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Abstract In a theory of a Dirac fermion field coupled to a
metric-axial-tensor (MAT) background, using a Schwinger-
DeWitt heat kernel technique, we compute non-perturbatively
the two (odd parity) trace anomalies. A suitable collapsing
limit of this model corresponds to a theory of chiral fermions
coupled to (ordinary) gravity. Taking this limit on the two
computed trace anomalies we verify that they tend to the
same expression, which coincides with the already found
odd parity trace anomaly, with the identical coefficient. This
confirms our previous results on this issue.

1 Introduction

This paper is a follow up of [1] where a new version of mod-
ified gravity was introduced, a metric-axial-tensor gravity.
That is, beside the usual metric, the model is endowed with
an additional symmetric tensor that interacts chirally with
fermions. The purpose there was not (or not yet) to describe
a new phenomenological model of gravity, but to permit a
more accurate investigation of the relation between gravity
and chiral fermions. It is often stated in the literature that
gravity is chirally blind, meaning that the relevant charge, the
mass, is positive, and is thus different from the typical case
of a U(1) interaction. This is certainly a basic peculiarity of
gravity with several important consequences. However one
should reflect on the fact that the coupling between gravity
and matter is given by the juxtaposition of the metric and the
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energy-momentum tensor, and the energy-momentum ten-
sors of fermions with opposite chiralities are different.

One can suspect therefore that at some stage differences
might emerge between fermions with opposite chiralities
in their interaction with gravity. A privileged place where
such differences may show up are the anomalies. And in this
case the candidate is the trace anomaly, because it involves
precisely the coupling between the metric and the energy-
momentum tensor. The difficulty is how to make this differ-
ence emerge. As will be argued below, one should be careful
to preserve the definite fermion chirality throughout the cal-
culation. There is no direct way to do it, basically because
the Dirac operator for a Weyl fermion contains a chiral pro-
jector. Therefore one has to resort to some indirect method.
Like in many other cases in physics, the best way to avoid
similar problems is to embed the system in a larger setup con-
taining more variables and/or parameters. The metric-axial-
tensor (MAT) gravity is designed to do this. It is formulated
for Dirac fermions coupled to the usual metric and to an
axial symmetric tensor. In this case the operator involved is
the usual Dirac operator. The situation appropriate for Weyl
fermions is recovered in a specific limit, the collapsing limit.

As mentioned above, MAT has already been introduced
and used to compute the odd-parity trace anomaly in [1].
There the approach was perturbative, we calculated the Feyn-
man diagrams at the lowest significant order. What we want to
do in this paper is to show that the same result can be obtained
non-perturbatively, by means of the heat kernel method and
using different regularizations. Hereafter is a qualitative, but
more detailed, presentation of both the problem we wish to
solve and the method we use.
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1.1 Split and non-split anomalies

A basic differentiation between anomalies in fermionic field
theories is the separation between split and non-split anoma-
lies. Split anomalies have an opposite sign for opposite
fermion chiralities. Non-split anomalies have the same sign
for opposite chiralities. An example of the first are the con-
sistent chiral gauge or gravity anomalies. They may of course
arise only in the presence of chiral asymmetry. These anoma-
lies undermine the consistency of theories in which they
are present, and, as a consequence, they have been used as
an exclusion criterion. An example of non-split anomalies
are the covariant gauge or gravity anomalies, such as the
Kimura–Delbourgo–Salam anomaly or the anomaly that is
utilized to explain the decay of a π0 into two γ ’s. But the
examples are manifold. In the family of trace anomalies, the
even ones are non-split, while the odd trace anomaly, which
is the main character of this paper, is split.

Split and non-split anomalies differ also for the difficul-
ties one comes across when computing them. While there are
several tested techniques to compute non-split anomalies, the
calculation of the split ones is rather non-trivial. In many of
the latter cases one may avail oneself of such a powerful tool
as the family index theorem (for instance for consistent gauge
and gravity anomalies). But, like for the odd trace anomaly,
this is not always so, and, in any case, it is important to be able
to derive such anomalies with independent field-theoretical
methods. If one resorts to path integral methods, one has to
integrate out the fermion field(s), in which case the origin
of the difficulties resides in the functional measure. As dis-
cussed in [1], a basic ingredient for the calculation is the
functional integration measure which, for chiral fermions, is
not well-defined. On the other hand, to get the correct result,
it is imperative to preserve throughout the calculation the
information that the fermion field, which is being integrated
out, has a definite chirality. One is then obliged to either
use indirect methods or to elude a direct intrusion of the
functional measure in the calculation. The second alterna-
tive refers to the use of Feynman diagrams, in which case the
chirality of fermions is preserved by vertices containing the
appropriate chiral projector. This is the method employed in
[1–3] together with dimensional regularization. In the present
paper however, we focus on an indirect method of calcula-
tion, first used by Bardeen, [4], for chiral gauge anomalies.
He considered a theory of Dirac fermions coupled to two
external non-Abelian (vector Vμ and axial Aμ) gauge poten-
tials. Clearly this poses no problems from the point of view
of the functional measure and the derivation of the anomaly
goes through without difficulties. Eventually one takes the
collapsing limit V → V

2 and A → V
2 and verifies that,

in such a limit, the anomaly becomes the desired consistent
gauge anomaly. For the sake of clarity we present a summary
of this derivation in Appendix A.

This approach has already been introduced and applied
in [1] for the odd trace anomaly. To this end we introduced
there a modification of ordinary gravity, the metric-axial-
tensor (MAT) gravity: beside the usual metric gμν we intro-
duced an axial symmetric 2-tensor fμν , and coupled it to a
Dirac fermion. Then we computed the trace of the energy-
momentum tensor and of its axial companion and, eventually,
we took the limit g → g

2 and f → g
2 and obtained the desired

result. The limit of that derivation is that it relies on Feynman
diagram techniques, and, so, it is perturbative. In fact we cal-
culated only the lowest order of the odd trace anomaly and
then covariantized it. This is of course permitted provided
we are sure that there are no anomalies of the diffeomor-
phisms. With a MAT background this verification is exceed-
ingly complicated and in [1] we did not do it and contented
ourselves with an analogous but simpler verification carried
out in [3]. It is clear that to prevent any objection we have
to guarantee that diffeomorphisms are respected throughout
the derivation. This can be done with DeWitt’s method, [5,6].
This method is based on point-splitting. Therefore one needs
a regularization in order to get rid of divergences, but the
point-splitting is along a geodesic, thus guaranteeing covari-
ance under diffeomorphisms. Our aim here is to combine
DeWitt’s with Bardeen’s method. This requires a formula-
tion of MAT more accurate than in [1]. For this reason the
anomaly calculation proper needs to be preceded by a long
introduction on the so-called hypercomplex calculus, which
is the appropriate framework for MAT gravity.

Organization of the paper Section 2 is a short introduction
of axial-complex numbers and axial-complex analysis. In
Sect. 3 we deal with the axial-complex analysis of geodesics
in an axial-complex space. We introduce normal coordinates,
define the world function and the coincidence limit (i.e. the
limit for vanishing geodetic distance), the VVM determi-
nant and the parallel displacement matrix for tensors and
for spinors. The (pseudo)Riemannian geometry of an axial-
complex space was already introduced in [1]. To help the
reader, it is presented anew in Appendix B in a partially ren-
ovated notation, which seems to us more practical. In Sect. 4
we introduce the theory of Dirac fermions in a MAT back-
ground, we define the relevant energy-momentum tensors
(they are two, the ordinary one and its axial companion) and
analyse their classical Ward identities with respect to ordi-
nary and axial diffeormorphisms and Weyl transformations.
We also define the ‘square’ of the Dirac operator, which is
crucial for the application of the Schwinger-DeWitt method.
In Sect. 5 we explain this method and compute the relevant
heat kernel coefficients. In Sect. 6 we apply these results to
the non-perturbative computation of the (odd) trace anoma-
lies of the two em tensors with two different regularization,
the dimensional and ζ -function ones. Then we compute the
collapsing limit and show that the two anomalies collapse
to a single one and take the form of the odd trace anomaly
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already computed in [2,3] and [1], as expected. Section 7
is devoted to our conclusions. Appendix A is a summary of
Bardeen’s method. Appendix C contains a short account of
fermion propagators in a MAT background.

Overview of the literature There exists a vast literature on
even trace anomalies in 4d, mostly old [7–32] but also recent
[33–35], denoting a renewed interest in the subject. The liter-
ature on the odd parity trace anomaly in 4d (still in a settling
phase) consists of [1–3,36–40]. Textbooks on anomalies are
[41–43]. Aspects of split and non-split anomalies, which are
relevant to this paper, were discussed in [44,45]. A regular-
ization, not used in this paper, but which would be interest-
ing to explore is the one introduced in [46]. Hypercomplex
analysis in physical problems was introduced and used in
[47–53].

2 Axial-complex analysis

Axial-complex numbers are defined by

â = a1 + γ5a2, (1)

where a1 and a2 are real numbers. Arithmetic is defined in
the obvious way. We can define a conjugation operator

â = a1 − γ5a2. (2)

We will denote by AC the set axial-complex numbers, by
AR the set of axial-complex numbers with a2 = 0 (the axial-
real numbers) and by AI the set of axial-complex numbers
with a1 = 0 (the axial-imaginary numbers). We can define a
(pseudo)norm

(a, a) = ââ = a2
1 − a2

2 . (3)

This determines an axial-light-cone with all the related prob-
lems. In general, whenever possible, we will keep away from
it by considering the case |a1| > |a2|. Alternatively we will
use an axial-Wick-rotation (analogous to the Wick rotation
for the Minkowski spacetime light-cone) a2 → ia2. When-
ever we resort to it explicit mention will be made.

Introducing the chiral projectors P± = 1±γ5
2 , we can also

write

â = a+P+ + a−P−, a± = a1 ± a2. (4)

We will consider functions f̂ (x̂) of the axial-complex vari-
able

x̂ = x1 + γ5x2 (5)

from AC to AC, which are axial-analytic, i.e. admit a Tay-
lor expansion, and actually identify the functions with their
expansions. Using the property of the projectors it is easy to
see that

f̂ (x̂) = P+ f̂ (x+) + P− f̂ (x−) = 1

2

(

f̂ (x+) + f̂ (x−)
)

+γ5

2

(

f̂ (x+) − f̂ (x−)
)

. (6)

In the same way we will consider functions from AC4 to AC,
with analogous properties.

f̂ (x̂μ) = P+ f̂ (xμ
+) + P− f̂ (xμ

−)

= 1

2

(

f̂ (xμ
+) + f̂ (xμ

−)
)

+ γ5

2

(

f̂ (xμ
+) − f̂ (xμ

−)
)

(7)

with μ = 0, 1, 2, 3, and

x̂μ = xμ
1 + γ5x

μ
2 (8)

are the axial-complex coordinates.
Axial-complex numbers and analysis are a particular case

of pseudo-complex or hyper-complex numbers and analysis,
[47,48].

Derivatives are defined in the obvious way:

∂

∂ x̂μ
= 1

2

(

∂

∂xμ
1

+ γ5
∂

∂xμ
2

)

,

∂

∂ x̂
μ = 1

2

(

∂

∂xμ
1

− γ5
∂

∂xμ
2

)

. (9)

Notice that for axial-analytic functions

d

dx̂
= ∂

∂x1
≡ ∂

∂ x̂
, (10)

whereas ∂

∂ x̂
̂f (x̂) = 0.

