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Abstract In this paper, we examine the validity of the first
law of inner mechanics of black holes in Generalized Mini-
mal Massive Gravity. We consider BTZ and spacelike warped
black holes and show that the first law of inner mechan-
ics is valid for given black holes in Generalized Minimal
Massive Gravity. As we expect, due to the presence of the
Lorentz Chern–Simons term in Lagrangian of considered
model, the product of the entropies of the inner and outer
horizons depends on the mass as it happens in Topologically
Massive Gravity.

1 Introduction

It is well known that black holes have temperature and
entropy, and obey the laws of thermodynamics [1,2]. One
interesting question which we can ask is this: what is the
underlying statistical mechanical source of the black hole
thermal properties? According to the AdS/CFT correspon-
dence [3] black holes are dual to quantum states in the dual
CFT, however this correspondence does not give a clear
description about the black hole interior. It seems that the
CFT does not contain operators that can describe the interior
of black holes. But Papadodimas and Raju [4] have intro-
duced such operators. The interesting and important result
of [4] is this: “if one is allowed to use different operators to
describe the interior of the black hole in different states of
the CFT, gravity – then there is no need for firewalls at the
horizon” [5–7].

In this paper we show that one can consider the inner ther-
modynamics of black holes similar to the outer-horizon ther-
modynamics. We investigate the validity of the first law of
inner mechanics of black holes in Generalized Minimal Mas-
sive Gravity (GMMG) [8]. This model is realized by adding
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the Chern–Simons deformation term, the higher derivative
deformation term, and an extra term to pure Einstein gravity
with a negative cosmological constant. In Ref. [8], it is dis-
cussed that this theory is free of negative-energy bulk modes,
and also avoids the aforementioned “bulk-boundary unitar-
ity clash”. By a Hamiltonian analysis one can show that the
GMMG model has no Boulware–Deser ghosts and this model
propagate only two physical modes. The validity of the first
law of black hole inner mechanics in the framework of Topo-
logical Massive Gravity (TMG) [9–11] has been studied in
[12]. Castro and Rodriguez [13] have obtained a formula for
the products of horizon areas for solutions with non-spherical
horizon topology in five dimensions, and have found that it is
independent of the mass. However it has been shown that the
product of the areas of the inner and outer horizons depends
on the mass in the framework of TMG [12]. Here also we
show that, due to the presence of the Lorentz Chern–Simons
term in Lagrangian of GMMG model, the product of the
entropies of the inner and outer horizons depends on the mass.

The organisation of this paper is as follows. In Sect. 2,
we review the method of obtaining conserved charges in
Chern–Simons-like theories of gravity. In Sect. 3 we con-
sider GMMG as an example of Chern–Simons-like theo-
ries of gravity and discuss that in what conditions BTZ and
spacelike warped AdS3 black holes are solutions of GMMG.
In Sect. 4 we investigate properties of the inner horizons
of BTZ and warped black holes in GMMG and show that
outer/inner first law of black hole mechanics are satisfied at
the outer/inner horizons of given black holes. The paper ends
with conclusions in Sect. 5.

2 Conserved charges in Chern–Simons-like theories of
gravity

Chern–Simons-like theories of gravity (CSLTG) [14,15] is a
class of gravitational theories in (2 + 1) dimensions which
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can be formulated in terms of Dreibein, spin-connection and
some auxiliary 1-form fields. TMG, New Massive Grav-
ity (NMG) [16,17], Minimal Massive Gravity (MMG) [18],
Generalized Massive Gravity (GMG) [19], Zewi-Dreibein
gravity [20] and GMMG are examples of CSLTG.

