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Abstract We consider the statistical description of steady
state fully developed incompressible fluid turbulence at the
inertial range of scales in any number of spatial dimensions.
We show that in the absence of condensates turbulence statis-
tics exhibits scale but not conformal symmetry, with the only
possible exception being the direct enstrophy cascade in two
space dimensions. We argue that the same conclusions hold
for compressible non-relativistic turbulence as well as for
relativistic turbulence. We discuss the modification of our
conclusions in the presence of vacuum expectation values
of negative dimension operators (condensates). We consider
the issue of non-locality of the stress-energy tensor of inertial
range turbulence field theory.

Fully developed incompressible fluid turbulence is largely
considered as the most important unsolved problem of clas-
sical physics. Most fluid motions in nature at all scales are
turbulent. Aircraft motions, river flows, atmospheric phe-
nomena, astrophysical flows and even blood flows are some
examples of set-ups where turbulent flows occur. Despite
centuries of research, we still lack an analytical description
and understanding of fluid flows in the non-linear regime.
Insights to turbulence hold a key to understanding the princi-
ples and dynamics of non-linear systems with a large number
of strongly interacting degrees of freedom far from equilib-
rium.

One defines the inertial range to be the range of length
scales l � r � L , where the scales l and L are deter-
mined by the viscosity and forcing, respectively. Experimen-
tal and numerical data suggest that turbulence at the inertial
range of scales reaches a steady state that exhibits statistical
homogeneity and isotropy and is characterized by universal
anomalous scaling exponents that depend only on the num-
ber of space dimensions d [1,2] (for a proposal of anomalous
scaling setup at low Reynolds number see [3]).
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The aim of this letter is to consider the question whether
turbulence statistics realized by the universal anomalous scal-
ing exponents can exhibit, as many critical systems do, not
only scale symmetry but rather conformal symmetry. Note,
that by scale symmetry we do not mean a self-similar (non
intermittent) structure of the turbulence statistics, but rather
the emergence of anomalous scalings e.g. of the velocity
structure functions.

We will use exact scaling relations to show that in the
absence of condensates turbulence statistics exhibits scale but
not conformal symmetry. We will find one possible excep-
tion, which is the direct enstrophy cascade in two space
dimensions. Furthermore, we will argue that the same con-
clusions hold for compressible non-relativistic turbulence as
well as for relativistic turbulence. We will discuss how the
presence of vacuum expectation values of negative dimen-
sion operators (condensates) modifies these conclusions.

Under a d-dimensional conformal transformation:

xi → x ′i dx ′2 = �2(x)dx2, i = 1, ..., d , (1)

and

∂x ′i

∂x j
= �(x)Ri

j (x), Ri
k(x)R

k
j (x) = δij , (2)

thus Ri
j (x) ∈ SO(d). Raising and lowering indices is

done with Kronecker delta δi j , δ
i j . Conformal transforma-

tions rescale lengths non-uniformly, while preserving the
angles between vectors. The conformal group includes the
Euclidean group that consists of translations and rotations
as well as dilatations and special conformal transformations.
Special conformal transformations are composed of an inver-

sion xi → xi

x2 followed by a translation xi → xi + ai and
by a second inversion. They take the form:

xi → x ′i = xi + ai x2

1 + 2a · x + a2x2 . (3)

Consider first the case of inertial range incompressible
fluid turbulence that describes fluid flows with a low Mach

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6147-8&domain=pdf
mailto:yaronoz@post.tau.ac.il


655 Page 2 of 5 Eur. Phys. J. C (2018) 78 :655

number. We are interested in the statistics of the turbulent
velocity vector field vi that satisfies the incompressibility
condition ∂iv

i = 0, and hence in the correlation functions:

〈vi1(x1) · · · vin (xn)〉 , (4)

where the separation between points xi j in (4) is in the iner-
tial range. We will work in the limit l → 0 and xi j fixed in
which experimental and numerical data suggest that the cor-
relation functions (4) are finite. Note, however, that this finite-
ness is not analytically established. The correlation functions
have also a a finite limit when xi j → 0, after taking the
limit l → 0, which allows us to define composite operators
vi1(x)vi2(x) · · · vik (x) [4]. The dimension of these operators
is k-times the dimension of vi .