As for integrals, since we will always have to do with
rapidly decreasing functions at infinity, we define
∫

dx̂ ̂f (x̂)

as the rapidly decreasing primitive ĝ(x̂) of ̂f (x̂). Therefore
the property
∫

dx̂
∂

∂ x̂μ
f̂ (x̂) = 0 (11)

follows immediately. As a consequence of (10) it follows
that, for an axial-analytic function,
∫

dx̂ ̂f (x̂) =
∫

dx1 ̂f (x̂) (12)

and we can define definite integrals such as

∫ b̂

â
d x̂ ̂f (x̂) = ĝ(b̂) − ĝ(â). (13)

In this axial-spacetime we introduce an axial-Riemannian
geometry as follows. Starting from a metric ĝμν = gμν +
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γ5 fμν , the Christoffel symbols (see Appendix B) are defined
by

̂�λ
μν = 1

2
ĝλρ

(

∂

∂ x̂μ
ĝρν + ∂

∂ x̂ν
ĝμρ − ∂

∂ x̂ρ
ĝμν

)

. (14)

They split as follows

̂�
μ
νλ = �

(1)μ
νλ + γ5�

(2)μ
νλ (15)

and are such that the metricity condition is satisfied

∂

∂ x̂μ
ĝνλ = ̂�ρ

μν ĝρλ + ̂�
ρ
μλ ĝνρ, (16)

which, in AR4, takes the form

∂

∂ x̂μ
gνλ = �(1)ρ

μν gρλ + �
(1)ρ
μλ gνρ

+�(2)ρ
μν fρλ + �

(2)ρ
μλ fνρ (17)

∂

∂ x̂μ
fνλ = �(1)ρ

μν fρλ + �
(1)ρ
μλ fνρ

+�(2)ρ
μν gρλ + �

(2)ρ
μλ gνρ. (18)

3 MAT geodesics

Let us set

̂�
μ
νλ = �

(1)μ
νλ + γ5�

(2)μ
νλ . (19)

The equation for MAT geodesics is

¨̂xμ + ̂�
μ
νλ

˙̂xν ˙̂xλ = 0, (20)

where a dot denotes derivation with respect to an axial-affine
parameter t = t1 + γ5t2. For axial-real and axial-imaginary
components this means

ẍμ
1 + �

(1)μ
νλ (ẋν

1 ẋ
λ
1 + ẋν

2 ẋ
λ
2 )

+�
(2)μ
νλ (ẋν

1 ẋ
λ
2 + ẋν

2 ẋ
λ
1 ) = 0 (21)

ẍμ
2 + �

(1)μ
νλ (ẋν

1 ẋ
λ
2 + ẋν

2 ẋ
λ
1 )

+�
(2)μ
νλ (ẋν

1 ẋ
λ
1 + ẋν

2 ẋ
λ
2 ) = 0. (22)

These geodesic equations can be obtained as equations of
motion from the action

̂S =
∫

dt̂
√

ĝμν
˙̂xμ ˙̂xν = S1 + γ5S2, (23)

where ĝμν = gμν + γ5 fμν .
The action takes values in AC. For instance, setting the

proper time τ̂ = τ1 + γ5τ2,

̂S[̂x] =
∫

d τ̂
(

ĝμν
˙̂xμ ˙̂xν)

1
2 . (24)

But unlike [47,48] we require the action principle to be spec-
ified by δ̂S[̂x] = 0.

Taking the variation of S[̂x] with respect to δ x̂ = δx1 +
γ5δx2, with

δĝμν = ∂ ĝμν

∂ x̂λ
δ x̂λ, i.e.

δgμν = 1

2

(

∂gμν

∂xλ
1

+ ∂ fμν

∂xλ
2

)

δxλ
1 +

(

∂ fμν

∂xλ
1

+ ∂gμν

∂xλ
2

)

δxλ
2

= ∂gμν

∂xλ
1

δxλ
1 + ∂ fμν

∂xλ
1

δxλ
2

δ fμν = 1

2

(

∂gμν

∂xλ
1

+ ∂ fμν

∂xλ
2

)

δxλ
2 +

(

∂ fμν

∂xλ
1

+ ∂gμν

∂xλ
2

)

δxλ
1

= ∂gμν

∂xλ
1

δxλ
2 + ∂ fμν

∂xλ
1

δxλ
1 (25)

we get the eom

ĝμρ
¨̂xρ + ̂�

ρ
νλ ĝμρ

˙̂xμ ˙̂xν = 0, i.e. ¨̂xμ + ̂�
μ
νλ

˙̂xν ˙̂xλ = 0.

(26)

Let us rewrite
√

ĝμν
˙̂xμ ˙̂xν = √

A + γ5B,

A = gμν

(

ẋμ
1 ẋ

ν
1 + ẋμ

2 ẋ
ν
2

) + 2 fμν ẋ
μ
1 ẋ

ν
2 ,

B = fμν

(

ẋμ
1 ẋ

ν
1 + ẋμ

2 ẋ
ν
2

) + 2gμν ẋ
μ
1 ẋ

ν
2 , (27)

so that we have

̂S[̂x] =
∫

d τ̂

√

ĝμν
˙̂xμ ˙̂xν

= 1

2

[∫

dτ1

(√
A + B + √

A − B
)

+
∫

dτ2

(√
A + B − √

A − B
)

]

+γ5

2

[∫

dτ1

(√
A + B − √

A − B
)

+
∫

dτ2

(√
A + B + √

A − B
)

]

. (28)

Varying this action with respect to δxλ we obtain the same
eom (26). This is due to (12) and to the fact that, the action
is an analytic function of x̂ , so that the variation with respect
to δ x̂λ is the same as the variation of δxλ

1 .
Eventually we will set x2 = 0 everywhere, but it is very

convenient to keep the axial-analytic notation as far as pos-
sible.

3.1 Geodetic interval and distance

The quantity

̂E = E1 + γ5E2 = 1

2
ĝμν

˙̂xμ ˙̂xν
(29)
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is conserved as a function of t̂ . Since ĝμν
˙̂xμ ˙̂xν

is constant
for geodesics, we can write for the arc length parameter ŝ

dŝ

dt̂
=

√

ĝμν
˙̂xμ ˙̂xν

, (30)

and

ŝ − ŝ′ =
∫ t̂

t̂ ′
d τ̂

√

2̂E =
√

2̂E (t̂ − t̂ ′). (31)

ŝ − ŝ′ is the axial arc length along the geodesic between x̂
and x̂ ′. The half square of it is called the world function and
it is denoted

σ̂ (̂x, x̂ ′) = 1

2
(̂s − ŝ′)2 = ̂E(t̂ − t̂ ′)2 = (t̂ − t̂ ′)

∫ t̂

t̂ ′
̂Ed τ̂ .

(32)

The main properties are

σ̂;μ = ̂∂μσ̂ = (t̂ − t̂ ′)ĝμν
˙̂xν ≡ −ĝμν ŷ

ν (33)

ŷμ are the normal coordinates based at x̂ . Using (32,33) one
can see that

1

2
σ̂;μσ̂;μ = σ̂ . (34)

The subscript ;μ means the covariant derivative with respect
to x̂μ, while ;μ′ means the covariant derivative with respect
to x̂ ′μ′

.

Remark 1 σ̂ = σ1 + γ5σ2, but notice that, even when we set
x2 = 0, we cannot infer that σ2 = 0. This descends from Eq.
(30). Looking at (28), we see that B does not vanish even
when xν

2 = 0. As a consequence the axial-imaginary part of
(27) does not vanish, so the axial-imaginary part of Eq. (30)
will not automatically vanish either.

3.2 Normal coordinates

Normal coordinates can be defined based at x or at x ′:

ŷμ′
(̂x ′, x̂) = (t̂ − t̂ ′)dx̂

μ′

dt̂ ′
(35)

and

ŷμ(̂x, x̂ ′) = (t̂ ′ − t̂)
dx̂μ

dt̂
. (36)

The tangent vector dx̂μ

dt̂
to the geodesic at x̂ satisfies

D

dt̂

d x̂μ

dt̂
= d2 x̂μ

dt̂2
+ ̂�

μ
νλ

dx̂ν

dt̂

d x̂λ

dt̂
= 0 (37)

and an analogous equation at x̂ ′. Now we can write

ŷμ′
;ν(x̂ ′, x̂)ŷν(x̂, x̂ ′) = (t̂ ′ − t̂)ŷμ′

;ν (̂x ′, x̂)dx̂
ν(t̂)

dt̂

= (t̂ ′ − t̂)
d

dt̂
ŷμ′

(̂x ′, x̂)

= (t̂ ′ − t̂)
dx̂μ′

(t̂ ′)
dt̂ ′

= −ŷμ′
(̂x ′, x̂). (38)

Dividing by t̂ − t̂ ′ the second and fourth terms and taking the
coincidence limit x̂ ′ → x̂ , one gets

[̂yμ′
;ν]dx̂

ν

dt̂
= dx̂μ

dt̂
→ [̂yμ′

;ν] = δμ
ν , (39)

where [X ] denotes the result of the coincidence limit on the
quantity X . In a similar way one can prove

[̂yμ′
;ν′ ]dx̂

ν

dt̂
= −dx̂μ

dt̂
→ [̂yμ′

;ν′ ] = −δμ
ν (40)

[̂yμ;ν]dx̂
ν

dt̂
= −dx̂μ

dt̂
→ [̂yμ;ν] = −δμ

ν (41)

[̂yμ;ν′ ]dx̂
ν

dt
= dx̂μ

dt
→ [̂yμ;ν′ ] = δμ

ν . (42)

From (38) we get

ŷμ′
;ν ŷν + ŷμ′ = 0. (43)

In a similar way one derives also

ŷμ′
;ν′ ŷν′ + ŷμ′ = 0 (44)

ŷμ;ν′ ŷν′ + ŷμ = 0 (45)

ŷμ;ν ŷν + ŷμ = 0. (46)

For instance, differentiating (44) with respect to x̂λ′
, one gets

ŷμ′
;ν′λ′ ŷν′ + ŷμ′

;ν′ ŷν′
;λ′ + ŷμ′

;λ′ = 0

taking the coincidence limit, and using (40), one finds an
identity, because [̂yμ′ ] = 0. Differentiating another time with
respect to x̂ρ′

one gets

[̂yμ′
;λ′ρ′ ] = 0. (47)

Differentiating again with respect to x̂τ ′
and using the

Bianchi identity for ̂Rμ
λρτ = R(1)μ

λρτ + γ5R(2)μ
λρτ , one

finds

[̂yμ′
;λ′ρ′τ ′ ] = 1

3

(

̂Rμ
ρλτ + ̂Rμ

τλρ

)

(48)

and, in a similar way,

[̂yμ′
;λρτ ] = 1

3

(

̂Rμ
λρτ + ̂Rμ

ρλτ

)

(49)

and

[̂yμ;λρτ ] = 1

3

(

̂Rμ
τλρ + ̂Rμ

ρλτ

)

. (50)
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3.3 Coincidence limits of σ̂

Covariantly differentiating (34) we get

σ̂;ν = σ̂;μνσ̂;μ. (51)

In the coincidence limit [̂σ;ν] = 0. Therefore (51) is triv-
ial in the coincidence limit. Differentiating the first and last
member of (33) we get

σ̂;μλ = −ĝμν ŷ
ν ;λ. (52)

Using (41) one gets

[̂σ;μλ] = ĝμλ. (53)

Similarly

[̂σ;μλ′ ] = −ĝμλ. (54)

Differentiating (51) once more one gets

σ̂;νλ = σ̂;μνλ σ̂;μ + σ̂;μν σ̂
μ

;λ
which, in the coincidence limit, using the previous results,
yields an identity. Differentiating it again

σ̂;νλρ = σ̂;μνλρ σ̂;μ + σ̂;μνλ σ̂
μ

;ρ + σ̂;μνρ σ̂
μ

;λ
+σ̂;μν σ̂;μλρ. (55)

In the coincidence limit this becomes

[̂σ;νλρ] = [̂σ;ρνλ] + [̂σ;λνρ] + [̂σ;νλρ]. (56)

Since σ̂ is a biscalar we have

[̂σ;νλρ] = [̂σ;νρλ] + ̂Rρλν
τ [̂σ;τ ] = [̂σ;ρνλ]. (57)

Therefore

[̂σ;ρνλ] = [̂σ;λνρ] = [̂σ;νλρ] = 0. (58)

Differentiating (55) once more and taking the coincidence
limit one gets

[̂σ;νλρτ ] = −1

3

(

̂Rντλρ + ̂Rνρλτ

) ≡ ̂Sνλρτ , (59)

where ̂Rντλρ = ĝνμ
̂Rμ

τλρ . Differentiating once more

[̂σ;νλρστ ] = 3

4

(

̂Sνλστ ;ρ + ̂Sνλσρ;τ + ̂Sνλτρ;σ
)

. (60)

We will need also the coincidence limits of tensors covari-
antly differentiated with respect to a primed index ν′. In gen-
eral

[tμ1...μk ;ν′ ] = [tμ1...μk ];ν − [tμ1...μk ;ν]. (61)

So

[̂σ;μν′ ] = [̂σ;μ];ν − [̂σ;μν] = −ĝμν (62)

[̂σ;μν′λ] = v[̂σ;μλν′ ] = [̂σ;μλ];ν − [̂σ;μλν] = 0 (63)