Let ea = eaμdx
μ be a Lorentz vector-valued 1-form,

where eaμ denotes the Dreibein. We use the lower case Greek
letters for the spacetime indices, and the internal Lorentz
indices are denoted by the lower case Latin letters. The metric
signature is mostly plus. Spacetime metric gμν and Dreibein
are related as gμν = ηabeaμe

a
ν , where ηab is Minkowski

metric. The spacetime metric is invariant under Lorentz
gauge transformations (or equivalently local Lorentz trans-
formations, see Appendix J of [21]) ea → �a

be
b, where � ∈

SO(2, 1). In 3D, one can define the dualized spin-connection
1-form as ωa = 1

2εabcωbc, where ωa
b = ωa

bμdx
μ is spin-

connection 1-form. Likewise, dualized curvature and tor-
sion 2-form can be defined as R(ω) = dω + ω × ω and
T (ω) = D(ω)e = de + ω × e, respectively. We use a 3D-
vector algebra notation for Lorentz vectors in which con-
tractions with ηab and εabc are denoted by dots and crosses,
respectively. Here, D(ω) denotes covariant exterior deriva-
tive with respect to dualized spin-connection.

Suppose ara = araμdx
μ are Lorentz vector valued 1-

forms, where r = 1, ..., N refers to the flavour index.
In fact, ara is a collection of the Dreibein, the dual-
ized spin-connection and the auxiliary fields, i.e. ara =
{ea, ωa, ha, f a, . . .}, where ha and f a are Lorentz vector
valued auxiliary 1-form fields. The CSLTG Lagrangian 3-
form is given by

L = 1

2
grsa

r · das + 1

6
frst ar · as × at , (1)

where grs is a symmetric constant metric on the flavour space
and frst is the totally symmetric flavour tensor can be inter-
preted as coupling constant.

Conserved charge perturbation conjugate to a vector field
ξ can be defined as [22–25]

δQ(ξ) = 1

8πG

∫



(
grs iξa

r − gωsχξ

) · δas, (2)

where 
 is a space-like codimension-2 surface and χa
ξ =

1
2εabcλ

ab
ξ , in which λabξ is generator of a Lorentz gauge trans-

formation. Here, iξ denotes interior product in ξ . To find con-
served charges, one can take an integration from Eq. (2) over
one-parameter path on the solution space [22]. In this way,
background contribution is subtracted and then we will find
a finite amount for charge. The conserved charge defined by
Eq. (2) is not only conserved for the Killing vectors which
are admitted by spacetime everywhere, but also it is con-
served for the asymptotic Killing vectors. In general, λabξ is a
function of spacetime coordinates and of the diffeomorphism

generator ξ . To use Eq. (2) we have to find an expression for
λabξ in terms of dynamical fields (i.e. we need a gauge fixing)
when we compute conserved charges. An appropriate gauge
fixing is [23,24]:

χa
ξ = iξ


a + 1

2
εabce

bμecν∇μξν, (3)

where


a = 1

2
eaαεα

νβe
β
c∇μe

cνdxμ, (4)

is dualized torsion-free spin-connection and ∇μ is covariant
derivative with respect to the metric connection.

Stationary black hole spacetime admits two Killing vec-
tors ∂t and ∂φ . The conserved charges conjugate to the Killing
vectors ∂t and −∂φ refer to mass, M = Q(∂t ), and angular
momentum, J = Q(−∂φ), respectively.

Black hole entropy is conserved charge conjugate to
the horizon-generating Killing vector field [26–29]. The
horizon-generating Killing vector field vanishes on the bifur-
cation surface. Using this fact, we can obtain a formula for
black hole entropy [22,23]:

S = 1

4G

∫
B

dφ√
gφφ

gωr a
r
φφ, (5)

where B denotes the bifurcation surface.