Note, that here we are using the fact that the dimension of
the velocity vector field is positive in units of length. Hence,
the operator product of two velocity vector fields is expected
to be regular. This is not true when we consider operators
that are derivatives of the velocity vector field. Such opera-
tors have negative dimensions in units of length and their
operator product is singular. These UV divergences have
important observable consequences such as the dissipative
anomaly (see e.g. [5,6]).

Consider Kolmogorov’s law [7,8]:

〈vi j (x1)v
k(x2)〉 = ε

(
δik x j

12 + δ jk xi12 − 2

d
δi j xk12

)
, (5)

where ε is related, up to a numerical multiplicative factor that
depends on the number of dimensions, to the mean rate of
energy dissipation due to viscosity, and vi j (x) is a traceless
symmetric 2-tensor of SO(d)

vi j (�x) = vi (x)v j (x) − v2(x)

d
δi j . (6)

Kolmogorov’s law (5) is an exact relation in statistical turbu-
lence, and thus provides a consistency check on any proposal
for such a description. In the following we will show that (5)
is not compatible with conformal symmetry.

The third moment of the velocity vector field is called
Kolmogorov’s law. However, the third moment that was
derived by Kolmogorov in the second paper in [7,8] is for
the differences of the velocity vector field at two separate
points. In order to recast it in the tensor form (5) one uses
the assumption of statistical homogeneity and isotropy (see
e.g. [4,9]).

The mean rate of energy dissipation ε in (5) is a dimen-
sionful constant that depends on the forcing scale L . This is
generally case with the coefficients of turbulence structure
functions. Thus, the scale versus conformal symmetry that
we consider corresponds to the universal scaling exponents
of the structure functions.

The operators of conformal field theories are classified
as primary or descendants. A conformal primary operator of

dimension � in an irreducible representation RI
J of SO(d)

transforms under a conformal transformation (1) as:

OI (x) → O ′
I (x

′) = �(x)−�RJ
I (x)OJ (x) . (7)

Descendants are derivatives of the primary operators and
their transformation can be deduced from (2) and (7). Con-
sider two primary operators OI and OJ with scaling dimen-
sions �I and �J , respectively. Scale (dilatation) symmetry
xi → λxi , λ = const , restricts the form of their two-point
function:

〈OI (x1)OJ (x2)〉 = cI J (x12)

x�I+�J
12

, (8)

where cI J is dimensionless. Special conformal symmetry
sets further restrictions. Under a conformal transformation
(1) we have:

x2
12 → x ′2

12 = �(x1)�(x2)x
2
12 . (9)

Using (7), (8) and (9) one gets that conformal covariance of
two-point function (8) requires �I = �J . This is clearly
not the case in (5), since the dimension of vi is not equal
to the dimension of vi j . In fact the orthogonality theorem
requires that the two operators transform in the same irre-
ducible SO(d) representation [10] and

cI J (x12) → RK
I (x1)R

L
J (x2)cK L(x12) . (10)

However, vi and vi j transform in different irreducible repre-
sentations of SO(d).

It is possible that the operators vi or vi j (or both) are
not primary operators. Indeed, consider the divergence free
velocity vector vi . The two-point function of a conserved
spin one operator J i , ∂i J i = 0 of dimension � reads:

〈J i (�x1)J
j (�x2)〉 = δi j + a xi x j

x2

x2�
12

, a = 2�

d − 2� − 1
. (11)

The requirement to be a conformal primary (7) implies that
a = −2 in (11), hence � = d − 1 [11]. Thus, for vi

to be a conformal primary operator its dimension should
have been d − 1. However, its dimension is experimentally
close to its Kolmogorov (K41) linear scaling dimension [7,8]
�K41[vi ] = − 1