[̂σ;μν′λρ] = [̂σ;μλρν′ ] = [̂σ;μλρ];ν − [̂σ;μλρν]
= −[̂σ;μλρν] = −̂Sμλρν (64)

and

[̂σ;μν′λρσ ] = [̂σ;μλρσν′ ] = [̂σ;μλρσ ];ν − [̂σ;μλρσν]
= 1

4
̂Sμλρσ ;ν − 3

4

(

̂Sμλνρ;σ + ̂Sμλσν;ρ
)

. (65)

Similarly, one obtains

[̂σ;μμ
ν
ν
ρ

ρ] = −8

5
R;μμ + 4

15
̂Rμν

̂Rμν − 4

15
̂Rμνλρ

̂Rμνλρ

[̂σ;μν
ν
ρ

ρμ]s = −[̂σ;μμ′
ν
ν
ρ

ρ] = 2

5
R;μμ

− 1

15
̂Rμν

̂Rμν − 4

15
̂Rμνλρ

̂Rμνλρ

3.4 Van Vleck-Morette determinant

The Van Vleck-Morette determinant in MAT is defined by

̂D(̂x, x̂ ′) = det(−σ̂;μν′). (66)

̂D(̂x, x̂ ′) is a bidensity of weight 1 both at x̂ and x̂ ′. Later on
we will need a bidensity of weight 0:

̂(̂x, x̂ ′) = 1√
ĝ(̂x)

̂D(̂x, x̂ ′) 1
√

ĝ(̂x ′)
. (67)

The VVM determinant also satisfies (for 4 dimensions)

(̂D(̂x, x̂ ′)̂σ ;μ);μ = 4̂D(̂x, x̂ ′). (68)

In the coincidence limit

[̂
1
2
;λ] = [̂g− 1

4 (̂x)
√

̂D(̂x, x̂ ′)1

2

(

σ̂−1μν′
σ̂;μν′λ

)

ĝ− 1
4 (̂x ′)]

= 1

2
[̂σμ

;μλ
] = 0. (69)

We need to compute the covariant derivatives of σ̂−1μν′ ≡
{̂σ−1

;μν′ }. The latter is defined as

σ̂−1μν′
σ̂;ν′λ = δ

μ
λ . (70)

Differentiating this relation once, twice and thrice one gets

[̂σ−1μν′
;λ] = 0,

[̂σ−1
μλ′ ;ρσ ] = −[̂σ;μ′λρσ ] = [̂σ;λρσμ] = ̂Sλρσμ (71)

and

[̂σ−1
μλ′ ;ρστ ] = −[̂σ;λμ′ρστ ] = 1

4
̂Sμρστ ;λ

−3

4

(

̂Sμρλσ ;τ + ̂Sμρτλ;σ
)

. (72)

Differentiating once more one gets

[̂
1
2
;λρ] = 1

6
ĝμν

(

̂Rμνλρ + ̂Rμλνρ

) = 1

6
ĝμν ĝμσ

̂Rσ
λνρ

= 1

6

(

R(1)
λρ + γ5R

(2)
λρ

)

(73)
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and

[̂
1
2
;λρσ

] = 1

12

(

̂Rλρ;σ + ̂Rρσ ;λ + ̂Rσλ;ρ
)

. (74)

Finally

[̂
1
2
;μ

μ
ν
ν] = +1

5
̂R;μμ + 1

36
̂R2 − 1

30
̂Rμν

̂Rμν

+ 1

30
̂Rμνλρ

̂Rμνλρ. (75)

3.5 The geodetic parallel displacement matrix

The geodetic parallel displacement matrix ̂Gμ
ν′ (̂x, x̂ ′) is

needed in order to parallel displace vectors from one end
to the other of the geodetic interval. It is defined by

[̂Gμ
ν′ ] = δμ

ν , ̂Gμ
ν′;λσ̂ ;λ = 0. (76)

The second condition means that the covariant derivative of
̂Gμ

ν′ vanishes in directions parallel to the geodesic. Since
tangents to the geodesics are self-parallel, it follows that

̂Gμ
ν′

σ̂;ν′ = −σ;μ, σ̂;μ ̂Gμ
ν′ = −σ̂;ν′

̂Gμν′ = ̂Gν′μ, σ̂;λ
′
̂Gμ

ν′;λ′ = 0

̂Gμ
ν′

̂Gν′λ = δλ
μ. (77)

The analogous parallel displacement for spinors is denoted
I (x, x ′): the object I (x, x ′)ψ(x ′) is the spinor ψ(x) obtained
by parallel displacement of ψ(x ′) along the geodesic from
x ′ to x . It is a bispinor quantity satisfying

σ̂;μ̂I;μ = 0, [̂I ] = 1 (78)

and 1 is the identity matrix in the spinor space. Differentiating
(78) once we get [̂I;μ] = 0. Differentiating twice we get

[̂I;(μν)] = 0, (79)

while

̂I (x, x ′);μν − ̂I (x, x ′);νμ = −1

2

(

d̂� + ̂�̂�
)

μν
̂I (x, x ′)

= −1

2
̂Rμν I (x, x

′), (80)

where ̂Rμν = ̂Rμν
ab�ab. So

[̂I (x, x ′);[μ,ν]] = [̂I (x, x ′);μν] = −1

4
̂Rμν. (81)

Proceeding with the differentiations of (78) we find

[̂I;νλρ] + [̂I;λνρ] + [̂I;ρλν] = 0. (82)

Now

[̂I;νλρ] − [̂I;νρλ] = 1

2
̂Rρλ[̂I;ν] = 0 (83)

and

3[̂I;νλρ] = 1

2
̂∇ρ

̂Rλν + 1

2
̂∇λ

̂Rρν. (84)

In particular

[̂I;νν
ρ] = 1

6
̂∇ν

̂Rρν. (85)

Differentiating (78) once more with respect to xσ , using (59)
and then contracting with ĝνλĝσρ we find, after simplifying,

[̂I;μμ
ν
ν] + [̂I;μν

νμ] = 0. (86)

A contraction with ĝνσ ĝλρ gives:

[̂I;μν
νμ] + 2[̂I;μν

μν] + [̂I;μμ
ν
ν] = 0. (87)

Using (80), we get

[̂I;σρμν] = [̂∇ν
̂∇μ(̂I;σρ)] = −1

2
̂Rσρ;μν

+1

8
̂Rσρ

̂Rμν + [̂I;ρσμν]. (88)

Contracting with ĝμσ ĝνρ gives

[̂I;μν
μν] = 0 + 1

8
̂Rμν

̂Rμν + [̂I;μν
νμ] (89)

since by Walker’s identity

̂∇ρ
̂∇λ

̂Rρλ = 0. (90)

Finally, by using (86), (87), one gets

[̂I;νν
ρ

ρ] = 1

8
̂Rρλ

̂Rρλ. (91)

4 Fermions in MAT background

The action of a fermion interacting with a metric and an axial
tensor is

̂S =
∫

d4 x̂

(

iψ
√

ĝγ aêμ
a

(

∂μ + 1

2
̂�μ

)

ψ

)

(̂x)

=
∫

d4 x̂

(

iψ
√

ĝγ a(ẽμ
a + γ5c̃

μ
a )

×
(

∂μ + 1

2

(

�(1)
μ + γ5�

(2)
μ

)

)

ψ

)

(̂x)

=
∫

d4 x̂

(

iψ
√

ĝ(ẽμ
a − γ5c̃

μ
a )

×
[

1

2
γ a↔

∂ μ + 1

4

(

γ a
̂�μ + ̂�μγ a

)

]

ψ

)

(̂x)

=
∫

d4 x̂

(

iψ
√

ĝ(ẽμ
a − γ5c̃

μ
a )

×
[

1

2
γ a↔

∂ μψ + i

4
γdε

dabc
̂�μbcγ5

]

ψ

)

(̂x). (92)
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It must be noticed that this action takes axial-real values.1

The field ψ(̂x) can be understood, classically, as a series of
powers of x̂ applied to constant spinors on their right and the
symmetry transformations act on it from the left. The analo-
gous definitions for ψ† are obtained via hermitean conjuga-
tion. In the second line it is stressed that the action contains
also an axial part. It is understood that ∂μ = ∂

∂ x̂μ applies
only to ψ or ψ , as indicated, and ĝ denotes, as usual, the
axial-complex conjugate of ĝ.

A few comments are in order. As was explained in [1],

the density
√

ĝ must be inserted between ψ and ψ , due to
the presence in it of the γ5 matrix. Moreover one has to take
into account that the kinetic operator contains a γ matrix that
anticommutes with γ5. Thus, for instance, using ̂Dλĝμν = 0
and (̂Dλ + 1

2
̂�λ)̂e = 0, where ̂D = ∂ + ̂�, one gets

ψγ aêμ
a

(

∂μ + 1

2
�μ

)

ψ = ψ(̂Dμ + 1

2
̂�μ)γ aêμ

a ψ. (93)

We recall again that a bar denotes axial-complex conjuga-
tion, i.e. a sign reversal in front of each γ5 contained in the

expression, for instance ̂�μ = �
(1)
μ − γ5�

(2)
μ .

To obtain the two last lines in (92) one must use (253) and
(93).

4.1 Classical Ward identities

Let us consider AE (axially extended) diffeomorphisms first,
(232). It is not hard to prove that the action (92) is invariant
under these transformations. Now, define the full MAT e.m.
tensor by means of

Tμν = 2√
ĝ

←
δ ̂S

δĝμν

. (94)

This formula needs a comment, since
√
ĝ contains γ5. To

give a meaning to it we understand that the operator 2√
ĝ

←
δ

δĝμν

in the RHS acts on the operatorial expression, say O
√
ĝ,

which is inside the scalar product ψO
√
ĝψ . Moreover the

functional derivative acts from the right of the action. Now
the conservation law under diffeomorphisms is

0 = δ̂ξ S =
∫

ψ

←
δ O
δĝμν

δĝμνψ

=
∫

ψ

←
δ O
δĝμν

(

̂Dμ
̂ξν + ̂Dν

̂ξμ

)

ψ

= −2
∫

ψ

←
δ O
δĝμν

←
̂Dμ

̂ξνψ, (95)

1 One could consider also an axial complex action, but for our purposes
this is a useless complication. That is why we use the notation ψ instead
of ̂ψ .

where ̂D acts (from the right) on everything except the param-
eter ̂ξν . Differentiating with respect to the arbitrary param-
eters ξμ and ζ ν we obtain two conservation laws involving
the two tensors

Tμν = 2ψ

←
δ O
δĝμν

ψ (96)

Tμν
5 = 2ψ

←
δ O
δĝμν

γ5ψ. (97)

To give a less abstract idea of these tensors, at the lowest
order (flat background) and setting xμ

2 = 0, they are given
by

Tμν ≈ Tμν
f lat = − i

4

(

ψγ μ
↔
∂νψ + μ ↔ ν

)

, (98)

and

Tμν
5 ≈ Tμν

5 f lat = i

4

(

ψγ5γ
μ

↔
∂νψ + μ ↔ ν

)

. (99)

Repeating the same derivation for the axial complex Weyl
transformation one can prove that, assuming for the fermion
field the transformation rule

ψ → e− 3
2 (ω+γ5η)ψ, (100)

(92) is invariant, and obtain the Ward identity

0 =
∫

ψ

←
δ O
δĝμν

ĝμν (ω + γ5η)ψ. (101)

One gets in this way two WI’s

T(x) ≡ Tμνgμν + Tμν
5 fμν = 0, (102)

T5(x) ≡ Tμν fμν + Tμν
5 gμν = 0. (103)

4.2 A more precise formula for the e.m. tensor

In our calculation a more explicit formula of the e.m. tensor
is needed. The e.m. tensor is defined by

Tμν = 2√
ĝ

←
δ ̂S

δĝμν

= 1

2

(

Tμ
a ê

aν + Tν
aê

aμ
)

, (104)

where

Tμ
a = 1√|̂g|

←
δ ̂S

δêaμ
. (105)

Let us prove first that the functional derivative of ̂�m does not
contribute to the e.m. tensor. Consider the general variational
formula
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δ̂�bc
μ = 1

2
êbν

(

̂∇μ(δêcν) − ̂∇ν(δê
c
μ)

)

−1

2
êcν

(

̂∇μ(δêbν) − ̂∇ν(δê
b
μ)

)

+1

2
êbν êcλ

(

̂∇λ(δê
e
ν) − ̂∇ν(δê

e
λ)

)

êeμ, (106)

where ̂∇ denotes the covariant derivative such that ̂∇μêaλ = 0.
After some algebra one gets

γd εdabc êμ
a δ̂�μbc = γd εdabc êμ

a ê
ν
b∇μδecν . (107)

Now use this and

δêaμ(x)

δêbν(y)
= δabδ

ν
μδ(x, y)

and insert them into the definition (104). The relevant con-
tribution is

Tλρ
� = 1

2

(

Tλ
aê

aρ + Tρ
a ê

aλ
)

�

≡ 1

8

∫

ψγdε
dabcêμ

a

(

δ̂�μbc

δêeλ
êeρ + δ̂�μbc

δêeρ
êeλ

)

γ5ψ

= 1

8

∫

ψγdε
dabcêμ

a

(

êλ
b ê

ρ
c
̂∇μδ(x, y)

+êρ
b ê

λ
c
̂∇μδ(x, y)

)

γ5ψ = 0. (108)

Therefore the only contribution to the em tensor comes from
the variation of the first êma factor in (92). The result is

Tλρ = − i

2
ψγ̂ λĝρμ

(

∂μ + 1

2
̂�μ

)

+ (λ ↔ ρ)

= − i

2
ψγ̂ λ

̂∇ρψ + (λ ↔ ρ), (109)

where γ̂ λ = γ aêλ
a .

