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Abstract In this paper, we have investigated Noether sym-
metries in Lemaitre–Tolman–Bondi (LTB) metric. Using the
Lagrangian associated with the LTB metric, the set of deter-
mining equations for Noether symmetries is obtained and
then integrated in several cases. It is shown that the LTB met-
ric can be classified in to eight distinct classes corresponding
to Noether algebra of dimension 4, 5, 6, 7, 8, 9, 11 and 17.
The obtained Noether symmetries are compared with Killing
and homothetic vectors. The well known Noether’s theorem
is used to find the expressions for conservation laws in each
case. Moreover, it is shown that most of the obtained metrics
are anisotropic or perfect fluid models which satisfy certain
energy conditions and the equation of state.

Keywords LTB metric · Noether symmetry · Energy
conditions · Equation of state

1 Introduction

The Einstein’s field equations (EFEs) form a base for the
mathematical structure of general theory of relativity. These
equations consist of a system of ten coupled nonlinear partial
differential equations which states that Gab = kTab, where
Tab is the stress-energy tensor, giving the description of den-
sity and flux of energy and momentum in the spacetime,
Gab is the Einstein tensor which expresses the curvature of
spacetime, and k denotes the gravitational constant. The Ein-
stein tensor contains all the basic geometric properties of the
spacetimes and it is given by Gab = Rab − R

2 gab, where Rab

and gab are the Ricci and metric tensors respectively and R
is the scalar curvature. For a given distribution of energy and
momentum in the form of Tab, the metric tensor is regarded
as an exact solution of the EFEs. If we could find the gab,
the other terms appearing in the EFEs can be found by a
nonlinear manner.
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Finding the exact solutions of EFEs is an important prob-
lem in the theory of general relativity. In fact, the search for
new solutions of these equations had opened new avenues to
our understanding of the universe. However, finding the exact
solutions of EFEs is quite challenging, the reason being their
highly nonlinear nature. Since the development of the theory
of general relativity, a limited number of exact solutions have
been found [1].

One of the known approaches for finding the exact solu-
tions of EFEs is to use some symmetry restrictions on the met-
ric tensor. This symmetry is expressed in terms of Killing vec-
tors (KVs), which requires that the Lie derivative of the metric
gab vanishes along the vector field X, that is LX gab = 0,

where L denotes the Lie derivative operator. A comprehen-
sive detail about KVs and the corresponding conservation
laws in spacetimes can be found in [1–3].

Some other spacetime symmetries appearing in the litera-
ture include homothetic vectors (LX gab = 2ψgab), where
ψ is a constant, curvature collineations (LX Ra

bcd = 0),
Ricci collineations (LX Rab = 0) and matter collineations
(LX Tab = 0). These symmetries are also widely discussed
in the literature [4–9].

Noether symmetry was introduced by Emmy Noether
[10]. According to Noether theorem, every continuous sym-
metry admitted by the Lagrangian of a system corresponds
to a conservation law. Consequently, this theorem gives con-
servation of energy and linear and angular momenta of a
physical system if it is invariant under time translation and
spacial translations and rotations. Noether symmetries usu-
ally provide the additional conservation laws, not given by
KVs. Moreover, the Lie algebra of KVs is always a subset of
the Lie algebra of Noether symmetries. Homothetic vectors
also have a close link with Noether symmetries. In fact, if X
is a homothetic vector, then X +2ψs∂s is a Noether symme-
try associated with X. Conversely, if X +2ψs∂s is a Noether
symmetry and X is independent of s, then X is a homothetic
vector [11].
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In recent literature, Noether symmetries are investigated
for some well known spacetimes. Bokhari and Kara [12] stud-
ied Noether symmetries in conformally flat Friedmann met-
ric and compared their results with KVs. According to their
analysis, the flat Friedmann metric admits additional con-
servation laws not given by KVs. A similar comparison of
KVs and Noether symmetries was done by Bokhari et al. [13]
which led them to the conjectur that the Noether symmetries
obtained by considering the Lagrangian provide additional
conservation laws, not given by KVs. Hickman and Yazdan
[11] presented a complete classification of Bianchi type II
spacetimes via Noether symmetries where they also showed
that the set of Noether symmetries contains Killing as well as
homothetic vectors. Ali and his collaborators [14–16] inves-
tigated Noether symmetry of static plane, static spherical and
static cylindrically symmetric spacetimes. A complete clas-
sification of Bianchi type V spacetimes according to their
Noether symmetries was given in [17], where some useful
physical interpretation of new cosmological solutions were
also given. Recently, the Noether symmetries in non static
plane symmetric spacetimes were explored by Usamah et al.
[18].

