obtained using the chiral unitarized approach of
Refs. [48,49] (NLO) compared with the results deduced including the
exchange of a CQM state of mass 2511 MeV (Set A). Predictions for
three different values of the dimensionless LEC ¢, that controls the
strength of the coupling of the bare CQM meson and the P ¢-pair, are
depicted. Note that in the case ¢ = 0, the approach reduces to the uni-
tarized LO HMChPT approach followed in [61] for the bottom-strange
sector, except that in this latter case the Esn channel was not consid-
ered. In the left (right) panels the UV divergences, that appear in the
unitarization of the LO HMChPT+CQM amplitudes, have been renor-
malized using a Gaussian cutoff (subtraction constant). For details see
Tables 5 and 6. The UV behaviour of the NLO unitarized amplitudes

@ Springer

is always renormalized using subtraction constants [48,49]. Statistical
68%-CL error-bands are generated from the uncertainties of the LECs
that enter in each scheme. Bottom plot: comparison of phase-shifts for
¢ = 0.61 using two different UV Gaussian cutoffs, O.71f8:8g GeV and

0.81 J_rgi; GeV. The first value corresponds to Fit AIl of Table 3, and the
uncertainty of +0.09 quoted there for the LEC c is also considered to
obtain the statistical 68%-CL error-band. The second UV cutoff is that
associated to ¢ = 0.61 in Table 5, and the deduced phase-shifts are also
shown in the left panel of the second row of plots in this figure. Both sets
of LECs produce different D};(2317) masses, 2331 & 3 MeV (Table 3)
and 231532 MeV (Table 5), respectively. In all cases, physical D, Dy,
K and 1 masses have been used
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Table 5 Three different sets of ¢c—A pairs leading to the same
D},(2317) mass (23151’%) obtained from the unitarized LO
HMChPT+CQM approach. The UV cutoff A is fitted to reproduce the
above mass, that it is deduced from the unitarized NLO HMChPT T -
matrix [48]. The uncertainties in the D},(2317) mass, inherited from
the errors on the LECs, are taken into account and lead to the errors on
A. We first generate synthetic sets of LECs, according to the correlated
error distributions given in Ref. [48]. Next, we find the position of the
D;‘O(2317) pole for each set of LECs, and finally, for each parameter c,

we tune the UV cutoff to reproduce this mass. In this way, we determine
the error distributions of the cutoffs that are also used to estimate the
uncertainties on the derived quantities (S-wave DK scattering length,
mass and width of the higher-dressed—resonance, D};(2317) molecu-
lar probabilities and couplings) given in the table. Predictions for the
latter quantities from the unitarized NLO HMChPT approach [48,49]
are compiled in the last row. Finally note that the choice ¢ = 0.61 is
motivated by the Set A of results in Table 3, which 0 CQM bare mass
is always employed in this table

c A [GeV] Mp: [MeV]  gpk [GeV]  gp,y [GeV]  Ppk [%]  Ppy[%]  apk [fm] Mg [MeV]  T'g [MeV]
0.18 18 0.7 0.2 8 0.3 0.23

0 1197518 2315758 11.3%)] 6.7103 6175, 59103 -1.00%03 - -

030  1.05T018  2315%8 11.297 6.3103 5878 47794 —0.98%023  25577) 2812

0.61 0817017 2315738 11.7797 6.0702 578 3.0198 —1.047031  26867] 902

NLO 2315108 9.5%17 7.5£0.5 54+4 1316 —0.841007  — -

Table 6 Same as Table 5, but using a different procedure to renor-
malize the meson loop matrix G(s). Here, as in Refs. [48,49], we
have used dimensional regularization with a subtraction constant « (see

Eq. (33) and the related discussion), which is adjusted to reproduce the
D},(2317) mass

c o Mp: [MeV]  gpk [GeV]  gpy [GeV]  Ppg [%]  Ppyy[%]  apk [fm] Mg [MeV] 'k [MeV]
0 —1.877019  23157)8 102757 6.6702 6317 1079} —0.90%02%  — -