It is useful to write it as a trace

Tλρ(x) = i

2
tr

(

ηγ̂ (λ
̂∇ρ)ψ(x)ψ†(x)

)

= i

4
tr

(

ηγ̂ (λ[̂∇ρ)ψ(x), ψ†(x)]
)

, (110)

where η ≡ γ0, the flat gamma matrix. The commutator is
interpreted as

[̂∇ρψ,ψ†](x) = 1

2
lim
x ′→x

(

[̂∇ρψ(x), ψ†(x ′)]

+[̂∇ρψ(x ′), ψ†(x)]
)

. (111)

Inserting (110) in the path integral it becomes

〈〈Tλρ(x)〉〉
= i

8
lim
x ′→x

tr
(

ηγ̂ (λ
(

̂S(1);ρ)(x, x ′) −̂S(1);ρ′)(x, x ′)
))

,

(112)

where ̂S(1) is the Hadamard function

̂S(1)(x, x ′) = 〈〈[ψ(x), ψ†(x ′)]〉〉. (113)

This leads to Christensen’s method [14,15], to compute the
energy-momentum tensor and related quantities, such as
trace anomalies. We will not pursue this point of view here
although it could be done. It is in fact strictly connected with
the main approach we will follow later on, which we consider
simpler. They are both based on fermion propagators such as
̂S(1)(x, x ′). A discussion of fermion propagators and their
properties in a MAT background is presented in Appendix
C.

4.3 The Dirac operator and its inverse

In the action (92) the Dirac operator is

̂F = i γ̂ ·̂∇ = i γ̂ μ
̂∇μ = iγ aêμ

a
̂∇μ ≡ γ a

̂Fa, (114)

where the ̂∇ operator is, schematically, ̂D+ 1
2
̂� and satisfies

̂∇μêaν = 0.
Under AE diffeomorphismsψ transforms as: δ

ξ̂
ψ = ̂ξ·∂ψ ,

while

δ
ξ̂

(

i γ̂ ·̂∇ψ
) = ̂ξ ·∂ (

i γ̂ ·̂∇ψ
)

. (115)

Under AE Weyl transformation ̂F transform as

δω̂
̂F = −1

2
γ a{̂Fa, ω̂} (116)

and it has the following hermiticity property

̂F† = η̂Fη, (117)

where η = γ0 and γ0 is the nondynamical (flat) gamma

matrix. To obtain (117) use ̂�† = −η̂�
†
η, etc.

Integrating out the fermion field in (92) means, roughly
speaking, evaluating the determinant of the Dirac operator
̂F . This is however not what we need. First, because the
log of the determinant is formally the trace of the log of ̂F ;
taking this trace means integrating over spacetime and tracing
over the gamma matrices: this would suppress any explicit γ5

dependence and, thus, any axial splitting. Second, because ̂F
is local, while, in order to exploit a coincidence limit (in order
to guarantee covariance), we need a bilocal quantity. This
quantity exists, it is the inverse of ̂F : the fermion propagator.
The Schwinger-DeWitt method is based on it. Let us explain
this approach, adapting it to MAT.

One starts from

̂G (̂x, x̂ ′) = 〈0|T ψ(̂x)ψ†(̂x ′)|0〉 (118)

which satisfies

i
√

ĝη γ̂ μ
̂∇μ

̂G (̂x, x̂ ′) = −1δ(̂x, x̂ ′), (119)

where1 is the unit matrix in the spinor space. ̂G is not yet what
we need. The Schwinger-DeWitt method requires a quadratic
operator and, in addition, we must get rid of the γ matrices,
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except γ5. This is achieved with the ansatz

̂G(x, x ′) = −i γ̂
μ
̂∇μ

̂G(x, x ′)η−1. (120)

Remark 2 Why the ansatz (120)

In ordinary gravity, from the diff invariance of the fermion
action, we can extract the transformation rule

δξ

(

iγ μ∇μψ
) = ξ ·∂ (iγ ·∇ψ) (121)

while δξψ = ξ ·∂ψ . Therefore it makes sense to apply γ ·∇
to γ ·∇ψ , because the latter transforms as ψ . This allows us
to define the square of the Dirac operator:

F2ψ = (iγ ·∇)2 ψ. (122)

It is not possible to repeat the same thing for MAT because
of (115), from which we see that

(

i γ̂ ·̂∇ψ
)

does not trans-

form like ψ , and an expression like
(

i γ̂ ·̂∇)2
ψ would break

general covariance. Noting that

δ
ξ̂

(

i γ̂ ·̂∇ψ
)

= ̂ξ ·∂
(

i γ̂ ·̂∇ψ
)

(123)

when δ̂
ξ
ψ = ̂ξ ·∂ψ , we will consider instead the covariant

quadratic operator
(

i γ̂ ·̂∇
)

(

i γ̂ ·̂∇)

ψ. (124)

Let us quote next a few useful identities.

̂∇μγ̂ν − γ̂ν
̂∇μ = γ a

(

∂μ êaν − ̂�λ
μν êaλ + 1

2
̂�μab ê

b
ν

)

= 0

(125)

because of metricity, and

̂∇μγ a − γ a
̂∇μ = 0. (126)

The axial conjugate relation holds as well. Therefore

γ̂ μ
̂∇μ γ̂

ν
̂∇ν = γ aγ bê

μ

a ê
ν

b
̂∇μ

̂∇ν

= ηabê
μ

a ê
ν

b
̂∇μ

̂∇ν + �abê
μ

a ê
ν

b[̂∇μ, ̂∇ν]. (127)

On the other hand, when acting on a (bi-)spinor quantity

�abê
μ

a ê
ν

b[̂∇μ, ̂∇ν] = 1

8
γ aγ bγ cγ d

̂Rabcd

= −1

4
̂Rμνλρ ĝ

μλĝνρ = −1

4
̂R, (128)

where use is made of

̂Rabcd = êμ
a ê

ν
b ê

λ
c ê

ρ
d
̂Rμνλρ. (129)

Now replacing (120) into (119) and using the above we
get
√

|̂g|
(

̂∇μĝ
μν

̂∇ν − 1

4
̂R

)

̂G(̂x, x̂ ′) = −1δ(̂x, x̂ ′). (130)

The differential operator acting on ̂G will be denoted by
̂Fĝ . In compact operator notation

̂Fĝ
̂Gĝ = −1, (131)

with 〈̂x |̂Gĝ |̂x ′〉 = ̂Gĝ (̂x, x̂
′).

As a consequence of (117) we have

[

√

ĝ

(

̂∇μĝ
μν

̂∇ν − 1

4
̂R

)]†

= η

[

√|̂g|
(

̂∇μĝ
μν

̂∇ν − 1

4
̂R

)]

η (132)

or
(

̂Fĝ
)† = η̂Fĝ η. (133)

We shall refer often to the related operator

̂F = 1√
ĝ

̂Fĝ, ̂F† = η̂Fη (134)

and to its inverse ̂G: ̂F̂G = −1.

Remark 3 The operator ̂F is the main intermediate result of
our paper. It is natural to assume that its inverse ̂G exists.
There is no reason to believe that it does not, because, the
differential operator ̂F (after a Wick rotation) can be defined
as an axial-elliptic operator, at least under reasonable con-
ditions on the axial tensor fμν . In fact its quadratic part can
be cast in the form −∂i Ai j (x)∂ j , where Ai j is an invert-
ible matrix and its dominating part is symmetric and positive
definite. However, no doubt, it would be desirable to have a
mathematical (possibly constructive) proof of the existence
of̂G . In Appendix C we discuss this issue and, following [5],
we give some arguments in this direction.

5 The Schwinger proper time method

From now on, for practical reasons, we drop the bar symbol
of axial conjugation. At the end we will axially-conjugate the
result.

Let us define the amplitude

〈̂x, ŝ |̂x ′, 0〉 = 〈̂x |eîFŝ |̂x ′〉 (135)

which satisfies the (heat kernel) differential equation

i
∂

∂ ŝ
〈̂x, ŝ |̂x ′, 0〉 = −̂Fx̂ 〈̂x, ŝ |̂x ′, 0〉 ≡ K (̂x, x̂ ′, ŝ), (136)

where ̂Fx̂ is the differential operator

̂Fx̂ = ̂∇μĝ
μν

̂∇ν − 1

4
̂R. (137)
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Then we make the ansatz

〈̂x, ŝ |̂x ′, 0〉 = − lim
m→0

i

16π2

√

̂D(̂x, x̂ ′)
ŝ2

×e
i
(

σ̂ (̂x ,̂x ′)
2̂s −m2 ŝ

)

̂�(̂x, x̂ ′, ŝ), (138)

where ̂D(̂x, x̂ ′) is the VVM determinant and σ̂ is the world
function (see above). ̂�(̂x, x̂ ′, ŝ) is a function to be deter-
mined. It is useful to introduce also the mass parameter m,
which we will eventually set to zero. In the limit ŝ → 0 the
RHS of (138) becomes the definition of a delta function mul-
tiplied by ̂�. More precisely, since it must be 〈̂x, 0|̂x ′, 0〉 =
δ(̂x, x̂ ′), and

lim
ŝ→0

i

4π2

√

̂D(̂x, x̂ ′)
ŝ2 e

i
(

σ̂ (̂x ,̂x ′)
2̂s −m2 ŝ

)

= √|̂g(̂x)| δ(̂x, x̂ ′),

(139)

we must have

lim
ŝ→0

̂�(̂x, x̂ ′, ŝ) = 1. (140)

Equation (136) becomes an equation for ̂�(̂x, x̂ ′, ŝ). Using
(34) and (68), after some algebra one gets

i
∂̂�

∂ ŝ
+ i

ŝ
̂∇μ

̂�̂∇μσ̂ + 1√
̂D

̂∇μ
̂∇μ

(√

̂D̂�
)

−
(

1

4
̂R − m2

)

̂� = 0. (141)

Now we expand

̂�(̂x, x̂ ′, ŝ) =
∞
∑

n=0

ân (̂x, x̂
′)(i ŝ)n (142)

with the boundary condition [̂a0] = 1. The ân must satisfy
the recursive relations:

(n + 1)̂an+1 + ̂∇μân+1̂∇μσ̂ − 1√
̂D

̂∇μ
̂∇μ

(√

̂Dân
)

+
(

1

4
̂R − m2

)

ân = 0. (143)

Using these relations and the coincidence results of Sects.
3.3, 3.4 and 3.5, it is possible to compute each coefficient an
at the coincidence limit.

