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Abstract As it was pointed out recently in Hees et al. (Phys
Rev Lett 118:211101, 2017), observations of stars near the
Galactic Center with current and future facilities provide
an unique tool to test general relativity (GR) and alterna-
tive theories of gravity in a strong gravitational field regime.
In particular, the authors showed that the Yukawa gravity
could be constrained with Keck and TMT observations. Some
time ago, Dadhich et al. (Phys Lett B 487:1, 2001) showed
that the Reissner–Nordström metric with a tidal charge is
naturally appeared in the framework of Randall–Sundrum
model with an extra dimension (Q2 is called tidal charge
and it could be negative in such an approach). Astrophys-
ical consequences of presence of black holes with a tidal
charge are considerered, in particular, geodesics and shad-
ows in Kerr–Newman braneworld metric are analyzed in
Schee and Stuchlík (Intern J Mod Phys D 18:983, 2009),
while profiles of emission lines generated by rings orbit-
ing braneworld Kerr black hole are considered in Schee and
Stuchlík (Gen Relat Grav 52:1795, 2009). Possible obser-
vational signatures of gravitational lensing in a presence of
the Reissner–Nordström black hole with a tidal charge at the
Galactic Center are discussed in papers (Bin-Nun in Phys
Rev D 81:123011, 2010; Bin-Nun in Phys Rev D 82:064009,
2010; Bin-Nun in Class Quant Grav 28:114003, 2011). Here
we are following such an approach and we obtain analytical
expressions for orbital precession for Reissner–Nordström–
de-Sitter solution in post-Newtonian approximation and dis-
cuss opportunities to constrain parameters of the metric from
observations of bright stars with current and future astromet-
ric observational facilities such as VLT, Keck, GRAVITY,
E-ELT and TMT.

a e-mail: zakharov@itep.ru

1 Introduction

The Galactic Center is a very peculiar object. A couple of
different models have been suggested for it, including dense
cluster of stars [8], fermion ball [9], boson stars [10,11], neu-
trino balls [12]. Later, some of these models have been con-
strained with subsequent observations [8]. However, as it was
found in computer simulations, sometimes differences for
alternative models may be very tiny as it was shown in paper
[13] where the authors discussed shadows for boson star and
black hole models. The most natural and generally accepted
model for the Galactic Center is a supermassive black hole
(see, e.g. recent reviews [14–17]). A natural way to evaluate
a gravitational potential is to analyze trajectories of photons
or test particles moving in the potential. Shapes of shad-
ows forming by photons moving around black holes were
discussed in [18–21] (see also [22]). Shadows (dark spots)
can not be detected but theoretical models could describe a
distribution of bright structures around these dark shadows.
Bright structures around shadows are being observing with an
improving accuracy of current and forthcoming VLBI facil-
ities in mm-band, including the Event Horizon Telescope
[24–27].

To create an adequate theoretical model for the Galactic
Center astronomers monitored trajectories of bright stars (or
clouds of hot gas) using the largest telescopes VLT and Keck
with adaptive optics facilities [28–34]. One could introduce a
distance between observational data for trajectories of bright
stars and their theoretical models. Practically, such a distance
is a measure of quality for a theoretical fit. To test different
theoretical models one of the most simple approach is to
compare apocenter (pericenter) shifts for theoretical fits and
observational data for trajectories. If an apocenter (pericen-
ter) shifts for a theoretical fit exceed apocenter (pericenter)
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shifts obtained from observations one should rule out these
interval for parameters for theoretical fits. Based on such an
approach one could evaluate parameters of black hole, stel-
lar cluster and dark matter cloud around the Galactic Center
because if there is an extended mass distribution inside a
bright star orbit in addition to black hole, the extended mass
distribution causes an apocenter shift in direction which is
opposite to relativistic one [35,36]. One could also check pre-
dictions of general relativity or alternative theories of gravity.
For instance, one could evaluate constraints on parameters of
Rn theory, Yukawa gravity and graviton masses with trajecto-
ries of bright stars at the Galactic Center because in the case of
alternative theories of gravity a weak gravitational field limit
differs from Newtonian one, so trajectories of bright stars
differ from elliptical ones and analyzing observational data
with theoretical fits obtained in the framework of alternative
theories of gravity one constrains parameters of such theories
[37–42] (see, also discussion of observational ways to inves-
tigate opportunities to find possible deviations from general
relativity with observations of bright stars at the Galactic
Center [1,43]).