030  —1777501% 2315738 10.0757 6.2702 607S 9.0} —0.871020 25598702 2312

0.61  —1.607011 2315738 10.1705 5.8%03 6118 8.0701 —-0.88%0%9 270413 88+
NLO 2315118 9.5t12 7.540.5 54+4 13%, —0.841017  — -

pendent. Here we have taken v = 1 GeV and a common
subtraction constant a(1 GeV) = « for both DK and Dgn
channels, as in Refs. [48,49]. We have now constrained the
LEC « to obtain the same D¥,(2317) mass (231571%), as in
Table 5, for each value of the parameter c. The results are pre-
sented in Table 6. Comparing these latter results with those
in Table 5, we see that the predictions, within uncertainties,
are consistent in the two renormalization schemes. There is
aslight dependence, and the D};,(2317) coupling to DK and
the modulus of the scattering length are smaller and closer
to those deduced from the NLO approach. Molecular prob-
abilities are somewhat larger, specially Pp_, that becomes
almost twice bigger. As a consequence, the total hadronic
molecular component is now roughly 70 & 10%. The depen-
dence on ¢ follows a similar pattern as in Table 5, and the
importance of the D;n channel decreases as the value of the
LEC c increases. Finally, the results concerning the higher—
dressed-resonance pole position are similar in the two renor-
malization schemes. Thus from the previous discussion, the
¢ = 0.3 predictions for energies above 2500 MeV turn out
to be little reliable also in this scheme.

The phase shifts deduced from the various possibilities
discussed in Table 6 are shown in the right panels of the first
two rows in Fig. 5. We see, the ¢ = 0.3 phase shift above
2500 MeV presents the same pathologies as in the left top

panel, where an UV Gaussian cutoff is used. It is interest-
ing to note that the ¢ = 0 and ¢ = 0.61 phase shifts have
smaller errors, the two sets of phase shifts are still statistically
compatible, but in addition, they now agree quite well with
the NLO predictions, and also qualitatively with those found
in Ref. [77]. Thus, the renormalization scheme dependence,
while it is not much relevant for the D},(2317) properties,
turns out more important for the phase shift at energies above
2450 MeV, as one could reasonably expect from the previ-
ous discussions. This clearly could be regarded as a source
of systematic uncertainty, though up to 2550 MeV remains
smaller/comparable to the other uncertainties of the predic-
tions accounted for the error bands depicted in Fig. 5.

4 Summary and concluding remarks

In this work we have first carried out a coupled channel
study of the 0" and 1T charm-strange meson sectors employ-
ing a chiral unitary approach based on LO HMChPT P™ ¢
interactions, and that incorporates, consistently with HQSS,
the interplay between intermediate CQM bare ¢5 and P ¢
degrees of freedom. We have extended the scheme to finite
volumes and fixed the strength of the coupling between both
types of degrees of freedom to the available 0" and 1+ LQCD

@ Springer
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energy-levels [38], which we have successfully described. On
the other hand and at variance to the situation in the bottom-
sector reported in Ref. [61], we have found that the 0" and 17
CQM bare masses (denoted as Set B in this work) obtained
in Ref. [78] using the one-loop corrections to the CQM OGE
potential proposed in Ref. [5], lead to a really poor descrip-
tion of the LQCD data. This is because the HQSS breaking
corrections induced by this modification of the OGE poten-
tial are inconsistent with the LQCD energy levels calculated
in Ref. [38].

We have estimated the size of the DK two-meson
components in the D;‘O (2317) and Dy (2460), and conclude
that these states have a predominantly hadronic-molecular
structure. Furthermore, we have observed a quite signifi-
cant dependence of the lowest-lying LQCD energy-levels of
Ref. [38] on the pion mass, which is difficult to accommo-
date by a dominant CQM c¢s component. This is, however,
consistent with having a large influence of the P*)¢ loops
in the D},(2317) and Dy (2460) structure.

In addition, we have found one extra resonance, in both
the 0" and 17 sectors, arising from the dressed CQM states.
Our predictions for these states are not as robust as those for
the low lying D},(2317) and Dy (2460), and moreover they
are relatively broad, which might complicate their discovery.
Some experimental efforts are needed to clarify their possible
existence.