5.1 Computing ân

In this subsection we wish to compute [̂a1] and [̂a2], which
will be needed later on. We start from (143) for n = −1.:

̂∇μâ0 σ;μ = 0, with [̂a0] = 1, (144)

which implies that

â0(̂x, x̂
′) = ̂I (̂x, x̂ ′). (145)

Replacing this inside (143) for n = 0 one gets

â1(̂x, x̂
′) + ̂∇μσ̂∇μâ1(̂x, x̂

′) − 1√
̂

̂∇μ
̂∇μ

(√

̂ ̂I (̂x, x̂ ′)
)

+
(

1

4
̂R − m2

)

̂I (̂x, x̂ ′) = 0, (146)

which implies

[̂a1] =
(

− 1

12
̂R + m2

)

1. (147)

Moreover differentiating (146) with respect to ∇λ and taking
the coincidence limit:

2[̂∇λâ1] = 1

4
̂R;λ1 − [

√

̂;μμ
λ
̂I + ̂∇λ

̂∇μ
̂∇μ

̂I ]
so

[̂∇λâ1] =
(

1

12
̂Rλν;ν − 1

24
̂R;λ

)

1. (148)

Next we have

[̂∇λ
̂∇λ

(

â1 + ̂∇μσ̂ ̂∇μâ1
)] = 3[̂∇λ

̂∇λâ1]
so that

[̂∇λ
̂∇λâ1] = 1

3
[̂∇λ

̂∇λ

(

1√
̂

̂∇μ
̂∇μ

(√

̂ ̂I
)

−
(

1

4
̂R − m2

)

̂I

)

] (149)

= 1

3

(

− 1

20
̂R;μμ − 1

30
̂Rμν

̂Rμν

+ 1

30
̂Rμνλρ

̂Rμνλρ + 1

8
̂Rμν

̂Rμν

)

. (150)

Finally

[̂a2] = 1

2
[̂∇λ

̂∇λâ1 −
(

1

12
̂R − m2

)

â1]

= 1

2
m4 − 1

12
m2

̂R + 1

288
̂R2 − 1

120
̂R;μμ

− 1

180
̂Rμν

̂Rμν + 1

180
̂Rμνλρ

̂Rμνλρ + 1

48
̂Rμν

̂Rμν.

(151)

We recall that ̂Rμν = ̂Rμν
ab�ab.

6 The odd trace anomaly

We are now ready to compute that odd parity trace anomaly.
Beside the point-splitting, which we have used above, we
need a regulator to get rid of the infinities at coincident point.
We will use two regularizations: the dimensional and zeta
function ones.
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6.1 Schwinger-DeWitt and dimensional regularization

We start again from the Dirac operator (114). We have defined
above the covariant square

̂F = −̂F̂F . (152)

We identify the effective action for Dirac fermions with

̂W = − i

2
Tr

(

ln ̂F
)

(153)

Tr includes also the spacetime integration. The AE Weyl
variation of (153) is given by

δω̂
̂W = i

2
Tr

(

̂G δω̂
̂F

)

, (154)

where

̂F̂G = −1. (155)

So we can write

δω̂
̂W = δω̂

(

−1

2

∫ ∞

0

dŝ

i ŝ
ei

̂F ŝ
)

= −1

2
Tr

(∫ ∞

0
dŝ ei

̂F ŝδω̂
̂F

)

. (156)

It follows that, as far as the variation with respect to axial-
Weyl transform is concerned, the effective action can be rep-
resented as

̂W = −1

2

∫ ∞

0

dŝ

i ŝ
ei

̂Fŝ + const ≡ ̂L + const, (157)

where ̂L is the relevant effective action

̂L =
∫

dd x̂ ̂L (̂x) (158)

which can be written as

̂L (̂x) = −1

2
tr

∫ ∞

0

dŝ

i ŝ
̂K (̂x, x̂ ′, ŝ), (159)

where the kernel ̂K is defined by

̂K (̂x, x̂ ′, ŝ) = ei
̂F ŝδ(̂x, x̂ ′). (160)

Inserted in δω̂
̂W , under the symbol Tr, it means integrating

over x after taking the limit x ′ → x . So, looking at (138), in
dimension d,

̂K (̂x, x̂, ŝ) = i

(4π i ŝ)
d
2

√

ĝ e−im2 ŝ[̂�(̂x, x̂, ŝ)]. (161)

A specification is in order at this point. For the heat kernel
method to work a Riemannian metric is required. Therefore
at this stage we Wick-rotate the metric, so that the operator
̂F becomes axial-elliptic. This operation is understood from
now on. After calculating the anomaly we will return to the
Lorentz signature.

6.2 Analytic continuation in d

The purpose now is to analytically continue in d. But we
can do this only for dimensionless quantities. We therefore
multiply ̂L by μ−d , where μ is a mass parameter. We have
for a Dirac fermion

̂L(x)

μd
= − i

2
(4πμ2)tr

∫ ∞

0
dŝ (4π iμ2̂s)−

d
2 −1

×√

ĝe−im2 ŝ[̂�(̂x, x̂, ŝ)], (162)

where tr denotes the trace over gamma matrices.
Now we make the assumption that

lim
s→∞ e−im2 ŝ[̂�(̂x, x̂, ŝ)] = 0. (163)

As a consequence we can integrate by parts

̂L(x)

μd
= i

d
tr

∫ ∞

0
dŝ

∂

∂(i ŝ)
(4π iμ2̂s)−

d
2
√

ĝe−im2 ŝ[̂�(̂x, x̂, ŝ)]

= − i

d
tr

∫ ∞

0
dŝ (4π iμ2̂s)−

d
2

×√

ĝ
∂

∂(i ŝ)

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

= 2i

d(2 − d)4πμ2 tr
∫ ∞

0
dŝ (4π iμ2̂s)1− d

2

×√

ĝ
∂2

∂(i ŝ)2

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

= − 4i

d(2 − d)(4 − d)

1

(4πμ2)2 tr
∫ ∞

0
dŝ (4π iμ2̂s)2− d

2

×√

ĝ
∂3

∂(i ŝ)3

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

. (164)

Next we use

[̂�(̂x, x̂, ŝ)] = 1 + [̂a1]i ŝ + [̂a2](i ŝ)2 + · · · (165)

and, around d = 2, we use 1
d(2−d)

= 1
2

(

1
d−2 − 1

d

)

and in

the third line of (164) we use

(4π iμ2s)1− d
2 = 1 − d − 2

2
ln(4π iμ2s) + · · ·

Then we differentiate once [̂�(̂x, x̂, ŝ)], and the remaining
derivation we get rid of by integrating by parts. Finally one
gets

̂L (̂x) = 1

4π

(

1

d − 2
− 1

2

)

tr
(

([̂a1] − m2)
√

ĝ
)

− i

8π
tr

∫ ∞

0
dŝ ln(4π iμ2̂s)

×√

ĝ
∂2

∂(i ŝ)2

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

. (166)

Around d = 4 we use 1
d(d−2)(d−4)

≈ 1
8

(

1
d−4 − 3

4

)

. With

reference to the last line of (164), we differentiate twice
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[̂�(x, x, s)] and integrate by parts the third derivative. The
result is

̂L (̂x) ≈ 1

32π2

(

1

d − 4
− 3

4

)

tr
(

m4 − 2m2 [̂a1] + 2[̂a2]
) √

ĝ

+ i

64π2 tr
∫ ∞

0
dŝ ln(4π iμ2̂s)

×√

ĝ
∂3

∂(i ŝ)3

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

. (167)

The last line depends explicitly on the parameter μ and rep-
resent a nonlocal part

6.3 The anomaly

Let us take the variation of (167) with respect to ω̂ = ω+γ5η.
Recall that

δω̂

√

ĝ = d ω̂
√

ĝ (168)

δω̂
̂R = −2ω̂ ̂R − 2(d − 1)̂�ω̂ (169)

δω̂
̂Rμνλ

ρ = −δρ
ν

̂Dμ
̂Dλω̂ + δρ

μ
̂Dν

̂Dλω̂

+̂Dμ
̂Dσ ω̂ ĝρσ ĝνλ − ̂Dν

̂Dσ ω̂ ĝρσ ĝμλ. (170)

From these follows, for instance,

δω̂

(
√

ĝ̂R2
)

= (d − 4)
√

ĝ ω̂ ̂R2 − 4(d − 1)̂R
√

ĝ ̂�ω̂

(171)

δω̂

(
√

ĝ̂Rμν
̂Rμν

)

= (d − 4)ω̂
√

ĝ ̂Rμν
̂Rμν

+2(2 − d)
√

ĝ ̂Rμν
̂Dμ

̂Dνω̂ − 2
√

ĝ ̂R̂�ω̂

= (d − 4)ω̂
√

ĝ ̂Rμν
̂Rμν − d

√

ĝ ̂R̂�ω̂ (172)

δω̂

(
√

ĝ̂Rμνλρ
̂Rμνλρ

)

= (d − 4)ω̂
√

ĝ ̂Rμνλρ
̂Rμνλρ

−8
√

ĝ ̂Rμν
̂Dμ

̂Dνω̂

= (d − 4)ω̂
√

ĝ ̂Rμνλρ
̂Rμνλρ − 4

√

ĝ ̂R̂�ω̂ (173)

δω̂

(
√

ĝ̂�̂R
)

= (d − 4)ω̂
√

ĝ ̂�̂R + (d − 6)
√

ĝ ∂μω̂ ∂μ
̂R

−2
√

ĝ ̂R ̂� ω̂ − 2(d − 1)
√

ĝ ̂�2 ω̂

= 0

and

δω̂tr
(
√

ĝ ̂Rμν
̂Rμν

)

= (d − 4)tr
(

ω̂
√

ĝ ̂Rμν
̂Rμν

)

+4 tr
(
√

ĝ ̂Rμν
̂Dμ

̂Dνω̂
)

= (d − 4)tr
(

ω̂
√

ĝ ̂Rμν
̂Rμν

)

+2 tr
(
√

ĝ ̂R̂�ω̂
)

. (174)

In the first line of (167) one can ignore m2 or m4 terms
(either one setsm = 0 or they can be subtracted because they

are trivial). The second line (167) does not contain singular-
ities when d → 4: it contains either vanishing or finite terms
in this limit. Let us denote the second line by ̂LR .

̂L = 1

16π2

(

1

d − 4
− 3

4

)∫

dd x̂ tr
(

[̂a2]|m=0
√

ĝ
)

+ ̂LR .

(175)

We now act with δω̂ = ∫

dd x̂ 2tr
(

ω̂ ĝμν
δ

δĝμν

)

2

From (168)–(172) it follows that

δω̂tr
(
√

ĝ [̂a2]|m=0

)

= (d − 4)tr
(
√

ĝ ω̂ [̂a2]|m=0

)

−d − 4

120
tr

(
√

ĝ ̂R̂�ω̂
)

. (176)

The second piece can be canceled e.g. by a counterterm pro-
portional to tr

(√
ĝ̂R2

)

. Using the fact that the bare part of
the action is Weyl invariant δω̂

̂L = 0 and that the renor-
malised part ̂LR defines the (quantum) energy momentum
tensor 2√

ĝ
δ

δĝμν

̂LR = ̂�μν we get
∫

dd x̂ tr
(

ω̂
√

ĝ ĝμν
̂�μν

)

= − 1

16π2

∫

dd x̂ tr
(
√

ĝ ω̂ [̂a2]|m=0

)

, (177)

where the d − 4 factor in (176) canceled the pole 1
d−4 in

(175).
Clearly, the odd parity anomaly can come only from the

term ̂Rμν
̂Rμν contained in [̂a2] , with a coefficient of 1

32π2

(for Majorana fermions, ×2 for Dirac fermions). For the odd
part we have
∫

dd x̂ tr
√

ĝ ω̂̂T = − 1

768π2

∫

d4x tr
√

ĝ ω̂ ̂Rμν
̂Rμν

∣

∣

∣

odd
,

(178)

where we denoted ̂T = ĝμν
̂�μν = ĝμν〈〈̂Tμν〉〉.

The (odd parity) coefficient of ω defines T and the (odd
parity) coefficient of η defines T5. Setting ̂T = T+γ5T5 one
obtains in this way

T = −1

4

1

768π2 tr
(

̂Rμν
̂Rμν

)

∣

∣

∣

odd

= −1

4

2i

768π2 εμνλρR(1)
μναβ R

(2)
λρ

αβ (179)

and

T5 = −1

4

1

768π2 tr
(

γ5 ̂Rμν
̂Rμν

)

∣

∣

∣

odd

= −1

4

i

768π2 εμνλρ
(

R(1)
μναβ R

(1)
λρ

αβ + R(2)
μναβ R

(2)
λρ

αβ
)

.

