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Abstract We propose large N. generalizations for the
“diquark” representations of SU(3)n,y relevant for positive
parity heavy baryons, including putative exotic states. Next,
within the framework of the Chiral Quark Soliton Model, we
calculate heavy baryon masses and decay widths. We show
that in the limit of N. — o0 all decay widths vanish, includ-
ing the widths of exotica. This result is in fact more general
than the model itself, as it relies only on the underlying sym-
metries: i.e. SU(3)q,y and hedgehog symmetry. Furthermore,
using explicit model formulae for the decay constants in the
non-realtivistic limit, we show that there is a hierarchy of
the decay couplings, which may explain observed pattern of
experimental widths.

1 Introduction

Recently the LHCb Collaboration at CERN announced a dis-
covery of five narrow .Qf.) resonances with masses ranging
from 3 to 3.2 GeV [1], that have been later confirmed by
BELLE [2]. The widths of these resonances is of the order
of a few MeV, with two of them being exceedingly small:
r223050)) = 0.8 £ 0.2 £ 0.1 and I'(2°(3119)) =
1.1 = 0.8 £ 0.4 MeV. In Refs. [3,4] we have proposed to
interpret these two narrow states as exotic pentaquarks using
as a guidance the Chiral Quark Soliton Model [5] (x QSM —
for review see Refs. [6,7]). Other possible interpretations of
these states are summarised in Ref. [8]. The situation here
is similar to the light pentaquark state @ [9,10], which —
if it exists — has to be very narrow. Indeed, the evidence for
©™ that survived until now after the first announcement in
2003 [11-13] is the analysis by DIANA Collaboration [14]
that requires g+ ~ 0.3 MeV (see also [15]). On theoret-
ical side it has been shown in Ref. [10] that in the non-
relativistic limit of the x QSM the relevant decay coupling
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of the exotic antidecuplet vanishes identically. This might
explain the required smallness of ® T decay width.

The nullification of the pertinent decay coupling in the
non-relativistic limit occurs only if the rotational sub-leading
1/N¢ contributions are taken into account [10]. It has been
subsequently shown in Ref. [16] that the cancellation of terms
that are of different order in N, is consistent with the large
N, limitif the baryon SU (3) g,y representations are appropri-
ately enlarged to account for colour neutrality. So despite the
fact that formally I'g+ (N, — o0) = O(1) (while the decu-
plet decay width I'x (N, — 00) = O(I/ch)) the smallness
of the decay width is assured by another small parameter
(that, however, has not been analytically defined) related to
degree of “relativisticity”.

In Refs. [3,4,17] a phenomenological analysis of heavy
baryon properties has been performed in the framework of
the xQSM (see also [18-20]). It turned out that all decay
widths have been very well reproduced [4], also the two nar-
rowest ones of the putative pentaquarks. In the present paper
we want to find out whether a suppression mechanism similar
to the one discussed above could explain extraordinary small
widths of two narrowest .Qg states reported by the LHCb
(given their interpretation as exotica), or whether the small-
ness of these widths is a pure numerical coincidence.

In the present paper, extending Ref. [4], we present an
analysis, which shows that there is a hierarchy of the decay
constants that indeed suppresses decay widths of heavy pen-
taquark states, and that degree of this suppression depends on
the decay channel. While this result has been to some extent
expected from our experience with light quark exotica, the
other result that all decay widths of heavy baryons studied
here vanish in the large N, limit (in contrast to the case of
®1), even if we do not take the non-relativistic limit, comes
as a surprise.

The paper is organised as follows. In the next section we
briefly recapitulate main features of the x QSM. Then, in
Sect. 3, we show how SU(3)q,y representations for the light
subsystem in heavy baryons have to be generalised to the
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case of N, > 3. This prescription is used in the Appendix to
provide the relevant Clebsch—Gordan coefficients needed to
compute the decay widths in Sect. 5. To calculate the widths
we need mass formulae to calculate the momentum of the
outgoing meson, what is done in Sect. 4. We summarise in
Sect. 6.