Spacetime symmetries, including Noether symmetries
and KVs, help in finding the new exact solutions of EFEs.
However, although the vacuum EFEs are a well-defined
mathematical and physical system, the EFEs with matter do
not become such a system until the matter content is spec-
ified as a set of fields and the EFEs are supplemented with
field equations for each of the matter fields. Thus the study of
EFEs with non zero energy-momentum tensor that does not
come from particular matter fields may not give physically
interesting results. Depending upon the source, the energy-
momentum tensor has a particular form. For example, if the
source is a perfect fluid, then Tab = (p + ρ)uaub + pgab,

where p, ρ and ua represent pressure, density and four-
velocity of the perfect fluid. Similarly, for an isotropic fluid
we have Tab = (ρ + p⊥)uaub + (p|| − p⊥)nanb + p⊥gab,

where ρ, ua and na respectively represent the energy den-
sity, four-velocity and spacelike unit vector, whereas p⊥ and
p|| are the pressures perpendicular and parallel to na respec-
tively. Also uaua = −1, nana = 1 and uana = 0 [19]. It
can be seen that when p|| = p⊥, then the Tab of anisotropic
fluid reduces to that of a perfect fluid.

An energy condition is a relation one demands the energy-
momentum tensor of matter satisfy in order to try to capture
the idea that energy density, given by T00, should be non
negative. The importance of this condition is that if positive
and negative energy regions are allowed, the empty vacuum
would become unstable. There are many ways of the gen-
eralization of the condition T00 ≥ 0 to the whole tensor.
The simplest example is the weak energy condition which
stipulates that for any timelike vector va at any point of the
spacetime manifold, Tab satisfies Tabv

avb ≥ 0. Some other

well known energy conditions are null, dominant and strong
energy conditions. For an anisotropic fluid, the energy con-
ditions take the following forms:

Dominant energy condition : ρ ≥ 0, ρ ≥ |p|||, ρ ≥ |p⊥|,
Strong energy condition : ρ + p|| ≥ 0, ρ + p⊥ ≥ 0,

ρ + p|| + 2p⊥ ≥ 0,

Weak energy condition : ρ ≥ 0, ρ + p|| ≥ 0, ρ + p⊥ ≥ 0,

Null energy condition : ρ + p|| ≥ 0, ρ + p⊥ ≥ 0. (1.1)

The above energy conditions reduce to those for a perfect
fluid if p|| = p⊥. With these notions, we may introduce
the equation of state, which is the relation between energy
density and components of anisotropic pressure, that is:

p|| = p||(ρ), p⊥ = p⊥(ρ), (1.2)

which is also equivalent to the relations given by:

∂p||
∂t

∂ρ

∂r
= ∂p||

∂r

∂ρ

∂t
,

∂p⊥
∂t

∂ρ

∂r
= ∂p⊥

∂r

∂ρ

∂t
. (1.3)

In this paper, we present Noether symmetries and the cor-
responding conservation laws admitted by LTB metric. The
energy conditions and equation of state are also discussed
for the obtained models. In the next section, we derive the
determining equations for Noether symmetries using the
Lagrangian associated with LTB metric. In Sects. 3, 4, 5,
6, 7, 8, 9 and 10, we present Noether algebras of different
dimensions admitted by the LTB metric. The physical impli-
cations of all the obtained metrics are also presented in these
sections. We give a brief summary of the work at the end of
the paper.

2 Derivation of determining equations

The LTB metric is a spherically symmetric but inhomoge-
neous metric which provides an exact toy model for an inho-
mogeneous universe. This metric is represented by [20–22]:

ds2 = −dt2 + w2(t, r)dr2 + u2(t, r)
(

dθ2 + sin2 θdφ2
)

,

(2.1)

where w and u are non zero functions having both temporal
and spatial dependence. If w and u are dependent on t only,
this metric reduces to the well known Kantowski–Sachs met-
ric [23]. The non zero components of the energy-momentum
tensor for the above metric are:

T00 = − 1

w3u2

(
u′2w − u̇2w3 − 2w2uẇu̇

−2uu′w′ − w3 + 2wuu′′) ,
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T11 = − 1

u2

(
2uw2ü + w2u̇2 − u′2 + w2

)
,

T22 = − u

w3

(
w3ü + w2u̇ẇ + uw2ẅ + w′u′ − wu′′) ,

T33 = sin2 θT22,

T01 = 2

uw

(
ẇu′ − wu̇′) . (2.2)

If the source is an anisotropic fluid, then the above compo-
nents of energy-momentum tensor become:

T00 = ρ, T11 = w2 p||, T22 = u2 p⊥,

T33 = sin2 θT22, T01 = 0, (2.3)

and if the source is a perfect fluid, then p|| = p⊥ = p and
we have:

T00 = ρ, T11 = w2 p, T22 = u2 p,

T33 = sin2 θT22, T01 = 0. (2.4)

The usual Lagrangian corresponding to the metric given in
(2.1) is:

L = −ṫ2 + w2(t, r)ṙ2 + u2(t, r)
(
θ̇2 + sin2 θφ̇2

)
. (2.5)

A vector field V of the form

V = η
∂

∂s
+ V i ∂

∂xi
, (2.6)

represents a Noether symmetry if it leaves its Lagrangian
invariant such that the following condition holds:

V (1)L + L(Dη) = D A, (2.7)

where

V (1) = V + V i
s

∂

∂ ẋi
(2.8)

is the first prolongation of V such that V i
s = DV i − ẋi Dη.