In paper [2] it was shown that the Reissner–Nordström
metric with a tidal charge could arise in Randall–Sundrum
model with an extra dimension. Braneworld black holes are
considered assuming that they could substitute conventional
black holes in astronomy, in particular, geodesics and shad-
ows in Kerr–Newman braneworld metric are analyzed in [3],
while profiles of emission lines generated by rings orbiting
braneworld Kerr black hole are considered in [4]. Later it
was proposed to consider signatures of gravitational lensing
assuming a presence of the Reissner–Nordström black hole
with a tidal charge at the Galactic Center [5–7]. In paper
[44] analytical expressions for shadow radius of Reissner–
Nordström black hole have been derived while shadow sizes
for Schwarzschild–de Sitter (Köttler) metric have been found
in papers [45,47]. In the present paper for a particle motion
in Reissner–Nordström–de-Sitter metric we derive analytical
expressions for orbital precession and discuss constraints on
tidal charge from current and future observations of bright
stars near the Galactic Center.

2 Basic notations

We use a system of units where G = c = 1. The line element
of the spherically symmetric Reissner–Nordström–de-Sitter
metric is

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dθ2 + r2 sin2 θdφ2,

(1)

where function f (r) is defined as

f (r) = 1 − 2M

r
+ Q2

r2 − 1

3
�r2. (2)

Here M is a black hole mass, Q is its charge and � is cos-
mological constant. In the case of a tidal charge [2], Q2 could
be negative. Similarly to [45,46,48,49], geodesics could be
obtained the Lagrangian

L = −1

2
gμν

dxμ

dλ

dxν

dλ
, (3)

where gμν are the components of metric (1 and λ is the affine
parameter. There are three constants of motion for geodesics
which come from the metric (1), namely

gμν

dxμ

dλ

dxν

dλ
= −m, (4)

which is a test particle mass and two constants connected
with an independence of the metric on φ and t coordinates,
respectively

gφν

dxν

dλ
= h, (5)

and

gtν
dxν

dλ
= E . (6)

For vanishing �-term these integrals of motion (h and E)
could be interpreted as angular momentum and energy of
a test particle, respectively. Geodesics for massive particles
could be written in the following form

r4
(
dr

dλ

)2

= E2r4 − �(m2r2 + h2), (7)

where

� =
(

1 − 1

3
�r2

)
r2 − 2Mr + Q2. (8)

or we could write Eq. (7) in the following form

r4
(
dr

dτ

)2

= (Ê2 − 1)r4 + 2Mr3 − Q2r2

+1

3
�r6 − ĥ2

(
r2 − �

3
r4 − 2Mr + Q2

)
,

(9)

where τ = mλ is the proper time, Ê = E

m
and ĥ = h

m
. We

will omit symbol ∧ below.
Since

r4
(
dφ

dτ

)2

= h2, (10)
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one could obtain(
dr

dφ

)2

= 1

h2 (E2 − 1)r4 + 2Mr3

h2 − Q2r2

h2

+ 1

3h2 �r6 −
(
r2 − �

3
r4 − 2Mr + Q2

)
, (11)

It is convenient to introduce new variable u = 1/r . Since

(
du

dλ

)2

=
(
dr

dφ

)2

u4, (12)

one obtains(
du

dλ

)2

= 1

h2 (E2 − 1) + 2Mu

h2 − Q2u2

h2 + �

3h2u2

−
(
u2 − �

3
− 2Mu3 + Q2u4

)
, (13)

therefore,

d2u

dλ2 + u = M

h2 + 3Mu2 − Q2u

h2 − 2Q2u3 − �

3h2u3 , (14)

and as it is noted in [50] the first term in the right hand side of
Eq. (14) corresponds to the Newtonian case, the second term
corresponds to the GR correction from the Schwarzschild
metric (see also book [56]), meanwhile one could see inspect-
ing Eq. (14) that third and forth term correspond to a presence
of Q parameter in metric (1), the fifth term corresponds to a
�-term presence in the metric. Assuming that second, third,
forth and fifth terms in the right hand side of Eq. (14) are
small in respect to the basic Newtonian solution, one could
evaluate relativistic precession for each term and after that
one has to calculate an algebraic sum of all shifts induced by
different terms.