The LEC ¢ depends on the radial quantum number, but not
on the heavy flavor, up to A gcp/mg corrections. Thus, the
value determined here for this parameter should be similar to
that found in the bottom-strange sector in Ref. [61]. There,
it was obtained ¢ = 0.75(6), which is quite compatible with
the values in the range 0.52—0.70 found in this work for the
Set A of CQM bare masses. Note that in addition to heavy
flavor symmetry breaking corrections, there might be also
some discretization errors. Nevertheless, we have shown that
taking into account explicitly the exchange of (bare) CQM
mesons is not fundamental to describe the D:,‘O(2317) and
Dy1(2460) states, since such contributions can be accom-
modated by appropriately modifying the finite contributions
derived from short-distance physics. This is natural because
the CQM bare states lie far from the latter physical states, for
which the unitarity meson loops play a fundamental role.

We have discussed how the approach followed here, where
the two meson loop function is computed in a finite volume,
the unknown LECs are determined from fits to the LQCD
data, and finally poles are searched for in the infinite volume
unitarized amplitudes using physical meson masses, provides
atheoretically sound tool to analyze the LQCD energy-levels.
We have shown that such procedure leads to more precise pre-
dictions that those obtained via the Liischer’s relation using
the effective range approximation.

We have also calculated the energy-levels obtained from
the unitarized HMChPT NLO amplitudes derived in Ref. [49],

@ Springer

without including any contribution from the exchanges of
CQM bare poles. We have shown (Fig. 4) that this scheme
provides a more than acceptable description of the 0™ and
1T LQCD energy levels of Ref. [38], despite having fixed
all LECs to the values previously determined in Ref. [48]
(not fitted to the energy levels). These findings, together
with the similar good description found in Ref. [55] of the
(S, I) = (0,1/2) LQCD low-lying energy levels calcu-
lated in Ref. [58], provide a great support for the ampli-
tudes obtained after unitarizing the NLO HMChPT ampli-
tudes derived in Refs. [48,49]. Hence, the DS (2400) two-
pole structure and the SU(3) pattern of the 0" and 17 heavy-
light sectors claimed in Ref. [55] seem rather robust from the
theoretical point of view. All these results reinforce a new
paradigm to study the spectrum of heavy-light mesons [56],
that questions its traditional interpretation in terms of con-
stituent Qg degrees of freedom.

Finally, we have predicted S-wave DK phase shifts and
discussed few aspects of the renormalization dependence of
our results.
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Appendix A: HMChPT NLO LECs and bare CQM pole
exchange potential

The contribution of resonance exchanges to the LECs in the
NLO and NNLO chiral Lagrangian for the P¢ interaction
was discussed at length in Ref. [91]. There, it was shown that
these LECs receive contributions from exchanging the scalar
charmed mesons, the light-flavor vector, scalar, and tensor
mesons. The exchanged charm mesons are those related to the
physical resonances. Here, however, the bare CQM states do
not correspond to the physical states, which, as we have seen,
are mostly generated by unitarity loops. Thus, itis not evident
how to proceed in our context along the lines discussed in
Ref. [91].
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However, one could still relate the LECs appearing at
NLO in the HMChPT amplitudes derived in Refs. [48,49]
to the bare mass of the CQM cs state and its coupling to
the P ¢ degrees of freedom. To make the numerical com-
parison meaningful, one should take into account that full
elastic unitarity is restored, through Eq. (15), where G(s) is
the renormalized two-meson loop function. For simplicity,
we will consider the single channel DK in the chiral limit,
and the LO+CQM approach with the loop function G renor-
malized by one subtraction, as in Refs. [48,49], and discussed

here in Egs. (32) and (33). We define an effective potential
—1
Vet (s) = (VL_O1 +ocom ) + ac) , which is given in terms

of the HMChPT LO+ bare CQM pole exchange potentials
and the additional constant «.. The latter is defined as the

difference between the value found for G[(M + m)?] in [48]

and that determined here using ¢ = —1 .60f8:}‘1‘, subtraction

constant'® corresponding to ¢ = 0.61 in Table 6. We make an
expansion in the kaon energy and after matching the quadratic
coefficients of Vg and of the irreducible amplitude obtained
in [48], we readily find

2 0 2

s /M M
My — ) — (ha — 2h5) M2,
1—m ; /M? f

(AD)

where h; are LECs introduced in Refs. [48,49]. Left and

right hand sides of the above equation give 0.57"_"8:%3 and

0.52J_r8:§f, respectively, showing a remarkable agreement.
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