Also D is the differential operator which is defined as:

D = ∂

∂s
+ ẋi

∂

∂xi
. (2.9)

Moreover, η, V i and the Gauge functions A all are functions
of (s, t, r, θ, φ) and xi = (t, r, θ, φ) are depending variables
of s such that ẋi = ∂xi

∂s . With the help of Noether theorem, the
invariants (conservation laws) corresponding to each Noether
symmetry can be found using the following expression:

I = ηL +
(

V i − ẋiη
) ∂L

∂ ẋi
− A. (2.10)

Simplifying Eq. (2.7) using the Lagrangian (2.5), we obtain
the following system of 19 partial differential equations,

known as determining equations:

A,s = η,t = η,r = η,θ = η,φ = 0, (2.11)

2V 0
,t = η,s, (2.12)

2ẇV 0 + 2w′V 1 + 2wV 1
,r = wη,s, (2.13)

2u̇V 0 + 2u′V 1 + 2uV 2
,θ = uη,s, (2.14)

2u̇V 0 + 2u′V 1 + 2u cot θV 2 + 2uV 3
,φ = uη,s, (2.15)

V 0
,r − w2V 1

,t = 0, (2.16)

V 0
,θ − u2V 2

,t = 0, (2.17)

V 0
,φ − u2 sin2 θV 3

,t = 0, (2.18)

w2V 1
,θ + u2V 2

,r = 0, (2.19)

w2V 1
,φ + u2 sin2 θV 3

,r = 0, (2.20)

V 2
,φ + sin2 θV 3

,θ = 0, (2.21)

2V 0
,s = −A,t , (2.22)

2w2V 1
,s = A,r , (2.23)

2u2V 2
,s = A,θ , (2.24)

2u2 sin2 θV 3
,s = A,φ, (2.25)

where dot and prime over the metric functions represent
derivatives with respect to t and r respectively. The solution
of the above determining equations would give the exact form
of LTB metrics along with their Noether symmetries. During
the process of integrating these equations, many cases arise
which restrict the metric functions to satisfy certain condi-
tions, giving the exact form of LTB metric admitting Noether
algebra of dimension 4, 5, 6, 7, 8, 9, 11 and 17. We skip to
write the basic algebraic manipulation and present only the
exact form of metrics along with their Noether symmetries,
invariants and some physical implications including energy
conditions and equation of state in the forthcoming sections.

3 Four Noether symmetries

The minimal set of Noether symmetries admitted by LTB
metric is:

V0 = ∂s, V1 = sin φ∂θ + cot θ cos φ∂φ,

V2 = − cos φ∂θ + cot θ sin φ∂φ, V3 = ∂φ. (3.1)

Out of these four Noether symmetries, V1, V2 and V3 are the
minimum three KVs of LTB metric and V0 is the symmetry
corresponding to the Lagrangian. The above set of minimal
Noether symmetries is admitted by the LTB metric for fol-
lowing forms of metric functions.

Using (2.10), the corresponding invariants for the above
set of minimal Noether symmetries are obtained as:

I0 = ṫ2 − w2(t)ṙ2 − u2(r)θ̇2 − u2(r) sin2 θφ̇2,

I1 = −2u2(r)
(
sin φθ̇ + cos θ cos φ sin θφ̇

)
,
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Table 1 Metrics admitting four
Noether symmetries

No. w(t) u(r)

4a (wẇ),t t �= 0
( u

u′
)
,rr �= 0, u′ �= 0

4b w = √
c1t2 + 2c2t + c3; c1 �= 0

( u
u′

)
,rr �= 0, u′ �= 0

4c w = √
c1t2 + 2c2t + c3; c1 �= 0 u = (αr + β)

1
α ; α �= 0

4d w = √
2c2t + c3

( u
u′

)
,rr �= 0, u′ �= 0

4e w = √
2c2t + c3 u = (αr + β)

1
α ; α �= 0

I2 = 2u2(r)
(
cos φθ̇ − cos θ sin φ sin θφ̇

)
,

I3 = −2u2(r) sin2 θφ̇. (3.2)