3 Relativistic precession evaluation

An impact of non-vanishing charge in Reissner–Nordström
metric on orbital precession was discussed in papers [51–
55] considering perturbations of Schwarzschild metric, see
for instance [56,57]. However, Eq. (14) was not considered
in these papers. When people discussed astrophysical con-
sequences of this effect they evaluated an impact of Solar
charge on Mercury precession orbit [51] and it is clear that
the effect is very small due to constraints on Solar electric
charge. Similarly, for astrophysical black holes including the
black holes at the Galactic Center, their electric charges are
expecting to be vanishing or very small. However, signif-
icant tidal charges |Q| which are comparable with M are
discussed in the literature [6,7] where the author discussed
an opportunity to evaluate a tidal charge Q2 ≈ −6.4M2 or
Q2 ≈ 1.6M2 from gravitational lensing.

An expression for apocenter (pericenter) shifts for New-
tonian potential plus small perturbing function is given as a
solution in the classical (L & L) textbook [58] (see also appli-
cations of the expressions for calculations of stellar orbit pre-
cessions in presence of the the supermassive black hole and
dark matter at the Galactic Center [59,60]). In paper [50], the
authors derived the expression which is equivalent to the (L
& L) relation and which can be used for our needs. Accord-
ing to the procedure proposed in [50] one could re-write Eq.
(14) in the following form

d2u

dτ 2 + u = M

h2 − g(u)

h2 , (15)

where g(u) is a perturbing function which is supposed to be
small and it could be presented as a conservative force in the
following form

g(u) = r2F(r)|r=1/u, F(r) = −dV

dr
. (16)

For potential V (r) = α−(n+1)

r−(n+1)
(where n is a natural num-

ber) one obtains [50]

�θ(−(n + 1)) = −πα−(n+1)χ
2
n (e)

MLn
, (17)

where

χ2
n (e) = n(n + 1)2F1

(
1

2
− n

2
,

1

2
− n

2
, 2, e2

)
, (18)

2F1 is the Gauss hypergeometrical function, L is the semi-
latus rectum (L = h2/M) and we have L = a(1 − e2)

(a is semi-major axis and e is eccentricity). An alterna-
tive approach for evaluation of pericenter advance within
of Rezzolla–Zhidenko (RZ) parametrization [61] has been
described in [62] for theoretical analysis of pulsar timing in
the case if pulsars are moving in the strong gravitational field
of the supermassive black hole at the Galactic Center. Since
pulsars are very precise and stable clocks, studies of pulsar
timing gives an opportunity to investigate gravitational field
in the vicinity of the supermassive black hole.

In paper [50] the authors obtained orbital precessions for
positive powers of perturbing function

�θ(n) = −παnan+1
√

1 − e2χ2
n (e)

M
. (19)

For GR term in Eq. (14) the perturbing potential is

VGR(r) = −Mh2

r3 and one obtains the well-known result

n = 2 (see, for instance [50] and textbooks on GR)

�θ(GR) := �θ(−(3)) = 6πM

L
. (20)
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For the third term in Eq. (14) one has potential VRN1(r) =
Q2

2r2 (α−2 = Q2

2
and n = 1), therefore, one obtains

�θ(RN1) := �θ(−(2))RN1 = −πQ2

ML
. (21)

Equation (21) was derived earlier in [51] to evaluate an
impact of Solar charge on orbital precession of Mercury,
however, we re-derive the Eq. (21) following a procedure
suggested in [58] since this approach is more clear and it
could be applied for other types of perturbing potentials. For

the forth term in Eq. (14) one has potential VRN2(r) = h2Q2

2r4

(α−4 = h2Q2

2
and n = 3) , therefore, one obtains

�θ(RN2) := �θ(−(4))RN2 = −3πQ2(4 + e2)

2L2 . (22)

Since according to our assumptions M � L , one has
Q2

L2 � Q2

ML
and we ignore the apocenter (pericenter) shift

which is described with Eq. (22). For the fifth (de-Sitter or
anti-de-Sitter) term in Eq. (14) one has potential VdS(r) =
−�r2

6
(α2 = −�

6
) and one has the corresponding apocenter

(pericenter) shift

�θ(�) := �θ(2)dS = π�a3
√

1 − e2

M
. (23)

Equation (23) was derived earlier in [63] and re-derived
in [50] with (L & L) approach [58]. In paper [64] Eq. (23)
was used to discuss consequences of a non-vanishing �-term
from observations in Solar system.