3 Generalized minimal massive gravity

GMMG can be described by four flavours of 1-form, ar =
{e, ω, h, f } and the non-zero components of the flavour met-
ric and the flavour tensor are

geω = feωω = −σ, gω f = f f ωω = − 1

m2 ,

geh = fehω = 1, gωω = fωωω = 1

μ
,

fe f f = − 1

m2 , feee = �0, fehh = α,

(6)

where σ , �0, μ, m and α are a sign, cosmological param-
eter with dimension of mass squared, mass parameter of
the Lorentz Chern–Simons term, mass parameter of New
massive gravity term and a dimensionless parameter, respec-
tively. In order to give a physical explanation of free param-
eters of GMMG we list a few limiting cases:

In the limit where m2 → ∞ and α → 0, GMMG reduces
to TMG which propagates a single massive state with helicity
+2 or −2 in AdS3, depending on the sign of σμ. By setting
α = 0 and tending μ to infinity, GMMG reduces to NMG.
That model at linearized level contains a massive spin-2 mode
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with Fierz–Pauli mass M2
FP = −σm2 + �/2. Therefore,

depending on the sign of σ , either the massive or the massless
mode will have negative energy. In flat space, where � = 0,
this problem can be resolved by taking σ = −1.

If one just set α = 0, GMMG reduces to GMG which is
a torsion-free model. By turning α on, a term will be added
to the model which gives raise to the model have torsion. I
this way, GMG will promote to GMMG which is not torsion
free.

3.1 BTZ black hole

Bañados, Teitelboim and Zanelli (BTZ) black hole spacetime
[30] can be described by the following Dreibein

e0 = NBTZdt, e1 = dr

NBTZ
, e2 = r(dφ + Nφ

BTZdt), (7)

with

N 2
BTZ = (r2 − r2+)(r2 − r2−)

l2r2 , Nφ
BTZ = −r+r−

lr2 , (8)

where r± are outer/inner horizon radiuses and l is AdS3

radius. One can use following ansatz

ωa = 
a − αHea, ha = Hea, f a = Fea, (9)

to show that BTZ black hole is a solution of GMMG provided
that

σ

l2
− α(1 + σα)H2 + �0 − F2

m2 = 0,

− 1

μl2
+ 2(1 + σα)H + 2α

m2 FH + α2

μ
H2 = 0,

− F + μ(1 + σα)H + μα

m2 FH = 0,

(10)

where F and H are constant parameters [22]. For BTZ black
hole Eqs. (2) and (5) can be simplified as

δQBTZ(ξ) = 1

8πG

∫



{
−

(
σ + αH

μ
+ F

m2

)

× [(
iξ
 − χξ ) · δe + iξ e · δ


)]

+ 1

μ

[
(iξ
 − χξ ) · δ
 + 1

l2
iξ e · δe

]}
, (11)

SBTZ = − 1

4G

∫
H

dφ√
gφφ

[(
σ + αH

μ
+ F

m2

)
gφφ − 1

μ

φφ

]
, (12)

where H stand for the horizon.

3.2 Warped black holes

Spacelike warped AdS3 black hole (WBH) [31] can be
described by the following Dreibein

e0 = lNWBHdt̂, e1 = ldr̂

4RWBHNWBH
,

e2 = l RWBH(dφ̂ + N φ̂
WBHdt̂),

(13)

with

N 2
WBH =ζ 2ν2(r̂ − r̂+)(r̂ − r̂−)

4R2
WBH

,

N φ̂
WBH =|ζ | (r̂ + ν

√
r̂+r̂−)

2R2
WBH

,

R2
WBH =1

4
ζ 2r̂

[
(1 − ν2)r̂ + ν2 (

r̂+ + r̂−
) + 2ν

√
r̂+r̂−

]
,

(14)

where r̂± are outer/inner horizon radiuses. Here ζ and ν

are free parameters which allow us to keep contact with
[32–35]. The spacetime described by Dreibein (13) admits
SL(2,R)×U (1) as isometry group. Therefore, one can write
a symmetric-two tensor as Sμν = a1gμν + a2 Jμ Jν , where
J = ∂t̂ . It has been shown that warped black hole [described
by Dreibein (13)] together with following ansatz

haμ =H1e
a
μ + H2 J

a Jμ,

f aμ =F1e
a
μ + F2 J

a Jμ,
(15)

is a solution of GMMG provided that

ζ 2

4l2
− 1

2
αl |ζ | H2 − α2H1(H1 + l2H2)