For the models given in 4d and 4e, the condition T01 = 0
implies w = √

c3. With this value of w and u satisfying the
constraints given in Table 1, the metrics 4d and 4e represent
anisotropic fluids with the following values of energy density
and parallel and perpendicular pressures:

ρ = 1

c3u2

(
c3 − u′2 − 2uu′′) , p|| = u′2 − c3

c3u2 ,

p⊥ = u′′

c3u
. (3.3)

As the above expressions are dependent on one variable, the
equation of state p|| = p||(ρ), p⊥ = p⊥(ρ) is clearly sat-
isfied. As far the energy conditions are concerned, they may
impose some extra conditions on the metric function u. For
example, the positive energy condition T00 = ρ ≥ 0 will be
satisfied if u is chosen such that u′2 + 2uu′′ ≤ c3.

The metrics given in 4a, 4b and 4c do not satisfy the
condition of anisotropic fluid because here the condition
T01 = ẇu′ = 0 requires either ẇ = 0 or u′ = 0 but none
of these two conditions holds true because of the constraints
satisfied by w and u given in Table 1.

4 Five Noether symmetries

When the metric functions are dependent on t only, then
along with the four basic Noether symmetries given in (3.1),
we obtain an extra Noether symmetry (KV) V4 = ∂r with the
corresponding invariant I4 = −2w2(t)ṙ2. Table 2 contains
the exact forms of the metric functions admitting the set of
these five Noether symmetries:

The models 5a and 5b represent anisotropic fluids with

ρ = 1 + u̇2

u2 + 2ẇu̇

uw
, p|| = − 1

u2

(
1 + u̇2 + 2uü

)
,

p⊥ = − 1

uw
(uẅ + wü + u̇ẇ) , (4.1)

which immediately satisfy the equation of state while the
energy conditions may require some extra conditions. For

Table 2 Metrics admitting five Noether symmetries

No. w(t) u(t)

5a ẇ �= 0 ü �= 0 and u �= cosh t

5b w �= sinh t u = cosh t

5c (wẇ),t t �= 0 u = const. = ξ

5d w = √
c1t2 + 2c2t + c3; c1 �= 0 u = const. = ξ

5e w = √
2c2t + c3 u = const. = ξ

model 5c the physical terms are given by:

ρ = 1

ξ2 , p|| = − 1

ξ2 , p⊥ = − ẅ

w
. (4.2)

Here the energy density is always positive and the dominant
and weak energy conditions respectively require ξ2 | ẅ

w
|≤ 1

and ξ2 ẅ
w

≤ 1. Moreover, the strong energy condition will be
satisfied if ξ2 ẅ

w
≤ 1 and ẅ

w
≤ 0. The equation of state for

these models is given by p|| = −ρ, p⊥ = − ξ2ẅρ
w

.

Moreover, for model 5d, we have ρ = 1
ξ2 , p|| = − 1

ξ2 ,

and p⊥ = c2
2−c1c3

(c1t2+2c2t+c3)2 . Here the equation of state holds
and the strong and weak energy conditions are satisfied if
c2

2 ≥ c1c3. Finally, the model 5e is a special case of the
metric 5d when c1 = 0 and this model immediately satisfies
the strong and weak energy conditions.

5 Six Noether symmetries

Table 3 shows different metrics admitting six Noether sym-
metries along with their Noether generators and invariants.
Among these six, four are the basic Noether symmetries
which are same as given in (3.1) and the extra two Noether
symmetries are presented for each metric.

For all the above cases, V5 is a KV. One can see that
the Noether symmetry V4 for the metric 6c corresponds to a
homothetic vector t

2∂t + (αr+β)
2 ∂r with the homothety con-

stant ψ = 1
2 . For the remaining three metric, V4 is a proper

Noether symmetry.
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Table 3 Metrics admitting six Noether symmetries

No. w(t, r) u(t, r) Noether symmetries Invariants

6a const. γ �= 0 u′ = 0, ü �= 0, V4 = s
γ 2 ∂r ; A = −2r I4 = −2(sṙ − r)

u �= cosh t V5 = ∂r ; I5 = −2γ 2ṙ2

6b w(r) u′ = 0, ü �= 0, V4 = s∂r
2w

; A = ∫
wdr I4 = −(swṙ + ∫

wdr)

u �= cosh t V5 = ∂r
w

I5 = −2wṙ

6c (c1t + 2c3)
(1−α) (αr + β)

1
α V4 = s∂s + t∂t

2 + (αr+β)∂r
2 I4 = sL + t ṫ − (c1t + 2c3)

2(1−α)(αr + β)ṙ

V5 = ∂t I5 = 2ṫ

6d w(r); u(r); V4 = − s∂t
2 ; A = t I4 = −sṫ − t

w �= ur ur �= 0 V5 = ∂t I5 = 2ṫ

The metrics 6a and 6b are anisotropic models whose
energy-momentum tensor give:

ρ = 1 + u̇2

u2 , p|| = − 1

u2

(
1 + u̇2 + 2uü

)
, p⊥ = − ü

u
,

(5.1)

which satisfy equation of state and the energy density remains
positive for any value of u. The energy conditions for this
model are satisfied conditionally and the simplified form of
such conditions can be easily obtained by using (5.1) in (1.1).