Therefore, a total shift of a pericenter is

�θ(total) := 6πM

L
− πQ2

ML
+ π�a3

√
1 − e2

M
. (24)

and one has a relativistic advance for a tidal charge with
Q2 < 0 and apocenter shift dependences on eccentricity
and semi-major axis are the same for GR and Reissner–
Nordström advance but corresponding factors (6πM and

−πQ2

M
) are different, therefore, it is very hard to distinguish

a presence of a tidal charge and black hole mass evaluation
uncertainties. For Q2 > 0, there is an apocenter shift in
the opposite direction in respect to GR advance. As it was
noted each term in Eq. (24) was known earlier, but people
did not consider them together perhaps because of small val-
ues electric charge and �-term. However, a wider range for
tidal charge was considered for the black hole at the Galac-
tic Center [6,7] and an excellent precision of astrometrical

observations has been reached in last years and it gives an
opportunity to evaluate parameters of alternative theories of
gravity with these observations.

4 Estimates

As it was noted by the astronomers of the Keck group [1],
pericenter shift has not be found yet for S2 star, however, an
upper confidence limit on a linear drift is constrained

|ω̇| < 1.7 × 10−3rad/year. (25)

at 95% C.L., while GR advance for the pericenter is [43]

|ω̇GR | = 6πGM

Pc2(1 − e2)
= 1.6 × 10−4rad/year, (26)

where P is the orbital period for S2 star (in this section we
use dimensional constants G and c instead of geometrical
units). Based on such estimates one could constrain alterna-
tive theories of gravity following the approach used in [1].

4.1 Estimates of (tidal) charge constraints

Assuming � = 0 we consider constraints on Q2 parameter
from previous and future observations of S2 star. One could
re-write orbital precession in dimensional form

ω̇RN = πQ2

PGML
, (27)

where P is an orbital period. Taking into account a sign of
pericenter shift for a tidal charge with Q2 < 0, one has

ω̇RN < 1.54 × 10−3rad/year ≈ 9.625 ω̇GR, (28)

therefore,

−57.75M2 < Q2 < 0, (29)

with 95% C. L. For Q2 > 0, one has

|ω̇RN | < 1.86 × 10−3rad/year ≈ 11.625 ω̇GR, (30)

therefore,

0 < |Q| < 8.3516M, (31)

with 95% C. L. As it was noted in [1] in 2018 after the
pericenter passage of S2 star the current uncertainties of |ω̇|
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will be improved by a factor 2, so for a tidal charge with
Q2 < 0, one has

ω̇RN < 6.9 × 10−4rad/year ≈ 4.31 ω̇GR, (32)

−25.875M2 < Q2 < 0, (33)

For Q2 > 0, one has

|ω̇RN | < 9.1 × 10−4rad/year ≈ 5.69 ω̇GR, (34)

therefore,

0 < |Q| < 5.80M, (35)

One could expect that subsequent observations with VLT,
Keck, GRAVITY, E-ELT and TMT will significantly improve
an observational constraint on |ω̇|, therefore, one could
expect that a range of possible values of Q parameter would
be essentially reduced.

As it was noted in paper [1], currently Keck astrometric
uncertainty is around σ = 0.16 mas, therefore, an angle δ =
2σ (or two standard deviations) is measurable with around
95% C.L. In this case �θ(GR)S2 = 2.59δ for S2 star where
we adopt �θ(GR)S2 ≈ 0.83. Assuming that GR predictions
about orbital precession will be confirmed in the next 16

years with δ accuracy (or

∣∣∣∣πQ2

ML

∣∣∣∣ � δ), one could constrain

Q parameter

|Q2| � 2.32M2, (36)

where we wrote absolute value of Q2 since for a tidal charge
Q2 could be negative. For negative Q2 this estimate is better
than estimate considered in [6] (Q2 ≈ −6.4M2), however,
the estimate (36) is slightly more worse than Q2 ≈ 1.6M2.

If we adopt uncertainty σT MT = 0.015 mas for TMT-
like scenario as it was used in [1] (δT MT = 2σT MT ) or in
this case �θ(GR)S2 = 27.67δT MT for S2 star and assuming
again that GR predictions about orbital precession of S2 star

will be confirmed with δT MT accuracy (or

∣∣∣∣πQ2

ML

∣∣∣∣ � δT MT )

, one could conclude that

|Q2| � 0.216M2, (37)

or based on results of future observations one could expect
to reduce significantly a possible range of Q2 parameter in
comparison with a possible hypothetical range of Q2 param-
eter which was discussed in [5,6].