2 Chiral Quark Soliton Model for heavy baryons

The xQSM is based on an argument of Witten [21-23] that
in the limit of large number of colors, N, relativistic valence
quarks generate chiral mean fields represented by a distor-
tion of a Dirac sea that in turn influence the valence quarks
themselves forming a self-organised configuration called a
soliton. The soliton configuration corresponds to the solution
of the Dirac equation for the constituent quarks (with gluons
integrated out) in the mean-field approximation where the
mean fields respect so called hedgehog symmetry. Since it is
impossible to construct a pseudoscalar field that changes sign
under inversion of coordinates, which would be compatible
with the SU(3)qay X SO(3) space symmetry, one has to resort
to a smaller hedgehog symmetry that, however, leads to the
correct baryon spectrum.

Next, rotations of the soliton, both in flavor and configu-
ration spaces, are quantised semiclassically and the collec-
tive Hamiltonian is computed. The model predicts rotational
baryon spectra that satisfy the following selection rules:

— allowed SU(3) representations must contain states with
hypercharge Y/ = Nya1/3,

— the isospin T’ of the states with Y’ = Ny, /3 is equal the
soliton spin J

where Nyq denotes the number of valence quarks.
Rotational energy reads as follows [24-26]:

JU+1
t _
Eip.q) = Mot + —7—
Cr(p,q)—J(J +1)—3/4Y'?
N 2(p, q) ( ) —3/ )

21

where C, denotes SU(3) Casimir operator and J stands for
the soliton spin. Soliton mass My, and moments of inertia
I » are calculable in terms of relativistic single quark wave
functions.

For light baryons Ny, = N, and the lowest SU(3)qay
representations allowed by the above selection rules are octet
of spin 1/2, decuplet of spin 3/2 and exotic anti-decuplet of
spin 1/2. Mo and 11 2 scale like Nyg.

Recently we have proposed [17], following Ref. [27], how
to generalise the above approach to heavy baryons, by strip-
ping off one valence quark and replacing it by a heavy quark
to neutralise the color. In the large N, limit both systems:
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light and heavy baryons are described essentially by the same
mean field, and the only difference is now that Nyg = N.—1.
The lowest allowed SU(3) representations are in this case (as
in the quark model) 3 of spin 0 and to 6 of spin 1. Therefore,
the baryons constructed from such a soliton and a heavy quark
form an SU(3) anti-triplet of spin 1/2 and two sextets of spin
1/2 and 3/2 that are subject to a hyper-fine splitting. The first
exotic representation is 15 with spin 0 or 1. However, as can
be seen from Eq. (1), the spin 1 soliton is lighter,! hence in
the following we ignore the one with spin 0. This means that
exotic heavy pentaquarks belonging to the SU(3)qay 15 have
total spin 1/2 and 3/2. These multiplets are hyperfine split
with splitting parameter proportional to 1/mg.

3 Large N, representations for heavy baryons

For N, > 3 we have to generalise 3= O, 1),2 6 = (2,0)and
15 = (1, 2) to the case of arbitrary (odd) N, [28-31]. In this
case the x QSM constraint generalises to Y’ = (N, — 1)/3.
This criterion has to be supplemented by yet another condi-
tion, which is usually a requirement that large N, solitons
(and therefore baryons) have the same spin as in the N, = 3
case. This means that the pertinent representations have the
same number of quark indices p = pg as for N, = 3, but dif-
ferent g. In the quark model language this corresponds to the
addition of an antisymmetrised quark pair to a given baryon
wave function when we increase N, by 2. This means that the
number of antiquark indices g at N, = 3 has to be replaced
by go + (N. — 3)/2. Therefore we arrive at the following
generalisations:

_ _ 1

“3’=(0,14¢g), dim(“3”) = 5(2 +q)3+4q),
. (17 <kl 3

“6” = (2, q), dlm( 6 ) = 5(1 +Q)(4+ q)’

“15 = (1,24 ¢q), dim(“15") = 3+ ¢)5+¢q) (2)

with

(€)

that are illustrated in Fig. 1.

It is now clear that various matrix elements of the irre-
ducible SU(3)q,y tensor operators will acquire N, depen-
dence if sandwiched between states belonging to represen-
tations (2). In this respect there is no difference between
the quark model and the y QSM. Indeed, it possible to show
on general grounds that representation content of the quark

! Explicit calculations and phenomenological fits show that 1/I; <
1/0.