For the metric 6c, the condition T01 = 0 implies either
c1 = 0 or α = 1. If c1 = 0, then w becomes a constant and
u is a function of r only. Consequently, the quantities ρ, p||
and p⊥ are all functions of single variable and hence satisfy
equation of state. The second case, that is when α = 1, leads
to the vacuum spacetime with ρ = p|| = p⊥ = 0.

Finally, the metric 6d represents an anisotropic model
whose energy-momentum tensor gives:

ρ = − 2u′′

uw2 + 2u′w′

uw3 + 1

u2 − u′2

u2w2 ,

p|| = u′2 − w2

w2u2 , p⊥ = u′′

uw2 − u′w′

uw3 . (5.2)

Since all the above quantities are functions of single variable,
so they clearly satisfy the equation of state.

6 Seven Noether symmetries

Different metrics admitting seven Noether symmetries are
presented in Table 4. Out of these seven Noether symmetries,
four are same as given in by (3.1). The fifth Noether symmetry
(KV), given by V4 = ∂r , is same for all these metrics while
the remaining two Noether symmetries are given along with
each metric.

In all the above cases except 7d and 7f, V5 and V6 are KVs.
In case 7d, V6 corresponds to a homothetic vector αt+β

2α
∂t ,

while V5 is a proper Noether symmetry. Finally in case 7f, V6

is a KV while V5 corresponds to a homothetic vector αt+β
2α

∂t .

The models 7a and 7c are anisotropic fluids with ρ = 1
ξ2 ,

p|| = − 1
ξ2 , and p⊥ = k2. These quantities clearly satisfy

the equation of state, p|| = −ρ, p⊥ = ξ2k2ρ. Moreover, the
strong, weak and null energy conditions are satisfied, while
the dominant energy condition requires k2ξ2 ≤ 1.

Similarly, the models 7b, 7e and 7g are also anisotropic
fluids whose energy-momentum tensor gives ρ = −p|| = 1

ξ2

and p⊥ = −k2. Here the strong energy condition is failed,
while the dominant, weak and null energy conditions are
satisfied if k2ξ2 ≤ 1.

For the metric 7f, we have:

ρ = c1 + 3c1α
2 − 4c3α

2

c1(αt + β)2 , p|| = − 1 + α2

(αt + β)2 ,

p⊥ = −
(

αc1 − 2c3α

c1(αt + β)

)2

, (6.1)

where the equation of state clearly holds and the strong
energy condition is satisfied if either c1 ≤ 2c3 ≤ 0 or
c1 ≥ 2c3 ≥ 0. The model given in case 7d is a special
case of the metric of case 7f and for this model, the strong
energy condition is immediately satisfies.

7 Eight Noether symmetries

There are two metrics admitting eight Noether symmetries:

8a. ds2 = −dt2 +γ 2dr2 +(αt +β)2
(

dθ2 + sin2 θdφ2
)

,

(7.1)

where γ is a non zero constant. Among these eight symme-
tries, four are given in (3.1), while the remaining four are:

V4 = ∂r ,

V5 = s∂s + αt + β

2α
∂t + r

2
∂r ,
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2ṫ
+

2k
re

2k
t ṙ
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ṙ k
+

kr
2
e2k

t ṙ
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)ṫ

α
−

t2 2
−

β
t α
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s∂
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2α

∂
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∂
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+
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+
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I 5

=
2
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)ṫ
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2
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si
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)ṙ
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6
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kr
)∂

r
I 6

=
2
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)ṫ

−
2
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nh

(k
t)
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s(
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)ṙ V6 = s2

2
∂s + s(αt+β)

2α
∂t + sr

2
∂r ; A = t2

2
+ βt

α
− r2γ 2

2
,

V7 = s

γ 2 ∂r ; A = −2r. (7.2)

Out of these four Noether symmetries, V4 is a KV, V5 corre-
sponds to a homothetic vector αt+β

2α
∂t + r

2∂r and the remain-
ing two are proper Noether symmetries. The conservation
laws for these four symmetries are given by:

I4 = −2w2(t)ṙ2,

I5 = sL + (αt + β)ṫ

α
− rγ 2ṙ ,

I6 = s2

2
L + s(αt + β)ṫ

α
− srγ 2ṙ − t2

2
− βt

α
+ r2γ 2

2
,

I7 = −2sṙ + 2r. (7.3)

The metric (7.1) represents anisotropic fluid whose energy-
momentum tensor give:

ρ = 1 + α2

(αt + β)2 , p|| = − 1 + α2

(αt + β)2 , p⊥ = 0, (7.4)

which shows that there is no pressure in the perpendicular
direction and all the energy conditions are satisfied. The equa-
tion of state for the above model is given by p|| = −ρ.