3 (in inverse length units) [12].
Since vi cannot be a primary operator let us assume that

it is a descendant of a primary operator. It is clearly not a
descendant of vi j , vi 	= ∂ jv

i j , where as discussed above, the
composite operator vi j is well defined and we can take its
derivative. Thus, the two-point function of vi and vi j can be
nonzero only if they are both descendants of the same primary
operator, and in such a case their dimensions should differ by
an integer number. This is not case: Their K41 linear scaling
dimensions differ by − 1

3 , while the actual experimental value
may differ slightly from this value [12]. Note, that we are not
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assuming the Kolmogorov linear scaling but rather that the
anomalous scaling of these objects is not very far from it.

As a second example consider the exact scaling relation
of incompressible fluid turbulence derived in [13]:

〈vi (x1)p(x1)v
2(x2)〉 = Cxi12 , (12)

whereC is a constant related to the mean rate of energy dissi-
pation, and p is the fluid pressure. In this case the two opera-
tors are vi (x)p(x) and v2(x) and their dimensions differ but
not by an integer, where we use the regularity of the operator
product of vi and p since both have a positive dimension
in units of length. Thus, the two-point function (12) is not
conformally covariant.

Two-dimensional fluid turbulence is special since there
are two cascades: the direct enstrophy (vorticity squared)
cascade and the inverse energy cascade. The analysis of the
inverse energy cascade works as above and it is not con-
formally covariant. In [14] the isovorticity lines of two-
dimensional inverse cascade turbulence have been studied
numerically and have been identified as SLEκ curves with
κ = 6 (for an SLE review see e.g. [15]). This result hints
that there may be an underlying two-dimensional conformal
structure in inverse cascade turbulence theory, however, the
jury is still out on this issue. If there is indeed a conformal
structure, it seems to be in contradiction with our analysis.
We will discuss this later when we consider the issue of con-
densates.

In the enstrophy cascade one can derive the exact scaling
relation:

〈ω(x1)ω(x2)v
i (x2)〉 = Cxi12 , (13)

where ω = εi j∂iv j is the vorticity pseudoscalar and C is a
constant related to the mean rate of enstrophy dissipation. In
this case the two operators are ω(x) and ω(x)vi (x). Their
dimensions may differ by one (the dimension of vi is -1 or
close to it) and it is still possible that they are both descendants
of the same primary operator. This is the case considered by
Polyakov in [6].

Consider next compressible non-relativistic fluid flows,
where the fluid density ρ(x) is not constant. In this case, one
can derive an exact scaling relation that takes the form [13] :

〈T 0i (x1)T
i j (x2)〉 = εx j

12 , (14)

where we sum over the index i , ε is a constant related to the
mean rate of energy dissipation and

T 0i = ρvi , T i j = ρviv j + pδi j , (15)

satisfies the ideal compressible fluid equation ∂t T 0 j +
∂i T i j = 0. The two-point function (14) reduces to the Kol-
mogorov law (5) in the incompressible case ρ = const ,
when using 〈p(x1)v

i (x2)〉 = 0 which follows from incom-
pressibility, and using isotropy to recast it in the manifestly
isotropic form (5). We have in (14) two different operators

that do not have dimensions that differ by an integer. Hence
(14) cannot be a two-point function of a confomally invariant
theory.

In two space dimensions there is an enstrophy cascade of
compressible fluid flows similar to the incompressible fluid
one. One can derive an exact scaling relation for such turbu-
lent flows that takes the form [16]:

〈ω j (x1)ω(x2)〉 = Cx j
12 , (16)

where

ω j = εik∂kT
j
i , ω = εik∂kT0i , (17)

and C is a constant related to the mean rate of enstrophy dis-
sipation. The scaling relation (16) has been checked numer-
ically in [16,17] and it reduces to (13) in the limit of non-
relativistic fluid flows. In this case the difference between the
dimensions of the two operators which is the dimension of
vi may be an integer as in the incompressible limit, thus it is
possible that it is conformally covariant.