2 We use here another notation for SU(3) representation expressed in
terms of p quark indices and ¢ anti-quark indices: (p, q).
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Fig. 1 Large N, generalizations of weigth diagrams of SU(3)g,y rep-
resentations 3, 6 and 15. Black circles denote physical states that exist
for N, = 3. Squares denote spurious states that disappear for N, = 3.
It is understood that these diagrams continue towards negative values
of Y. Horizontal dashed (green) lines correspond to Y' = (N, — 1)/3

model and soliton model coincide for large N, [32,33]. The
difference appears because due to the hedgehog symmetry
the x QSM provides certain relations between reduced matrix
elements in different multiplets, which in the naive quark
model are arbitrary.

4 Heavy baryon masses in the Chiral Quark Soliton
Model

In the xQSM the soliton is quantised as a symmetric top
and the pertinent mass formula for heavy baryons takes the
following form:

Mp=mg+ &, +dp+ AY )

(r,q)

where m ¢ stands for the heavy quark mass. Rotational soliton
energy is given by (1) and mass splittings due to the non-zero
strange quark mass m; are denoted by §p, and A}g denotes
hyperfine splitting which vanishes in a heavy quark limit.
These two contributions are not important for the discussion
of the large N, limit.

Mass differences of heavy baryon multiplets are therefore
equal to differences of rotational energies:

1 1
grot _gfot = — ~—,
6 371 N,
N+ 1 1
grot _ grot — ¢ — ~N?,
15 3 41, + I ¢
N.+1
£ — &t = —4;; ~N. )

We see from Eq. (5) that regular multiplets are degenerate in
the large N, limit, whereas the exotic multiplet, namely 15,
remains heavier by O(1). Here the situation is identical as in
the case of light baryons, where the mass difference between
decuplet and octet vanishes for N. — oo, while splitting to
the exotic anti-decuplet does not. This behaviour results in
the non-vanishing decay width of the exotic 10, which was
the main argument against the consistency of the x QSM to
light baryon exotica [34,35]. We will see in the following
that, despite (5), decay widths of exotic heavy baryons do
vanish for large N,.

5 Decay widths

The x QSM allows to compute strong decay widths that pro-
ceed by the soliton transition to another configuration with
emission of a pseudoscalar meson ¢. In the present paper
following [4] we use strong decay widths of nonexotic and
exotic heavy quark baryons (both charm and bottom) com-
puted in an approach proposed many years ago by Adkins,
Nappi and Witten [36] and expanded in Ref. [10], which
is based on the Goldberger-Treiman relation where strong
decay constants are expressed in terms of the axial current
couplings (see Ref. [37] for the derivation in the case of heavy
baryons). In this case the decay operator can be expressed in
terms of the weak axial decay constants® a; and meson decay
constant Fy:
o’ = |:a D® 4+ aydipeD® . + a LD(g)JA-:| Pi
® ]¢,+21bc¢bc+3\/§(p812Fw
(6)

where p; is the c.m. momentum of the outgoing meson of

mass m:

lpil=p

M7 — My + m) (M7 — (M — m)?)
2M, '

It is important to note that in the chiral limit where m — 0
momentum p behaves differently with N, due to (5), depend-
ing on the initial and final flavor representations:

)

3 For reader’s convenience we give the relations of the con-

stants @123 to nucleon axial charges in the chiral limit:

0 8
8A = 70 (—al + %az + 114(13), 8(4) = ;03» 8(4) =
1 1 1
W (7Ll] + jaz + 5[13).

@ Springer



690 Page 4 of7

Eur. Phys. J. C (2018) 78:690

1 0
P37 FC’ pﬁ—>6,§NNc' (®)

This N, counting is of primary importance for correct deter-
mination of the N, dependence of the decay widths.

The decay width for By — Bj + ¢ is related to the matrix
element of (9;}8) squared, summed over the final and aver-
aged over the initial spin and isospin denoted as W see
the Appendix of Ref. [10] for details of the corresponding
calculations:

FBl—>Bz+g0 = %(BZ|O¢|BI>2 %P- 9
Factor M, /M follows from the heavy baryon chiral pertur-
bation theory, see e.g. Refs. [38,39]. While it is important
for phenomenological applications, it is irrelevant for our
discussion as it scales like N?.