8b. ds2 = −dt2+w2(r)dr2+(αt+β)2
(

dθ2 + sin2 θdφ2
)

(7.5)

Out of the eight Noether symmetries admitted by the above
metric, four are same as given in (3.1) and the extra four
Noether symmetries are listed below:

V4 = ∂r

w
,

V5 = s∂s + αt + β

2α
∂t +

∫
wdr

2w
∂r ,

V6 = s∂r

2w
; A =

∫
wdr,

V7 = s2

2
∂s + s(αt + β)

2α
∂t + s

∫
wdr

2w
∂r ;

A = − t2

2
− βt

α
+ (

∫
wdr)2

2
. (7.6)

Here V4 is a KV, V5 corresponds to a homothetic vector
αt+β

2α
∂t +

∫
wdr
2w

∂r and V6 and V7 are proper Noether symme-
tries. The conservation laws for these four symmetries are:

I4 = −2wṙ , I5 = sL + (αt + β)ṫ

α
− w

∫
wdrṙ ,

I6 = −(swṙ +
∫

wdr),

I7 = s2

2
L + s(αt + β)ṫ

α
− sw

∫
wdrṙ
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Table 5 Metrics admitting nine Noether symmetries

No. w(t, r) u(t, r) Noether symmetries Invariants

9a β �= 0 cosh t V4 = s∂r ; A = −2r I4 = −2(sβ2ṙ − r)

V5 = ∂r I5 = −2β2ṙ2

V6 = sin θ sin φ∂t + tanh t cos θ sin φ∂θ I6 = −2 sinh t cosh t (cos θ sin φθ̇ +
sin θ cos φφ̇)

+ csc θ tanh t cos φ∂φ +2 sin θ sin φ ṫ

V7 = − sin θ cos φ∂t −tanh t cos θ cos φ∂θ I7 =
2 sinh t cosh t (cos θ cos φθ̇ − sin θ sin φφ̇)

+ csc θ tanh t sin φ∂φ −2 sin θ cos φ ṫ

V8 = − cos θ∂t + tanh t sin θ∂θ I8 = −2 cos θ ṫ − 2 sinh t cosh t sin θ θ̇

9b w(r) cosh t V4 = s∂r
2w

; A = ∫
wdr I4 = −(swṙ + ∫

wdr)

V5 = ∂r
w

I5 = −2wṙ

V6, V7 and V8 are same as given in 9a I6, I7 and I8 are same as in 9a

9c α �= 0 ξ �= 0 V4 = s
α2 ∂r ; A = −2r I4 = −2sṙ + 2r

V5 = −s∂t ; A = −2t I5 = −2sṫ + 2t

V6 = ∂t , V7 = r∂t + t
α2 ∂r I6 = 2ṫ , I7 = 2r ṫ − 2tṙ

V8 = ∂r I8 = −2α2ṙ2

9d w(r) ξ �= 0 V4 = s∂r
2w

; A = ∫
wdr I4 = −(swṙ + ∫

wdr)

V5 = −s
2 ∂t ; A = t I5 = −(sṫ + t)

V6 = ∂r
w

I6 = −2wṙ

V7 = ∫
wdr∂t + t

w
∂r , V8 = ∂t I7 = 2(

∫
wdr∂t − twṙ), I8 = 2ṙ

9e αt + β ξ �= 0 V4 = −s sinh(αr)∂t + s
αt+β

cosh(αr)∂r ;

A = − 2β
α

sinh(αr)

I4 =
−2s

(
sinh(αr)ṫ + (αt + β) cosh(αr)ṙ

) +
2β
α

sinh(αr)

V5 = −s cosh(αr)∂t + s
αt+β

sinh(αr)∂r ;

A = − 2β
α

cosh(αr)

I5 =
−2s

(
cosh(αr)ṫ + (αt + β) sinh(αr)ṙ

) +
2β
α

cosh(αr)

V6 = ∂r I6 = −2(αt + β)2ṙ2

V7 = cosh(αr)∂t − sinh(αr)
αt+β

∂r I7 = 2
(
cosh(αr)ṫ + (αt + β) sinh(αr)ṙ

)

V8 = sinh(αr)∂t − cosh(αr)
αt+β

∂r I8 = 2
(
sinh(αr)ṫ + (αt + β) cosh(αr)ṙ

)

+ t2

2
+ βt

α
− (

∫
wdr)2

2
. (7.7)

The metric (7.5) is anisotropic fluid with ρ, p|| and p⊥ same
as given in (7.4) and hence we have the same remarks regard-
ing the energy conditions and equation of state as for the
previous metric.