−(2F1 + l2F2) = 0, (16)

−ζ 2

l4
(1 − ν2) + 3α

2l
|ζ | H2 + α2H1H2 + F2 = 0, (17)

− (1 + ασ) (2H1 + l2H2) − l

2m2
|ζ | F2

− α

m2 [2H1F1 + l2 (H1F2 + H2F1)]

+ 1

μ
(2F1 + l2F2) = 0, (18)

− 1

μ
F2 + (1 + ασ) H2 + 3

2lm2
|ζ | F2

+ α

m2 (H1F2 + H2F1) = 0, (19)

− ζ 2

4l2
σ + 1

2
(1 + ασ) l |ζ | H2

+α (1 + ασ) H1(H1 + l2H2)

−�0 + 1

m2 F1(F1 + l2F2) = 0, (20)
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ζ 2

l4
(1 − ν2)σ − 3

2l
(1 + ασ) |ζ | H2

−α (1 + ασ) H1H2 − 1

m2 F1F2 = 0, (21)

where H1, H2, F1, F2 are constant parameters and Ja =
eaμ J

μ [36]. For warped black hole Eqs. (2) and (5) can be
simplified as

δQWBH(ξ) = 1

8πG

∫



{
−

(
σ + αH1

μ
+ F1

m2

)

× [iξ e · δ
 + (
iξ
 − χξ

) · δe]
+ 1

μ

(
iξ
 − χξ

) · δ
 + αH2

(
αH2

μ
+ 2F2

m2

)
iξJ · δJ

+
[
− ζ 2

μl2

(
3

4
− ν2

)
+ l |ζ |

(
αH2

μ
+ F2

m2

)]
iξ e · δe

−
(

αH2

μ
+ F2

m2

) [
iξJ · δ
 + (

iξ
 − χξ

) · δJ
]

+
[

ζ 2

μl4

(
1 − ν2

)
− 3 |ζ |

2l

(
αH2

μ
+ F2

m2

)]

× (
iξJ · δe + iξ e · δJ

)}
,

(22)

SWBH = 1

4G

∫
H

dφ√
gφφ

{
−

(
σ + αH1

μ
+ F1

m2

)
gφφ

+ 1

μ

φφ −

(
αH2

μ
+ F2

m2

)
Jφ Jφ

}
, (23)

where Jaμ = Ja Jμ for simplicity.

4 Inner mechanics

Now, we investigate properties of the inner horizons of BTZ
and warped black holes in GMMG. We show that a first law
proposed in [37] is satisfied at the inner horizons of given
black holes. To do this, we perform arguments in parallel
with [12].

4.1 BTZ black holes

Consider BTZ metric

ds2 = −N 2
BTZdt

2 + dr2

N 2
BTZ

+ r2(dφ + Nφ
BTZdt)

2. (24)

Using Eq. (11), one can compute mass

MBTZ = − 1

8G

[(
σ + αH

μ
+ F

m2

)
r2+ + r2−

l2
+ 2r+r−

μl3

]
, (25)

and angular momentum

JBTZ = − 1

8G

[(
σ + αH

μ
+ F

m2

)
2r+r−

l
+ r2+ + r2−

μl2

]
,

(26)

of BTZ black hole in GMMG [22]. These results are inde-
pendent of choosing integration surface 
. Angular velocity
of outer horizon (event horizon) is


H+ = −Nφ
BTZ

∣∣
r=r+ = r−

lr+
. (27)

Similarly, for inner horizon, we have


H− = −Nφ
BTZ

∣∣
r=r− = r+

lr−
. (28)

The outer/inner horizon-generating Killing vector fields are
given by ζH± = ∂t + 
H±∂φ . Surface gravity can be com-
puted by

κH± =
√

−1

2
∇μ(ζH±)ν∇μ(ζH±)ν

∣∣∣∣
H±

. (29)