The final formula for the decay width in terms of axial
constants aj 2 3 reads as follows:

r _ 1 p3 M, , dim R,
BB T o4 F2 My RioRedim Ry
8 Rz R] 2 8 Rz Rl g
01Y'S,| Y'S, Y, T, 2Tn| Y1 T
(10)

Here R 2 are the SU(3) representations of the initial and final
baryons and [...]..] are SU(3) iso-scalar factors. The decay
constants G, R, are calculated from the matrix elements
of (6) for representations (2) and read as follows:

1
Ge3=Hy=—ar+ s,
- N, —1
C3=C3=—a1———a,
- N, —1
Gﬁ—>6 = G6 = —da| — ap — as. (11)

In the x QSM one can define so called non-relativistic (or
quark model QM) limit [10,40,41] by squeezing the soliton
to zero. The easiest way to perform this limit is to use the
variational approach, in which one solves the Dirac equation
for single quark energy levels in the hedgehog mean field
characterised by a variational parameter r(, which is called
the soliton size. For the physical solution the value of rg is
determined by the balance of the valence quark contribution
that decreases with rp and the contribution of the appropri-
ately regularised Dirac sea that increases with rg. The QM
limit is defined by taking artificially ro — 0. In this limit
the valence level reaches its free energy value equal to the
constituent mass M. At the same time the contribution of
the Dirac sea is approaching zero,* since the soliton energy

4 This justifies the name: Quark Model limit, because the soliton energy
is equal essentially to Nyy x M.

@ Springer

is evaluated with respect to the unperturbed Dirac sea. In
the QM limit parameters a; can be computed analytically
[40,41]. One has to observe that in the present case the num-
ber of valence quarks is N — 1 rather than N, and therefore
the only N, dependent parameter a; has to be appropriately
rescaled; that is why we have used a “”” over a [4]. We have
[40,41]:

a3 0 (12)

. QM M
—a1Q—> Ne+1, a2Q—>4,
and we get a hierarchy between the decay constants in the
QM limit:

BEEN+3 6552 G Do (13)

By this observation we have argued in Ref. [4] that the
decays of exotic Q? resonances should be suppressed with
respect to the decays of regular baryons that are driven by
the unsuppressed constant Hy.

However, even off the QM limit, where all couplings
Hz, Gz, Gg ~ N¢,decays of the exotic §2.’s are suppressed
due to the N, dependence of the pertinent isoscalar factors
in Eq. (10). Indeed, for the energetically allowed decays we
have:

r 1 MG, p
X(61)—>ABy)+mr — 27 ME(ﬁl) F;%
y (Ne = (N +3) H2.
(Ne + D(N.+5) 3
r ) 1 Mg, p?
5(61)—>E(30)+7{ - 727_[ ME(61) Fy%
2
X Ne H2Z,
(Ne + D)(Ne +5) 3

oA Megy
QUASH=>EQR0+K T 34 M_Q(E ) F12<
1

G2
X 3 9
(Ne + D)(Ne +5)(Ne +7)
o 4 Moe) P’
RA5)—>2(6 = 5 . 12
51) (61)+7 277 M.Q(ﬁl) F%
2
X Gs Y,
(Ne + D(N:+7)

o 8 Mzey P’
2015)—>EZ(61)+K — 277 M_Q(E ) Fw12<
1

2
X Y Y.
(Ne + D*(Ne +7)

(14)

For multiplets where the soliton spin J [denoted by a sub-
script at the representation label in Eq. (14)] is equal to one,
hyperfine splittings to a heavy quark result in two spin mul-
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tiplets 1/2 and 3/2. Factors y take this additional couplings
into account:’

y(1/2 > 1/2) = 2/3,
y(3/2 - 1/2) = 1/6,

y(1/2 - 3/2) =1/3,
y(3/2 = 3/2) = 5/6. (15)