8 Nine Noether symmetries

Table 5 presents different LTB metrics admitting nine
Noether symmetries, four of which are same as given in
(3.1), while the remaining five symmetries along with the
corresponding invariants are presented below.

For the metrics 9a and 9b, V4 is a proper Noether sym-
metry while V5, . . . , V8 are KVs. For the metrics 9c, 9d and
9e, we have two proper Noether symmetries V4 and V5 and
three KVs, given by V6, V7 and V8.

All the metrics presented in the above table are anisotropic
fluids. For the metrics 9a and 9b, we have ρ = 1, p|| = −3
and p⊥ = −1. Hence none of the energy conditions holds
except the positive energy conditions, that is ρ ≥ 0. The
equation of state is given by p|| = −3ρ, p⊥ = −ρ. For the
remaining three models, we have ρ = 1

ξ2 , p|| = − 1
ξ2 and

p⊥ = 0 such that equation of state is p|| = −ρ and all the
energy conditions are satisfied.

9 Eleven Noether symmetries

Following is the only one LTB metric admitting eleven
Noether symmetries:

ds2 = −dt2+sinh2 t dr2+cosh2 t (dθ2+sin2 θ dφ2). (9.1)
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Four Noether symmetries of the above metric are same as
given in (3.1) and the extra seven symmetries are listed below:

V4 = ∂r ,

V5 = sin θ sin φ sinh r∂t − coth t sin θ sin φ cosh r∂r

+ tanh t sinh r cos θ sin φ∂θ

+ tanh t sinh r csc θ cos φ∂φ,

V6 = sin θ sin φ cosh r∂t − coth t sin θ sin φ sinh r∂r

+ tanh t cosh r cos θ sin φ∂θ

+ tanh t cosh r csc θ cos φ∂φ),

V7 = − sin θ cos φ sinh r∂t + coth t sin θ cos φ cosh r∂r

− tanh t sinh r cos θ cos φ∂θ

+ tanh t sinh r csc θ sin φ∂φ),

V8 = − sin θ cos φ cosh r∂t + coth t sin θ cos φ sinh r∂r

− tanh t cosh r cos θ cos φ∂θ

+ tanh t cosh r csc θ sin φ∂φ),

V9 = − cos θ sinh r∂t + coth t cos θ cosh r∂r

+ tanh t sinh r sin θ∂θ ,

V10 = − cos θ cosh r∂t + coth t cos θ sinh r∂r

+ tanh t cosh r sin θ∂θ . (9.2)

All the above seven symmetries are KVs. Thus the metric
(9.1) admits ten KVs along with a proper Noether symme-
try ∂s . Consequently, the spacetime becomes flat. The corre-
sponding invariant quantities are given by:

I4 = −2w2(t)ṙ2,

I5 = 2 sin θ sin φ
(
sinh r ṫ + cosh t sinh t cosh rṙ

)

−2 cosh t sinh t sinh r cos θ sin φθ̇

−2 cosh t sinh t sinh r sin θ cos φφ̇,

I6 = 2 sin θ sin φ
(
cosh r ṫ + cosh t sinh t sinh rṙ

)

−2 cosh t sinh t cosh r cos θ sin φθ̇

−2 cosh t sinh t cosh r sin θ cos φφ̇,

I7 = −2 sin θ cos φ
(
sinh r ṫ + cosh t sinh t cosh rṙ

)

+2 cosh t sinh t sinh r cos θ cos φθ̇

+2 cosh t sinh t sinh r sin θ sin φφ̇,

I8 = −2 sin θ cos φ
(
cosh r ṫ + cosh t sinh t sinh rṙ

)

+2 cosh t sinh t cosh r cos θ cos φθ̇

+2 cosh t sinh t cosh r sin θ sin φφ̇,

I9 = −2 cos θ sinh r ṫ − 2 cosh t sinh t cos θ cosh rṙ

−2 cosh t sinh t sinh r sin θ θ̇ ,

I10 = −2 cos θ cosh r ṫ − 2 cosh t sinh t cos θ sinh rṙ

−2 cosh t sinh t cosh r sin θ θ̇ . (9.3)

The metric (9.1) represents a perfect fluid model with ρ = 3
and p|| = p⊥ = −3. These quantities violate the strong
energy condition, while the remaining energy conditions are

immediately satisfied. In this case, the equation of state is
given by p|| = p⊥ = −ρ.