(180)

2 In MAT case, ĝμν also has two spinor indices, so that ω gμν
δ

δgμν
→

ω̂AB ĝμν BC
δ

δĝμν AC
. Since in our case γ 5 is symmetric, we have âAB =

âB A and we can write δω̂ as
∫

dd x̂ 2tr
(

ω̂ ĝμν
δ

δĝμν

)

.
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In the last step we have Wick-rotated back the result: this is
the origin of the i in the anomaly coefficient. At this point
we can safely set xμ

2 = 0 everywhere.

6.4 ζ -function regularization

Given a differential operator A in analogy with the Riemann
ζ function, the expression A−z , for complex z, is called ζ

function regularization of A:

ζ(z, A) = A−z = 1

�(z)

∫ ∞

0
dt t z−1 e−t A. (181)

We will apply this representation to the operator ̂F(̂x, x̂), :

(̂F(̂x))−z = 1

�(z)

∫ ∞

0
dt t z−1 〈̂x |e−t̂F |̂x〉, (182)

where 〈̂x |e−t̂F |̂x〉means the coincidence limit of 〈̂x |e−t̂F |̂x ′〉.
Equation (182) is not quite correct because only dimension-
less quantities can be raised to an arbitrary power. Moreover
the object of interest will be ̂G, rather than ̂F. Thus we intro-
duce again the mass parameter μ and shift from t to i ŝμ.

ζ (̂x, z) ≡ (μ2
̂G(̂x, x̂))z

= 1

�(z)

∫ ∞

0
(iμ2)dŝ (i ŝμ2)z−1 〈x |ei ŝ̂F |̂x〉. (183)

Finally we replace 〈̂x |ei ŝ̂F |̂x〉 with ̂K (̂x, x̂, ŝ) in Eq. (161).
The result is

ζ (̂x, z) = (μ2
̂G(̂x, x̂))z = i

�(z)

μd

(4π)
d
2

×√

ĝ
∫ ∞

0
(iμ2)dŝ (i ŝμ2)z−1− d

2 e−im2 ŝ[̂�(̂x, x̂, ŝ)]
(184)

which can be rewritten as

ζ (̂x, z) = (μ2
̂G(̂x, x̂))z

= − i

�(z)

μd−4

(4π)
d
2

√
ĝ

(z − d
2 )(z − d

2 + 1)(z − d
2 + 2)

×
∫ ∞

0
d(i ŝ) (i ŝμ2)z−

d
2 +2 ∂3

∂(i ŝ)3

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

.

(185)

This is well defined for d = 4 at z = 0.

ζ (̂x, 0) = i
√
ĝ

2(4π)2

[

∂2

∂(i ŝ)2

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

]

ŝ=0
.

(186)

Now, differentiating (181) with respect to z and evaluating
at z = 0, we get formally

d

dz
ζ(z, A)|z=0 = −Tr ln A. (187)

This suggest the procedure to regularize ̂W (which is the
trace of a log). More precisely

̂W → ̂Wζ = − i

2
ζ ′(0), where

ζ(z) =
∫

tr ζ (̂x, z)dd x̂ . (188)

As a consequence for d = 4:

̂Lζ (x) = 1

64π2 (γ + 3

2
− ln(4π))

×√

ĝ tr
(

2[̂a2̂(x)] − 2m2 [̂a1(̂x)] + m4
)

− i

64π2

√

ĝ
∫ ∞

0
dŝ ln(4π iμ2̂s)

× ∂3

∂(i ŝ)3

(

e−im2 ŝ[̂�(̂x, x̂, ŝ)]
)

. (189)

Now, suppose that the operator A, under a symmetry trans-
formation with parameter ε, transforms as

δε A = {A, ε}. (190)

Then

δεTrA−z = −2zTr
(

A−zε
) = −2zTr (ζ(z, A)ε) . (191)

Since the relevant result is obtained by differentiating with
respect to z and setting z = 0, once the functional is regular-
ized, the anomalous part of the effective action is extremely
easy to derive:

̂LA = −2Tr (ζ(0, A)ε) . (192)

Let us return to the our problem. The operator to be reg-
ulated is ̂F = ̂Fx̂ . Its AE Weyl transformation is

δω̂
̂F = −2ω̂̂F + (

γ̂ μγ̂ ν + ĝμν
)

∂νω̂̂∇μ + 3

2
̂�ω̂

= −2ω̂̂F + ̂F

[

1
̂F

(

(

γ̂ μγ̂ ν + ĝμν
)

∂νω̂̂∇μ + 3

2
̂�ω̂

)]

̂G(̂x, x̂) is the inverse of ̂F and its transformation is similar:

δω̂
̂G = 2̂G ω̂ +̂G

[(

(

γ̂ μγ̂ ν + ĝμν
)

∂νω̂̂∇μ + 3

2
̂�ω̂

)

̂G

]

The first piece in the RHS reproduces exactly the mecha-
nism in (191). The second is a nonlocal term of the effective
action; it does not concern us here and we drop it. As noticed
above this procedure does not lead directly to the anomaly.
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It rather gives the anomalous part of the effective action, i.e.
the anomaly integrated with the insertion of

√
ĝ:

̂LA(ω̂) = −iTr (ω̂ ζ (̂x, 0))

= i Tr

( √
ĝ

2(4π)2

[

∂2

∂(i ŝ)2

(

e−im2 ŝ [̂�(̂x, x̂, ŝ)]
)

]

s=0
ω̂

)

= i Tr

( √
ĝ

2(4π)2

(

2[̂a2 (̂x)] − 2m2 [̂a1(̂x)] + m4) ω̂

)

.

(193)

Now, proceeding as before, we differentiate with respect to
ω̂ and strip off

√
ĝ, multiply back ω̂ and obtain the true inte-

grated anomaly. This leads to the same results as above.

6.5 The collapsing limit

After computing the trace anomalies (179) and (180) of a
Dirac fermion coupled to a metric and an axial symmetric
tensor, we are now interested in returning to the original
problem, that is the trace anomaly of a Weyl tensor in an
chiral fermion theory coupled to ordinary gravity. To this
end we take the collapsing limit. In [1] the latter was defined
as hμν → hμν

2 , kμν → hμν

2 , with hμν and kμν both infinites-
imal. Here we do not put such a limitation. The collapsing
limit is defined by making the replacements

gμν → ημν + hμν

2
, fμν → hμν

2
. (194)

in the previous formulas, with finite hμν . With this choice
one has

ĝμν = 1

2
(1 − γ 5) ημν + 1

2
(1 + γ 5)Gμν,

Gμν ≡ ημν + hμν. (195)

From this we see that the left-handed part couples to the flat
metric, while the right-handed part couples to the (generic)
metric Gμν . As a consequence we have also

êam → δam
1 − γ5

2
+ eam

1 + γ5

2
,

êma → δma
1 − γ5

2
+ ema

1 + γ5

2
, (196)

as well as

√

ĝ → 1 − γ5

2
+ 1 + γ5

2

√
G. (197)

Similarly for the Christoffel symbols

�(1)λ
μν → 1

2
�λ

μν, �(2)λ
μν → 1

2
�λ

μν, (198)

for the spin connections

�(1)ab
μ → 1

2
ωab

μ , �(2)ab
μ → 1

2
ωab

μ , (199)

and for the curvatures

R(1)
μνλ

ρ → 1

2
Rμνλ

ρ, R(2)
μνλ

ρ → 1

2
Rμνλ

ρ, (200)

where all the quantities on the RHS of these limits are built
with the metric Gμν .

As a consequence, the action (92) becomes

̂S −→ S′ =
∫

d4x

[

iψγ a 1 − γ5

2
∂aψ

+
∫

d4x
√
G iψγ aeμ

a

(

∂μ + 1

2
ωμ

)

1 + γ5

2
ψ

]

,

(201)

where γ a is the flat (non-dynamical) gamma matrix while
the vierbein eμ

a and the connection ωμ are compatible with
the metric Gμν . Up to the term that represents a decoupled
left-handed fermion in the flat spacetime, the action S′ is
the action of a right-handed Weyl fermion coupled to the
ordinary gravity.

In the collapsing limit we have

T(x) = T5(x) = − 1

16

2i

768π2 εμνλρRμναβ Rλρ
αβ (202)

The integrated anomaly (178) corresponding to ̂S thus
becomes
∫

dd x̂ tr
√

ĝ ω̂̂T =
∫

dd x
√
G (ω + η) (T + T5) trP+

+
∫

dd x (ω − η) (T − T5) trP−

= 4
∫

dd x
√
G ω+ T, (203)

where we used trP+ = 2, T − T5 = 0 and set ω+ = ω + η.
Notice that due to (195) the transformation property of Gμν

is Gμν → e2ω+Gμν . To extract an anomaly of the right
fermion of the effective action corresponding to (201) we
take its Weyl variation with respect to the metric Gμν

∫

dd x
√
G ω+ T′, (204)

where we denoted T′ = Gμν�
′μν = Gμν〈〈T ′μν〉〉.

Comparing (203) and (204) we get

T′(x) = − i

1536π2 εμνλρRμναβ Rλρ
αβ (205)

If we instead of (194) take the following collapsing limit

gμν → ημν + hμν

2
, fμν → −hμν

2
(206)

then one obtains

ĝμν = 1

2
(1 − γ 5)Gμν + 1

2
(1 + γ 5) ημν,

Gμν ≡ ημν + hμν (207)
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Now the right handed part is coupled to the flat metric and
left handed part to generic curved metric. We can now repeat
the arguments from above and obtain the Pontryagin Weyl
anomaly for left-hended Weyl fermion

T′(x) = i

1536π2 εμνλρRμναβ Rλρ
αβ. (208)

The relative minus sign with respect to right-handed case
is because of the opposite sign in front of γ5 matrix in the
defining relation for projectors P±.

7 Conclusion

In [2] the odd parity (Pontryagin) trace anomaly was calcu-
lated using a Feynman diagram approach coupled to dimen-
sional regularization. Only the lowest order diagrams were
computed, they allowed to identify the lowest order term of
the anomaly. The full anomaly was then reconstructed by
covariantization, which is correct if the diffeomorphisms are
preserved by the regularization procedure. This turned out
to be the case, as was shown in [3]. After these two papers
a negative result was obtained in [37]. Using a heat kernel
method with a Pauli–Villars regularization the authors found
a vanishing odd parity trace anomaly in 4d. At this point it
was imperative to find the culprit. In [2,3] the approach may
appear too simple-minded, because only two Feynman three-
legged diagrams were considered, the triangle and the bubble
diagram. As was shown in the first part of [1] there are sev-
eral additional diagrams that may affect the final result. But,
in fact, the accurate analysis carried out in [1] showed that
such additional diagrams cannot change the result as far as
the odd parity trace anomaly is concerned. It must be admit-
ted however that for such a delicate calculation an approach
based solely on Feynman diagrams may not be satisfactory.
The reason is the preservation of chirality throughout the
anomaly computation.

It may appear obvious that if one wants to compute the
anomaly of a left-handed fermion coupled to gravity one has
to respect its left-handedness and avoid mixing different chi-
ralities in the course of the computation. But this is not as
easy to do as to claim. As pointed out many times, the trou-
ble arises with the path integral measure, which is hard if
not impossible to define for Weyl fermions. If one uses a
Fujikawa or heat kernel method (they are relatives) the prob-
lem is transferred to the ‘square’ of the Dirac operator, that is
an (Euclidean) elliptic operator that is used in these methods
to define the fermion determinant. The problem is: is there
a quadratic operator that preserves the same handedness as
the linear Weyl operator? As was pointed out in Ref. [1] one
such operator could be /D†

L
/DL , where /DL = /DPL with /D

the ordinary Dirac operator and PL the chiral projector, but,
with this choice, a phase would remain completely undeter-

mined. We do not know if it is possible to solve this problem,
but we are sure the solution is not the choice made in [37],
because the operator chosen by the authors there includes
both chiralities. Of course, with this choice, the result for the
odd trace anomaly cannot be but 0.

A way out is provided by Bardeen’s method, which we
have used in this paper. This method bypasses the diffi-
culty mentioned above because it utilizes Dirac fermions,
and so it is not hard to define a ‘square’ Dirac operator, ̂F

(see Eq. (130)) which respects the (axially extended) diffeo-
morphisms (and, of course, can avoid the formidable obsta-
cle of being chiral). The desired handedness is obtained
by taking the collapsing limit hμν → hμν

2 , fμν → hμν

2

(or hμν → hμν

2 , fμν → − hμν

2 for the opposite handed-
ness). This limit is smooth: we have not found any evidence
of singularity in it. This method admits different possible
regularizations. We have utilized two: the dimensional and
the ζ -function regularization, with identical results. The lat-
ter absolutely agree with the perturbative results previously
obtained in [1–3].