Surface gravity and Hawking temperature are related as
TH = κH/2π , then the Hawking temperatures of the inner
and outer horizons are

TH± = r2+ − r2−
2πl2r±

. (30)

Since the outer/inner horizon-generating Killing vector fields
are given by ζH± vanish on outer/inner horizon then we are
allowed to use Eq. (12) to obtain outer/inner horizon entropy.
The φ–φ components of metric and dualized spin-connection
on outer/inner horizon are given by

gφφ

∣∣
H± = r2±, 
φφ

∣∣
H± = −r+r−

l
. (31)

Therefore, outer/inner horizon entropies can be computed as

S±
BTZ = − π

2G

[(
σ + αH

μ
+ F

m2

)
r± + r∓

μl

]
. (32)

These entropies can be written as

S±
BTZ = π2l

3
(cRTR ± cLTL) , (33)

where

cR/L = − 3l

2G

(
σ + αH

μ
+ F

m2 ± 1

μl

)
, (34)

are central charges in GMMG [22] and
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TR/L = r+ ± r−
2πl2

, (35)

are right/left-moving temperatures. It can be easily checked
that the outer/inner horizon entropies given by Eq. (32) obey
the first laws of outer/inner mechanics

δMBTZ = ±TH±δS±
BTZ + 
H±δJBTZ. (36)

The product of the inner and outer horizon entropies is

S+
BTZS−

BTZ = π4l2

9
(c2

RT
2
R − c2

LT
2
L ), (37)

From Eq.(65) in Ref. [22], one can deduce that right/left-
moving energies in GMMG are given by

ER/L = π2l

6
cR/LT

2
R/L . (38)

Thus, the product of the inner and outer horizon entropies
can be written as

S+
BTZS−

BTZ = 2π2l

3
(cRER − cL EL). (39)

Since mass and angular momentum of BTZ black hole are
related to right and left-moving energies as

MBTZ = ER + EL , JBTZ = 1

l
(ER − EL), (40)

then

S+
BTZS−

BTZ = −π2l2

G

[(
σ + αH

μ
+ F

m2

)
lJBTZ + MBTZ

μl

]
.

(41)

Therefore in GMMG the product of the inner and outer hori-
zon entropies depends on the mass of the black hole. It does
not depend on mass when we set μ → ∞.

4.2 Warped black holes

Now, we consider warped black hole metric

ds2 = − N 2
WBHdt̂

2 + dr̂2

4R2
WBHN

2
WBH

+ R2
WBH(dφ̂ + N φ̂

WBHdt̂)
2.

(42)

Using Eq. (22), one can compute mass

MWBH = |ζ |3 ν4ĉL
48

(
r̂+ + r̂− + 2ν

√
r̂+r̂−

)
, (43)

and angular momentum

JWBH = − ζ 4ν4

384

{
ĉL

(
r̂+ + r̂− + 2ν

√
r̂+r̂−

)2 − ĉR
(
r̂+ − r̂−

)2
}
,

(44)

of warped black hole in GMMG [36]. Here, ĉR/L are defined
as

ĉR = − 3l

|ζ | ν2G

{
σ + α

μ
(H1 + l2H2) + 1

m2 (F1 + l2F2)

− |ζ |
2μl

(
1 − 2ν2

)}
, (45)

ĉL = − 3l

|ζ | ν2G

{
σ + α

μ
(H1 + l2H2) + 1

m2 (F1 + l2F2) − |ζ |
2μl

}
.