Recently the GRAVITY team reported about a discovery
of post-Newtonian gravitational redshift near S2 star pericen-
ter passage [68]. Assuming f = 0 corresponds to the Newto-
nian case and f = 1 corresponds to the first post-Newtonian

correction of GR, the GRAVITY collaboration estimated f -
value from observational data comparing precessions for
Schwarzschild and Newtonian approaches and they con-
cluded that the f -value must be much closer to GR value or
more precisely f = 0.94±0.09 [68] (see also discussions in
[69]). If we adopt uncertainty σGRAVITY = 0.030 mas of the
GRAVITY facilities [68] and assuming again that GR predic-
tions on orbital precession of S2 star will be confirmed with

δGRAVITY = 2σGRAVITY accuracy (or

∣∣∣∣πQ2

ML

∣∣∣∣ � δGRAVITY),

one could conclude that

|Q2| � 0.432M2, (38)

or based on results of future GRAVITY observations one
could expect to reduce significantly a possible range of Q2

parameter in comparison with a possible range of Q2 param-
eter constrained with current and future Keck data.

4.2 Estimates of �-term constraints

In this subsection we assume that Q = 0. One could re-write
orbital precession in dimensional form

ω̇� = π�c2a3
√

1 − e2

PGM
. (39)

Dependences of functions ω̇� and ˙ωGR on eccentricity and
semi-major axis are different and orbits with higher semi-
major axis and smaller eccentricity could provide a better
estimate of �-term (the S2 star orbit has a rather high eccen-
tricity). However, we use observational constraints for S2
star. For positive �, one has relativistic advance and

ω̇� < 1.54 × 10−3rad/yr ≈ 9.625 ˙ωGR, (40)

or

0 < � < 3.9 × 10−39cm−2, (41)

for � < 0 one has

0 < −� < 4.68 × 10−39cm−2, (42)

if we use current accuracy of Keck astrometric measurements
σ = 0.16 mas and monitor S2 star for 16 years and assume
that additional apocenter shift (2σ )could be caused by a pres-
ence of �-term, one obtains

|�| < 1.56 × 10−40cm−2, (43)

while for TMT-like accuracy δT MT = 0.015 mas one has

|�| < 1.46 × 10−41cm−2. (44)
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As one can see, constraints on cosmological constant from
orbital precession of bright stars near the Galactic Center are
much weaker than not only its cosmological estimates but
also than its estimates from Solar system data [64].

5 Conclusions

We consider the first relativistic corrections for apocenter
shifts in post-Newtonian approximation for the case of Reiss-
ner – Nordström–de-Sitter metric. Among different theoret-
ical models have been proposed for the Galactic Center dif-
ferent black hole models are rather natural. Perhaps, assump-
tions about a presence of electric charge in the metric do not
look very realistic because a space media is usually quasi-
neutral, but the charged black holes are discussed in the liter-
ature see, for instance [70] and references therein. Moreover,
a Reissner–Nordström metric could arise in a natural way in
alternative theories of gravity like Reissner–Nordström solu-
tions with a tidal charge in Randall–Sundrum model [2] (such
an approach is widely discussed in the literature). Recently,
it was found that Reissner–Nordström metric is a rather nat-
ural solution in Horndeski gravity [71] and in this case Q2

parameter reflects an interaction with a scalar field and it
could be also negative similarly to a tidal charge. In paper
[71] it was expressed an opinion that the hairy black hole
solutions look rather realistic and these objects could exist in
centers of galaxies and if such objects (hairy black holes
in Horndeski gravity) exist in nature, in particular in the
Galactic Center, current and future advanced facilities such
as GRAVITY [72], E-ELT [73], TMT [74] etc. may be very
useful to detect signatures of black hole hairs of an additional
dimension. Therefore, non-vanishing (positive or negative)
Q2 parameter is arisen due to a presence of extra dimen-
sion or in Horndeski gravity for black holes with a scalar
hair. We outline a procedure to constrain Q2 parameter with
current and future observations of bright stars at the Galac-
tic Center. Even current Keck facilities could constrain Q2

better (Q2 ≈ −2.32M2) than with analysis of hypothetical
variations of S2 brightness as it was suggested in [6].

Certainly, �-term should be present in the model, how-
ever, if we adopt its cosmological value it should be very
tiny to cause a significant impact on relativistic precession
for trajectories of bright stars. If we have a dark energy
instead of cosmological constant, one should propose ways
to evaluate dark energy for different cases, therefore, one
could constrain �-term from observations as it was noted in
[47] analyzing impact of �-term on observational phenom-
ena near the Galactic Center (similarly to the cases where
an impact of �-term has been analyzed for effects in Solar
system [64,75,76]).
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