On the basis of the evidence collected so far, with no con-
vincing counterevidence, we conclude that not only does the
parity odd trace anomaly exist, but all the procedures used
in [1–3] and the present paper are in accord.3 It is reassuring
in particular that there are different ways of doing the same
calculations while preserving chirality.

Next let us comment on/recall some characteristics and
possible consequences of the odd trace anomaly. Although
we have done the calculation in 4d it is easy to see that a
parity odd trace anomaly may appear only in dimensions
multiple of 4. Therefore, in particular, they do not affect crit-
ical (super)string theories. Moreover, as was already pointed
out in [2], the Pontryagin density vanish for a number of
background metrics, among which the FRW one. But let us
see the possible consequences of the instances in which such
anomaly does not vanish. In this regard we cannot but repeat
what was pointed out in the conclusion of [2]. The parity odd
trace anomaly in Lorentzian metric has an imaginary coeffi-
cient, which means in particular that the hamiltonian may be
complex. This may not be a problem as long as the fermion
model is used in an effective field theory context. A problem
certainly arises when gravity is itself quantized, because the
lack of reality (hermiticity) of the em tensor might propa-
gate in the internal lines. Using this anomaly as a selective
criterion in the same way as chiral consistent gauge anoma-
lies were used in the past, we should conclude that theories
of massless Weyl fermions interacting with gravity, with a

3 We think the doubts raised in [1] in regard to the Pauli–Villars regu-
larization, as being unable to produce the same results, are worth a very
detailed scrutiny. Unfortunately, we are unable to say a final word on
this issue due to the exceeding complexity of the calculation (at least in
this particular case) and we have to postpone it to another occasion.
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definite imbalance of chiralities (an explicit example, the
old fashioned standard model, is shown in [2]), should be
excluded from the realm of good theories, or at least very
critically considered, because they may turn out to be non-
unitary.4 Even though, as we just saw, critical (super)string
theory is unaffected by the parity odd trace anomaly, any 4d
theory which has is UV completion in a superstring theory
should be completely anomaly free (and unitary) at any inter-
mediate energy regime from Planck all the way to low energy.
Finally, speaking of unitarity, we cannot refrain from a com-
ment on a claim which is sometimes met in the literature:
unitary theories cannot have such kind of anomalies as the
odd parity trace anomaly. Although we believe the connec-
tion between unitary theories and absence of such anomalies
is true, we think the logical order should be reversed. One
cannot impose unitarity on a theory; unitarity must be the
outcome of quantization. We think a more sensible claim
is: there are classical theories which are potentially unitary
(because they are based, say, on self-adjoint operators), but
one has to verify that unitarity persists after quantization; in
this sense the absence of the Pontryagin trace anomaly in a
theory is a basic building block of its unitarity.
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Appendices

A Bardeen’s method

This appendix is a short account of Bardeen’s method to
derive gauge anomalies [4].

We consider a theory of Dirac fermions coupled to two
non-Abelian (vector Vμ and axial Aμ) gauge potentials, both
valued in a Lie algebra with anti-hermitean generators T a ,
with [T a, T b] = f abcT c. The action is

4 A possibility might remain should we consider PT invariance as
the basic property, instead of hermiticity, see [54], because the odd
trace anomaly is indeed PT invariant. However this requires a com-
plete change of paradigm for quantum field theory, which, to our best
knowledge, has not yet been explored.

S[V, A] = i
∫

d4x ψ
(

/∂ + /V + γ5 /A
)

ψ. (209)

It is invariant under two sets of gauge transformations
⎧

⎨

⎩

Vμ −→ Vμ + DVμα

Aμ −→ Aμ + [Aμ, α]
ψ −→ (1 − α)ψ

,

⎧

⎨

⎩

Vμ −→ Vμ + [Aμ, β]
Aμ −→ Aμ + DVμβ

ψ −→ (1 + γ5β)ψ

,

(210)

where DVμ = ∂μ + [Vμ, · ] and α = αa(x)T a, β =
βa(x)T a .

As a consequence there are two covariantly conserved cur-
rents, jμ = jaμT

a and j5μ = ja5μT
a , where

jaμ = ψγμT
aψ, ja5μ = ψγμγ5T

aψ. (211)

In the one-loop quantum theory it is impossible to preserve
both conservations. The most one can do is to preserve, for
instance, the vector one

[Dμ
V jμ]a + [Aμ, j5μ]a = 0 (212)

while the axial conservation becomes anomalous:

[Dμ
V j5μ]a + [Aμ, jμ]a

= 1

4π2 εμνλρ tr

[

T a
(

1

4
Fμν
V Fλρ

V + 1

12
Fμν
A Fλρ

A

−1

6
Fμν
V AλAρ − 1

6
AμAνFλρ

V − 2

3
AμFνλ

A Aρ

−1

3
AμAν AλAρ

)]

,

(213)

where Fμν
V = ∂μV ν − ∂νVμ + [Vμ, V ν] + [Aμ, Aν], and

Fμν
A = ∂μAν − ∂ν Aμ + [Vμ, Aν] + [Aμ, V ν].
From this expression we can derive two results in partic-

ular. Setting Aμ = 0 we get the covariant anomaly

[Dμ
V j5μ]a = 1

16π2 εμνλρ tr
(

T aFμν
V Fλρ

V

)

. (214)

Taking the collapsing limit V → V
2 , A → V

2 , and adding
(212) to (213) we get

[DVμ jμL ]a = 1

24π2 εμνλρ tr

[

T a∂μ

(

V ν∂λV ρ + 1

2
V νV λV ρ

)]

,

(215)

where jLμ = ψ LγμψL , here ψL = 1+γ5
2 ψ , which is the

consistent non-Abelian gauge anomaly.

B The axial-Riemannian geometry

In this Appendix we collect the formulas, relevant to this
paper, of axial-Riemannian geometry. Such formulas have
already appeared in [1], although in a somewhat different
notation. An important difference with [1] is that, there, all
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the quantities where functions of xμ. In this appendix, and
throughout the paper they are functions of x̂μ unless other-
wise specified.

The main changes in notation are

Gμν −→ ĝμν, Ĝμν −→ ĝμν, ĝ −→ g̃, f̂ −→ f̃

Ea
μ −→ êaμ, Êμ

a −→ êμ
a , êμ

a −→ ẽμ
a , ĉμ

a −→ c̃μ
a

γ λ
μν −→ �λ

μν, �λ
μν −→ ̂�λ

μν, �ab
μ −→ ̂�ab

μ , �μ −→ ̂ξμ

R −→ ̂R, R(1,2) −→ ̂R(1,2)

B.1 Axial metric

We use the symbols gμν, gμν and eaμ, eμ
a in the usual sense

of metric and vierbein and their inverses, except for the fact
that they are functions of x̂μ. Then we introduce the MAT
metric

ĝμν = gμν + γ5 fμν, (216)

where f is a symmetric tensor. Their background values are
ημν and 0, respectively. So, we write as usual gμν = ημν +
hμν .

In matrix notation the inverse of ĝ, ĝ−1, is defined by

ĝ−1 = g̃ + γ5 f̃ , ĝ−1ĝ = 1, ĝμλĝλν = δμ
ν (217)

which implies

g̃ f + f̃ g = 0, g̃g + f̃ f = 1. (218)

So

g̃ = (1 − g−1 f g−1 f )−1g−1,

f̃ = −(1 − g−1 f g−1 f )−1g−1 f g−1. (219)

B.2 MAT vierbein

Likewise for the vierbein one writes

êaμ = eaμ + γ5c
a
μ, êμ

a = ẽμ
a + γ5c̃

μ
a . (220)

This implies

ηab

(

eaμe
b
ν + caμc

b
ν

)

= gμν, ηab

(

eaμc
b
ν + eaνc

b
μ

)

= fμν.

(221)

Moreover, from êμ
a êaν = δ

μ
ν ,

ẽμ
a c

a
ν + c̃μ

a e
a
ν = 0, ẽμ

a e
a
ν + c̃μ

a c
a
ν = δμ

ν , (222)

one gets

ẽμ
a =

(

1

1 − e−1c e−1c
e−1

)μ

a
(223)

and

c̃μ
a = −

(

e−1c
1

1 − e−1c e−1c
e−1ce−1

)μ

a
. (224)

B.3 Christoffel and Riemann

The ordinary Christoffel symbols are

�λ
μν = 1

2
gλρ

(

∂μgρν + ∂νgρμ − ∂ρgμν

)

. (225)

The MAT Christoffel symbols are defined in a similar way

̂�λ
μν = 1

2
ĝλρ

(

∂μĝρν + ∂ν ĝρμ − ∂ρ ĝμν

)

= 1

2

(

g̃λρ
(

∂μgρν + ∂νgρμ − ∂ρgμν

)

+ f̃ λρ
(

∂μ fρν + ∂ν fρμ − ∂ρ fμν

)

)

+1

2
γ5

(

g̃λρ
(

∂μ fρν + ∂ν fρμ − ∂ρ fμν

)

+ f̃ λρ
(

∂μgρν + ∂νgρμ − ∂ρgμν

)

)

≡ �(1)λ
μν + γ5�

(2)λ
μν , (226)

where it is understood that ∂μ = ∂
∂ x̂μ , etc.

Proceeding the same way one can define the MAT Rie-
mann tensor via ̂Rμνλ

ρ :

̂Rμνλ
ρ = −∂μ

̂�
ρ
νλ + ∂ν

̂�
ρ
μλ − ̂�ρ

μσ
̂�σ

νλ + ̂�ρ
νσ

̂�σ
μλ

= −∂μ�
(1)ρ
νλ + ∂ν�

(1)ρ
μλ − �(1)ρ

μσ �
(1)σ
νλ

+�(1)ρ
νσ �

(1)σ
μλ − �(2)ρ

μσ �
(2)σ
νλ + �(2)ρ

νσ �
(2)σ
μλ

+γ5

(

− ∂μ�
(2)ρ
νλ + ∂ν�

(2)ρ
μλ − �(1)ρ

μσ �
(2)σ
νλ

+�(1)ρ
νσ �

(2)σ
μλ − �(2)ρ

μσ �
(1)σ
νλ + �(2)ρ

νσ �
(1)σ
μλ

)

≡ ̂R(1)
μνλ

ρ + γ5 ̂R(2)
μνλ

ρ. (227)

The MAT spin connection is introduced in analogy

̂�ab
μ = êaν

(

∂μê
νb + êσb

̂�ν
σμ

)

= �(1)ab
μ + γ5�

(2)ab
μ , (228)

where

�(1)ab
μ = eaν

(

∂μẽ
νb + ẽσb�(1)ν

σμ + c̃bσ �(2)ν
σμ

)

+caν
(

∂μc̃
νb + ẽσb�(2)ν

σμ + c̃bσ �(1)ν
σμ

)

(229)

�(2)ab
μ = eaν

(

∂μc̃
νb + ẽσb�(2)ν

σμ + c̃bσ �(1)ν
σμ

)

+caν
(

∂μẽ
νb + ẽσb�(1)ν

σμ + c̃bσ �(2)ν
σμ

)

. (230)

B.4 Transformations: diffeomorphisms

We recall that under a diffeomorphism, δxμ = ξμ, the ordi-
nary Christoffel symbols transform as tensors except for one
non-covariant piece

δ
(n.c.)
ξ �λ

μν = ∂μ∂νξ
λ. (231)
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In the MAT context it is more opportune to introduces also
axially-extended (AE) diffeomorphisms. They are defined by

x̂μ → x̂μ +̂ξμ(̂xμ), ̂ξμ = ξμ + γ5ζ
μ. (232)

Since operationally these transformations act in the same
way as the usual diffeomorphisms, it is easy to obtain for the
non-covariant part

δ(n.c.)
̂�λ

μν = ∂μ∂ν
̂ξλ, (233)

where the derivatives are understood with respect to x̂μ and
x̂ν . This means in particular that �

(2)λ
μν is a tensor.