(46)

In Ref. [36], it has been shown that GMMG and spacelike
warped boundary conditions can be regarded dual to a 2D
CFT with central charges given by (45) and (46). Angular
velocities of outer and inner horizons are given by


̂H± = −N φ̂
WBH

∣∣
r̂=r̂± = − 2

|ζ |
(
r̂± + ν

√
r̂+r̂−

) . (47)

By using Eq. (29), one can obtain surface gravities and con-
sequently Hawking temperatures of outer and inner horizons
as

T̂H± = |ζ | ν2 (r+ − r−)

4π
(
r± + ν

√
r+r−

) . (48)

For warped black hole, we have

g
φ̂φ̂

∣∣
H± =1

4
l2ζ 2

(
r̂± + ν

√
r̂+r̂−

)2
,



φ̂φ̂

∣∣
H± = ∓ 1

4
ζ 2ν2√g

φ̂φ̂

∣∣
H±

(
r̂+ − r̂−

) + |ζ |
2l

g
φ̂φ̂

∣∣
H± ,

(J
φ̂
J
φ̂
)
∣∣
H± = l2g

φ̂φ̂

∣∣
H± .

(49)

By substituting Eq. (49) into Eq. (23), we obtain outer/inner
horizon entropies

S±
WBH = − πl |ζ |

4G

{[
σ + α

μ
(H1 + l2H2)

+ 1

m2 (F1 + l2F2) − |ζ |
2μl

] (
r̂± + ν

√
r̂+r̂−

)

± |ζ | ν2

2μl

(
r̂+ − r̂−

)}
.

(50)

By defining right and left-moving temperatures as
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T̂R =ζ 2ν2

8πl

(
r̂+ − r̂−

)
,

T̂L =ζ 2ν2

8πl

(
r̂+ + r̂− + 2ν

√
r̂+r̂−

)
,

(51)

respectively, we can write outer/inner horizon entropies in
the following form

S±
WBH = π2l

3
(ĉR T̂R ± ĉL T̂L), (52)

which is the same as Eq. (33) for the BTZ black hole.
Mass, angular momentum and outer/inner horizon entropies
of warped black hole satisfy the first laws of outer/inner
mechanics

δMWBH = ±T̂H±δS±
WBH + 
̂H±δJWBH. (53)

Similar to Eq. (38), from Eq. (79) in Ref. [36], we can define
right/left-moving energies for warped black hole in GMMG

ÊR/L = π2l

6
ĉR/L T̂

2
R/L , (54)

then the product of the inner and outer horizon entropies can
be written as

S+
WBHS−

WBH = 2π2l

3
(ĉR ÊR − ĉL ÊL). (55)

Right and left-moving energies are related to mass and angu-
lar momentum of warped black hole as

ÊR =1

l
JWBH + 6

lζ 2ν4ĉL
MWBH,

ÊL = 6

lζ 2ν4ĉL
MWBH,

(56)

then we can write the inner and outer horizon entropies as

S+
WBHS−

WBH = 2π2

3

[
ĉRJWBH + 18M2

WBH

μGζ 2ν4ĉL

]
. (57)

Again in GMMG the product of the inner and outer horizon
entropies of warped black hole depends on the mass of the
black hole.

5 Conclusion

We have summarized the method of obtaining conserved
charges and black hole entropy in CSLTG. We have con-
sidered the GMMG model, as an example of the CSLTG.
The BTZ and spacelike warped black holes are solutions
of the GMMG model. We have shown that, for both black

holes, outer/inner horizon entropies can be written as S± =
π2l
3 (cRTR ± cLTL), where TR/L are right/left-moving tem-

peratures and cR/L are central charges. These entropies sat-
isfy the first law of outer/inner mechanics of black holes
δM = ±TH±δS± + 
H±δJ . The product of the entropies
of the inner and outer horizons can be written in terms of right
and left-moving energies. We have shown that in GMMG,
like TMG [12], the product of the inner and outer horizons
entropies depends on the mass. This dependence comes from
the contribution of the Lorentz Chern–Simons term in the
Lagrangian. We state that σ , μ, m, �0 and α are parame-
ters of GMMG model and physical conditions, such as no-
ghost and no-tachyon conditions, determine their values. As
one expects, mass, angular momentum and entropy of black
holes depend on these parameters. All of the obtained results
in this paper will be reduced to the results in TMG [12] when
we set σ = −1, α = 0 and m2 → ∞.
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