Let us discuss now relativistic hydrodynamics defined by
the conservation of a relativistic stress-energy Tμν, μ, ν =
0, ..., d, ∂μTμν = 0. The stress-energy tensor of an ideal
relativistic fluid reads:

Tμν = (ε + p)uμuν + pημν , (18)

where ε is the energy density, p is the relativistic pressure,

uμ = (γ, γ vi

c ), γ = (1 − v2

c2 )− 1
2 , is the relativistic fluid

velocity vector uμuμ = −1 and ημν = diag[−,+, ...,+] is
the Minkowskian metric. One can derive an exact scaling [18]
of the form (14) with (18), which reduces to the Kolmogorov
law (5) in the limit of non-relativistic fluid flow v � c. The
difference between the dimensions of the two operators in
(18) is the dimension of vi , which is unlikley to be an integer
(it is not an integer in the non-relativistic limit). This suggests
that also relativistic turbulence is not conformally covariant.

In two space dimensions there is also an enstrophy cas-
cade of relativistic fluid flows similar to the incompressible
fluid one. One can derive an exact scaling relation for such
turbulent flows that takes the form (16), (17) and (18) [16],
which reduces to (13) in the limit of non-relativistic fluid
flows. In this case the difference between the dimensions of
the two operators which is the dimension of vi may be an
integer as in the non-relativistic limit, thus it is possible that
it is conformally covariant.

Consider the K41 theory of turbulence [7,8]. Since K41
theory neglects intermittency, the dimension of a general
composite operator of the form vi1(x)vi2(x) · · · vik (x) is k

3 .
Similarly to the above analysis, we conclude that K41 the-
ory is scale but not conformally covariant, by e.g. using the
Kolmogorov law. In [19] we proposed a field theory of turbu-
lence at the inertial range of scales and derived the formula
for anomalous scalings of the longitudinal structure func-
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tions proposed in [20]. The field theory is based on dressing
the K41 mean field theory by a conformal field theory of
a gapless dilaton mode, and we related the intermittency to
the boundary conformal anomaly coefficient. The discussion
here suggests that we should include in the intermittency also
the scale anomaly coefficients.

In our analysis we assumed that the vacuum expectation
values of the turbulence field theory operators are zero. How-
ever, since we have operators OK with negative dimensions
�K < 0 they may acquire expectation values 1:

〈OK 〉 = cK L
−�K , (19)

where cK are nonzero constants and L is the infrared forc-
ing scale. As noticed by A. Zamolodchikov, the expectation
values (19) break spontaneously conformal symmetry and
modify the correlation functions of conformal field theories
[21]. For instance, the two-point correlation function (8) will
be modified due to such expectation values by dominating
terms of the form [4,6,21]:

cI J K (x12)

x�I+�J
12

(
L

x12

)|�K |
, (20)

where cI J K is dimensionless. In such a case one cannot
use the orthogonality theorem [10]. The issue whether such
nonzero expectation values exist requires a study of the
infrared boundary conditions and dynamics of the turbulent
system. We do not have much to add on this crucial point,
except that it may be a way to resolve the inconsistency
between our analysis of the two-dimensional inverse cascade
of the incompressible fluid and the numerical evidence [14]
if indeed an underlying conformal structure exists.

Finally, let us make a comment about the stress-energy
tensor of the field theory of inertial range incompressible
fluid turbulence. A local stress-energy tensor is a dimension
d conserved 2-tensor of SO(d). It is easy to see on dimen-
sional grounds that we cannot make such an object from the
velocity vector vi and the pressure p in the energy cascades,
hence the stress-energy tensor of a field theory description
of turbulence will necessarily be non-local. This is not in
contradiction with field theory axioms that require the exis-
tence of energy and momentum but do not require the exis-
tence of their densities. In the enstrophy cascade in two space
dimensions it is possible that such a local stress-energy tensor
exists.
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