10 Seventeen Noether symmetries

In [24], it was shown that the flat Minkowski metric admits
the maximum number of Noether symmetries, which is 17.
Here we present another such metric admitting 17 Noether
symmetric. Such a metric is given by:

ds2 = −dt2 + u2
r (r)dr2 + u2(r)[dθ2 + sin2 θdφ2]. (10.1)

The thirteen Noether symmetries other than the minimal set
of Noether symmetries for the above metric are given below:

V4 = s∂s + t

2
∂t + u

2ur
∂r

V5 = s2

2
∂s + st

2
∂t + su

2ur
∂r , A = u2 − t2

2
,

V6 = − s

2
∂t , A = t,

V7 = s

ur
sin θ sin φ∂r + s

u
(cos θ sin φ∂θ + csc θ cos φ∂φ);

A = 2u sin θ sin φ,

V8 = − s

ur
sin θ cos φ∂r − s

u
(cos θ cos φ∂θ −csc θ sin φ∂φ);

A = −2u sin θ cos φ,

V9 = − s

ur
cos θ∂r + s

u
sin θ∂θ ; A = −2u cos θ,

V10 = ∂t ,

V11 = sin θ sin φ

(
u∂t + t

ur
∂r

)

+ t

u

(
cos θ sin φ∂θ + csc θ cos φ∂φ

)
,

V12 = − sin θ cos φ

(
u∂t + t

ur
∂r

)

− t

u

(
cos θ cos φ∂θ − csc θ sin φ∂φ

)
,

V13 = −u cos θ∂t − t

ur
cos θ∂r + t

u
sin θ∂θ ,

V14 = sin θ sin φ

ur
∂r + 1

u
(cos θ sin φ∂θ + csc θ cos φ∂φ),

V15 = − sin θ cos φ

ur
∂r − 1

u
(cos θ cos φ∂θ − csc θ sin φ∂φ),

V16 = −cos θ

ur
∂r + sin θ

u
∂θ . (10.2)

In the above list, V4 is a Noether symmetry corresponding
to a homothetic vector t

2∂t + u
2ur

∂r . Moreover, V5, . . . , V9

are proper Noether symmetries, while V10, . . . , V16 are KVs.
The corresponding conservation laws for these Noether sym-
metries are:
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I4 = sL + t ṫ − uur ṙ ,

I5 = s2

2
L + st ṫ − suur ṙ + t2 − u2

2
,

I6 = −(sṫ + t),

I7 = −2sur sin θ sin φṙ − 2su cos θ sin φθ̇

−2su sin θ cos φφ̇ − 2u sin θ sin φ,

I8 = 2sur sin θ cos φṙ + 2su cos θ cos φθ̇

−2su sin θ sin φφ̇ + 2u sin θ cos φ,

I9 = 2sur cos θ ṙ − 2su sin θ θ̇ + 2u cos θ,

I10 = t ṫ,

I11 = 2 sin θ sin φ(uṫ − tur ṙ) − 2tu(cos θ sin φθ̇

+ sin θ cos φφ̇),

I12 = −2 sin θ cos φ(uṫ − tur ṙ) + 2tu(cos θ cos φθ̇

− sin θ sin φφ̇),

I13 = −2 cos θ(uṫ − tur ṙ) − 2tu sin θ θ̇ ,

I14 = −2ur sin θ sin φṙ − 2u cos θ sin φθ̇

−2u sin θ cos φφ̇,

I15 = 2ur sin θ cos φṙ + 2u cos θ cos φθ̇

−2u sin θ sin φφ̇,

I16 = 2ur cos θ ṙ − 2u sin θ θ̇ . (10.3)

For this metric, all the energy-momentum tensor components
vanish and hence it gives a vacuum solution.

11 Summary

In this paper, we have presented a classification of LTB space-
times metric according to their Noether symmetries. The
determining equations for Noether symmetries are integrated
in several cases and it is concluded that the LTB metric may
admit 4, 5, 6, 7, 8, 9, 11 and 17 Noether symmetries. The
minimal set of Noether symmetries contains three Killing
vectors and one proper Noether symmetry, while the maxi-
mum dimension of Noether symmetries turned out to be 17
which is admitted by the model given in (10.1). The obtained
Noether symmetries are compared with Killing and homoth-
etic vectors in each case and it is observed that the number
of KVs for LTB metric is 3, 4, 5, 6, 7 or 10. For all the
obtained metrics, the Noether theorem is used to obtain the
expressions for conservations laws for each Noether symme-
try. Moreover, it is shown that most of the metrics obtained

are anisotropic or perfect fluid models which satisfy certain
energy conditions and the equation of state.
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