We have also

δ̂ξ ĝμν = ̂Dμ
̂ξν + ̂Dν

̂ξμ, (234)

where ̂ξμ = ĝμν
̂ξν and ̂Dμ is the covariant derivative with

respect to ̂�.
In components one easily finds

δξ gμν = ξλ∂λgμν + ∂μξλgλν + ∂νξ
λgλμ

δξ fμν = ξλ∂λ fμν + ∂μξλ fλν + ∂νξ
λ fλμ (235)

δζ gμν = ζ λ∂λ fμν + ∂μζλ fλν + ∂νζ
λ fλμ

δζ fμν = ζ λ∂λgμν + ∂μζλgλν + ∂νζ
λgλμ. (236)

Summarizing

δ
(n.c.)
ξ �(1)λ

μν = ∂μ∂νξ
λ, δ

(n.c.)
ξ �(2)λ

μν = 0

δ
(n.c.)
ζ �(1)λ

μν = 0, δ
(n.c.)
ζ �(2)λ

μν = ∂μ∂νζ
λ (237)

and the overall Riemann and Ricci tensors are tensor, and the
Ricci scalar ̂R is a scalar. But also ̂R(1) and ̂R(2), separately,
have the same tensorial properties.

B.5 Transformations: Weyl transformations

There are two types of Weyl transformations. The first is the
obvious one

ĝμν −→ e2ω ĝμν, ĝμν → e−2ω ĝμν (238)

and

êaμ −→ eωêaμ, êμ
a → e−ωêμ

a . (239)

This leads to the usual relations

̂�λ
μν −→ ̂�λ

μν + ∂μω δλ
ν + ∂νω δλ

μ − ∂ρω ĝλρ ĝμν (240)

and

̂�ab
μ −→ ̂�ab

μ +
(

êaμê
σb − êbμê

σa
)

∂σ ω. (241)

The second type of Weyl transformation is the axial one

ĝμν −→ e2γ5η ĝμν, ĝμν → e−2γ5η ĝμν (242)

and

êaμ −→ eγ5ηêaμ, êμ
a → e−γ5ηêμ

a . (243)

This leads to

̂�λ
μν −→ ̂�λ

μν + γ5
(

∂μη δλ
ν + ∂νη δλ

μ − ∂ρη ĝλρ ĝμν

)

(244)

and

̂�ab
μ −→ ̂�ab

μ + γ5

(

êaμê
σb − êbμê

σa
)

∂σ η. (245)

Equation (242) implies

gμν −→ cosh(2η) gμν + sinh(2η) fμν,

fμν −→ cosh(2η) fμν + sinh(2η) gμν. (246)

We can write the axially-extended (AE) Weyl transforma-
tion in compact form using the parameter ω̂ = ω + γ5η

ĝμν −→ e2ω̂ ĝμν, (247)

etc.

B.6 Volume density

The ordinary density
√
g is replaced by

√

ĝ = √

det(ĝ) = √

det(g + γ5 f ). (248)

The expression in the RHS has to be understood as a formal
Taylor expansion in terms of the axial-complex variable g +
γ5 f . This means

tr ln(g + γ5 f ) = 1 + γ5

2
tr ln(g + f )

+1 − γ5

2
tr ln(g − f ). (249)

It follows that
√

ĝ = 1

2

(
√

det(g + f ) + √

det(g − f )
)

+γ5

2

(
√

det(g + f ) − √

det(g − f )
)

. (250)

√
ĝ has the basic property that, under AE diffeomorphisms,

δ
ξ̂

√

ĝ = ̂ξλ∂λ

√

ĝ + √

ĝ ∂λ
̂ξλ. (251)

This is a volume density, and has the following properties
√

ĝ → e4ω̂
√

ĝ, (252)

under an axial-Weyl transformations. Moreover

1√
ĝ
∂ν

√

ĝ = 1

2
ĝμλ∂ν ĝμλ = ̂�μ

μν. (253)

C Green’s functions

In the text we have assumed the existence of the propagator̂G,
the inverse of ̂F. In this Appendix we discuss this question by
comparing it with the ordinary case, as discussed in [5]. First
we review the approach of [5] in the ordinary gravity case.
Then we explain the modifications required in the MAT case.
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We consider the case of a stationary metric and axial-metric
background. We will assume eventually that the results hold
also for nonstationary case, provided the background varies
mildly in time.

In this Appendix the flat gamma matrices are understood
to be the Majorana ones, that is, they are purely imaginary,
together with γ5: γ0 ≡ η and γ5 are antisymmetric, while γi ,
i = 1, 2, 3 are symmetric.

C.1 A summary of Green’s functions

Let us give first a short review of ordinary fermionic propa-
gators, see [5,6,14,15]. We start from

G(x, x ′) = 〈0|T ψ(x)ψ†(x ′)|0〉. (254)

This is not the standard Feynman Green function

SF (x, x ′) = 〈0|T ψ(x)ψ̄(x ′)|0〉. (255)

The two are related by SF (x, x ′) = G(x, x ′)η
Other Green functions are the advanced, G+(x, x ′), and

retarded, G−(x, x ′); the positive and negative frequency
Green functions, G(+)(x, x ′) and G(−)(x, x ′), respectively;
and the principal value Green function Ḡ(x, x ′) = 1

2(

G+(x, x ′) + G−(x, x ′)
)

. The definitions depends only on
the contour of integration of p0 in the momentum space rep-
resentation, while for the rest they are the same. The impor-
tant relation in this context is

G(x, x ′) = Ḡ(x, x ′) + i

2
G(1)(x, x ′),

G(1) = i
(

G(+) − G(−)
)

. (256)

For real fermions Ḡ(x, x ′) and G(1)(x, x ′) are real. So they
represent the real and imaginary part of G(x, x ′). G(1)(x, x ′)
can be represented as

G(1)(x, x ′) = 〈0|[ψ(x), ψ†(x ′)]|0〉 ≡ S(1)(x, x ′). (257)

The Feynman propagator satisfies the equation

i
√
gη

(

γ μ∇μ + m
)

G(x, x ′) = −1δ(x, x ′) (258)

and 1 is the identity matrix in the spinor space. Both sides of
(258) transform as a bispinor density, i.e. like

√
gγ0ψ(x) at

x and as ψ†(x ′) at x ′. Instead

i
√
gη

(

γ μ∇μ + m
)

G(1)(x, x ′) = 0. (259)

The approach of [14,15] is based essentially on G(1).
Now let us make the ansatz

G(x, x ′) = −i
(

γ μ∇μ − m
)

G(x, x ′)η−1. (260)

Inserting this into (258) one gets

√
g

(

∇μg
μν∇ν −

(

m2 + 1

4
R

))

G(x, x ′) = −1δ(x, x ′).

(261)

Now we represent (261) as
∫

dx ′′F(x, x ′′)G(x ′′, x ′) = −1δ(x, x ′) (262)

or, in operator form,

F G = −1 (263)

(understanding 〈x |G|x ′〉 = G(x, x ′), etc.), where

F(x, x ′) = √
g

(

∇μg
μν∇ν −

(

m2 + 1

4
R

))

1δ(x, x ′)

(264)

and the function and derivatives in the RHS are understood
to be evaluated at x . Alternatively we represent (261) as

Fx G(x, x ′) = −1δ(x, x ′), (265)

where Fx is the differential operator acting on 1δ(x, x ′) in
the RHS of (264).

C.2 Properties of F

The operator F in (261) is not selfadjoint. In fact

F† = γ0Fγ0. (266)

This implies that the construction of a Green’s function is not
straightforward. In a stationary background a propagator is
constructed out of modes which are stationary eigenfunctions
(plane waves, at least asymptotically) with real frequencies.
Given the Dirac equation

i(γ μ∇μ + m)u = 0 (267)

by suitably fixing the gauge for diffeomorphisms, one can
always define a complete set of eigenfunctions with real fre-
quencies, symbolically u+ = χe−iωt , u− = λeiωt , so that
(understanding the indices and integration over the space
momenta)

ψ = u+a + u−a†, (268)

where a, a† are annihilation, creation operators (see chapter
19 of [6]).

In the same way one can infer the existence of an analo-
gous complete set of solutions, say v+, v− of

i(γ μ∇μ − m)v = 0. (269)

Now, even if F is not self-adjoint, we can construct the
following operator

F =
(

0 F

F† 0

)

(270)

which is self-adjoint, and whose inverse is

G =
(

0 G†

G 0

)

. (271)
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The mode solutions of F are
(

0
u+

)

,

(

0
u−

)

,

(

γ0v+
0

)

,

(

γ0v−
0

)

(272)

which have all real frequencies. It follows that we can con-
struct the Feynman propagator ofF . Following the argument
of [6], end of chapter 20, it has the form

F−1 =
(

0 − i
F†+iε

− 1
F+iε 0

)

. (273)

Comparing with (271) we get

G = − 1

F + iε
. (274)

C.3 Existence of mode functions

The existence of mode functions, i.e. solutions of the Dirac
equation (269) of the type u = χeiωt with real ω, in a station-
ary background, is the basis for the existence of propagators.
In [6] the problem is discussed as follows. One shows that
one can cast (269) in the form

Fu = 0, F = 1

2

{

Bμ,
∂

∂xμ

}

− C, (275)

where

Bμ = iηγ μ, C = − i

4
η{γ μ, ωμ}. (276)

The important thing is that, in the Majorana representation
of the γ matrices, Bμ is a symmetric matrix, while C is anti-
symmetric, and they are both purely imaginary. By choosing
the gauge e0

0 = 1, ei0 = 0 for the vierbein e, the operator F
becomes

F = 1

2

{

B,
∂

∂t

}

− C, (277)

where

B = i, C = C − 1

2

{

Bi ,
∂

∂xi

}

. (278)

Again while B is symmetric imaginary with −i B being pos-
itive definite, C is antisymmetric imaginary. Plugging the
ansatz uA = χAe−iωAt into Fu = 0 one gets the eigenvalue
equation

(C + iωAB)χA = 0. (279)

Due to the abovementioned propertis of B and C, one can
find eigenvalues and eigenvectors. The eigenvalues ωA can
be taken real and positive.

C.4 What changes when the background is MAT

In this case the analog of (266) is

̂F† = η̂F η. (280)

But as above we can proceed to construct the operator

̂F =
(

0 ̂F
̂F† 0

)

(281)

which is self-adjoint, and whose inverse is

̂G =
(

0 ̂G†

̂G 0

)

. (282)

Using the same argument as above we can conclude that

̂G = − 1
̂F + iε

. (283)

The only delicate point in reaching this conclusion is the
solutions of

i γ̂ μ
̂∇μ u = 0. (284)

Equation (269) is real, since the gamma matrices are purely
imaginary. But, in (284), the presence of γ5 poses a problem.
In a representation in which the gamma matrices are purely
imaginary, theγ5 is also imaginary, thus Eq. (284) is complex,
and, based on the analogy with the previous subsection, one
cannot be sure a priori that there are real frequency solutions.
However we notice that the operator η̂F is self-adjoint. This
remark lends us a way out.

Another crucial point is the gauge fixing, so that one can
end up with something analog to (278), in which −i B is pos-
itive definite. As we saw above, this is obtained by choosing
in particular e0

0 = 1, ei0 = 0. In MAT the coefficient of γ 0 is
êμ

0 , which contains also γ5c
μ
0 . We shall choose cμ

0 = 0. As a
consequence the analog of Fu = 0 is ̂Fû = 0 where

F̂ = 1

2

{

̂B,
∂

∂t

}

− ̂C, (285)

where ̂B = B, i.e. symmetric and such that −i B is positive
definite. As for ̂C, it can be written as

̂C = ̂Ca + ̂Cs, (286)

where ̂Ca is imaginary antisymmetric and does not contain
γ5, while ̂Cs is real, linear in γ5 and symmetric. However
altogether it is self-adjoint.

Plugging the ansatz û A = χ̂Ae−iωAt into η̂Fû = 0 one
gets the equation

(̂C − ωA)χ̂A = 0 (287)

which is an eigenvalue equation for ̂C. Since the latter is self-
adjoint we know there exists a complete set of eigenfunctions.
This is what we need.

So the remaining question is: is the choice cμ
0 = 0 per-

mitted? In order to see this one has to check that the defining
equations (220,221) for the axial-complex vierbein and the
like in Appendix B are still valid. Now, suppose the ordinary
gauge fixed vierbein satisfies such defining equation (which
they do in [5]). Then we can set the axial-imaginary vierbein
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c and c−1 to 0, while preserving the defining relations. In
other words, there is a large gauge freedom, and in particular
we can choose cμ

0 = 0.
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