Armed with explicit formulae for the decay widths (14),
for the pertinent couplings (11), for N. meson momentum
dependence (8), and remembering that F(Z ~ N¢, we can
compute N, dependence of the decay widths and, using (13),
N, dependence of the decay widths in the Quark Model limit:

r - Ne—oo 1 om 1
D648+ T N2 T N2
c c

r Ne—oo 1 oM 1
26)—>E@)+r N_Cz - N_3
s N.— 00 1 QM 1
eWBY-E60+Kk N2 N
C
Ne—»oo 1 QM
- — >0,
C
Ne—oo | QM
Fo@s)—z6n+k N2 0. (16)

c

FQ(EI)—>Q(61)+n

Equations (16) show that all widths relevant for heavy
baryon decays, including exotica, vanish for N, — oo. This
result is quite obvious for regular baryons that are degenerate
in this limit (see Egs. (5), (8)), and the quadratic dependence
on 1/N, is the same as in the case of e.g. A decay. It is
however surprising that for N, — oo exotic states that are
not degenerate with the ground state heavy baryons (see again
Egs. (5) and (8)), have nevertheless decay widths that tend
to zero in contrast with the decay width of the putative light
pentaquark @ . For a decay linking baryons of the same
isospin the suppression power is weaker by one. In the Quark
Model limit the decay widths of exotica are, however, further
suppressed. This is an interesting situation not known from
the light baryons and it deserves more detailed studies.

6 Summary

Prompted by the pentaquark assignment of two narrowest
.Q? states reported recently by the LHCb Collaboration we
have studied the large N, limit of the decay widths of heavy
quark baryons within the Chiral Quark Soliton Model. We
have calculated all energetically allowed strong decays of the
ground state SU(3)gay sextet and of the putative pentaquark
.Q?’s. To this end we have used heavy baryon chiral pertur-
bation theory and the Glodberger-Treiman relation for heavy
baryons.

We have proposed a natural enlargement of the pertinent
SU(3)qay representations for N, — 0o and calculated the rel-

5 See Eratum in Ref. [4].

evant matrix elements obtaining analytical results for arbi-
trary (odd) N.. This required to calculate SU(3) Clebsch—
Gordan coefficients for large representations (2). The rele-
vant technique has been briefly discussed in the Appendix.

The main result is that all decay widths studied in this
paper vanish in the limit of large N, either as (1/N.)* or
as 1/N,. This is true also for decays of exotica, for which
the phase space momentum of the outgoing meson does not
vanish in this limit.

Furthermore we have investigated the large N, and the
Quark Model limits of the decay constants. In this limit there
is a hierarchy of the decay couplings (16): decays of regular
baryons are not suppressed, pentaquark decay coupling to
anti-triplet is suppressed by 1/N,, whereas for the sextet the
pertinent coupling vanishes.
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Appendix

In this appendix we briefly sketch techniques used to calcu-
late SU(3) Clebsch—Gordan coefficients for large representa-
tions (2). The following Clebsch—Gordan series are relevant
for the decay widths discussed in this paper:

99 99

“3 “15” “6 “3
——— ——— —— ——
1LD®0O0,g+1)=>0,9+2)®2,9)® (0,9 +1)
——— —— ———
Yo+1,1/2 Yo.1 Y0,0
spurious
——
69(11 q — 1) )
———
Yo—1,1/2
“6” “24’7 “E”
—— e —— ——
1L,D®2,9)=C,q+Hd,q+2)
N— S———
Yo+1.3/2 Yo+1,1/2
spurious; “6” «3”
—— —_—— ——
®@,q-1)B212,9)® 0, g+ 1)
—— —— ———
Yo,2 Yo,1 Y0,0
spurious, spuriouss
—t~—— ——
®G.g-2)®(l,qg—-1). a7
~———— ———
Yo—1,3/2 Yo—1,1/2
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Labels in quotation marks above representation labels (p, g)
correspond to the N, = 3 limit for these representations,
representations that are not present for N, = 3 are denoted
as spurious. Labels below correspond to the hypercharge and
isospin of the highest weight in a given representation, with
Yo = (N, —1)/3.

The construction proceeds by starting from the highest
weight of the largest representation in (17), for which the
SU(3) Clebsch—Gordan coefficient is 1. Then we apply low-
ering /-spin, U-spin and V-spin operators to construct the
remaining states in this representation. For explicit form of
these operators see e.g. [42]. Whenever we encounter a state
for which an orthogonal state exists, we assign it either to
another isospin multiplet in the same representation, or to
some lower dimensional representation choosing the phases
according to de Swart convention [43]. To calculate the decay
widths we need to construct only “15” and “6” in the first
series and “15” in the second. All Clebsch-Gordan coeffi-
cients have been checked numerically for a few fixed values
of N, with the numerical code of Ref. [44].
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