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Abstract In the holographic correspondence, subregion
duality posits that knowledge of the mixed state of a finite
spacelike region of the boundary theory allows full recon-
struction of a specific region of the bulk, known as the entan-
glement wedge. This statement has been proven for local bulk
operators. In this paper, specializing first for simplicity to a
Rindler wedge of AdS3, we find that generic curves within
the wedge are in fact not fully reconstructible with entan-
glement entropies in the corresponding boundary region,
even after using the most general variant of hole-ography,
which was recently shown to suffice for reconstruction of
arbitrary spacelike curves in the Poincaré patch. This lim-
itation is an analog of the familiar phenomenon of entan-
glement shadows, which we call ‘entanglement shade’. We
overcome it by showing that the information about the non-
reconstructible curve segments is encoded in a slight gen-
eralization of the concept of entanglement of purification,
whose holographic dual has been discussed very recently.
We introduce the notion of ‘differential purification’, and
demonstrate that, in combination with differential entropy, it
enables the complete reconstruction of all spacelike curves
within an arbitrary entanglement wedge in any 3-dimensional
bulk geometry.
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1 Introduction and conclusions

In the quest to understand the holographic [1–4] emer-
gence of a dynamical bulk spacetime out of degrees of free-
dom living on a lower-dimensional rigid geometry, much
progress has originated from the Ryu–Takayanagi relation
[5–8]

SA = A(�A)

4GN
. (1)

Here SA denotes the entanglement entropy of a spacelike
region A in the boundary theory: SA ≡ −Tr(ρA ln ρA), with
ρA ≡ TrAcρ the reduced density matrix associated with A,
or more precisely, with the domain of dependence of A in the
boundary theory, denoted DA. A(�A) in (1) is the area1 of
the extremal codimension-two bulk surface �A that is homol-
ogous to A (with ∂�A = ∂A).

Relation (1) informed in particular the idea of subre-
gion duality [14–20], and more specifically, the conjec-

1 The connection with area applies when the bulk theory is classical
Einstein gravity. For generalizations, see [9–13].
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Fig. 1 Schematic depiction of the entanglement wedge EA and causal
wedge CA for a boundary subregion A, or equivalently, for its boundary
domain of dependence DA. See the main text for the explicit defini-
tions. For arbitrary bulk geometries, the entanglement wedge, bounded
by null geodesics that are shot towards the boundary from the Ryu–
Takayanagi surface �A, is larger than the causal wedge, bounded by
null geodesics that are shot into the bulk from the edge of DA. The

spatial surface �A on which the latter geodesics intersect is the causal
information surface defined in [17]. In a few situations �A = �A, and
the two types of wedges coincide. This happens in particular when A
is a spherical region in the vacuum of a d-dimensional conformal field
theory, which for d = 2 gives rise to the anti-de-Sitter-Rindler wedge
considered throughout most of this paper

ture [18,21,22] that knowledge of ρA allows full recon-
struction of the entanglement wedge of A, denoted EA and
defined as the domain of dependence of any codimension-
one bulk spacelike region bounded by �A and A. See
Fig. 1a. An interesting property of the entanglement wedge
is that it is generally larger [21,22] than the bulk region
that is causally accessible from DA (i.e., the intersection in
the bulk of the causal past and the causal future of DA),
known as the causal wedge of A, and denoted CA. See
Fig. 1b.

For a quantum field theory with a holographic dual, the
large-N and strong-coupling regime corresponds to the situ-
ation where the bulk theory is well approximated by Einstein
gravity coupled to a small number of light local fields. Each
of these fields φ (including the metric fluctuation hmn) is
dual to a simple local operator O in the boundary theory.
In this context, one aspect of reconstruction is being able to
write the boundary counterpart of the bulk field operator φ

placed at any given bulk point xm ≡ (xμ, r), with μ run-
ning over the boundary directions, and r the radial direction.
This was first achieved with the well-known HKLL prescrip-
tion [23–29], which (at least for ball-shaped A) allows one
to define φ(x, r) in CA by smearing O(x) over DA. Using
the connection with quantum error correction [30], a proof
was given in [31] that local operators (acting within a code
subspace) can in fact be reconstructed inside the full entan-
glement wedge EA. See also [32–34], as well as the recent
reviews [35,36].

A different aspect of reconstruction is to be able to directly
encode bulk curves or surfaces in terms of boundary data.
This question was first addressed in [37] for the case of
global 3-dimensional anti-de Sitter spacetime (AdS3), where
an extremal surface �A is a geodesic, and its area A(�A) is
a length. It was shown in that work that a generic bulk curve
at fixed time, xm(λ) (with λ an arbitrary parameter), can
be represented by a family of intervals I (λ) in the bound-

ary theory, and a specific combination of the correspond-
ing entanglement entropies SI (λ), known as the differential
entropy E , yields the length of the curve.2 In this approach,
known as hole-ography, the intervals I (λ) are identified by
the fact that their associated bulk geodesics �I (λ) are tan-
gent to the bulk curve. By shrinking the curves to zero size,
one can obtain in particular the most basic ingredients of the
bulk geometry, points and distances, in terms of the pattern
of entanglement in the given state of the field theory [40].
Hole-ography thus provides direct access to the spacetime
on which local bulk operators are to be placed, and therefore
conceptually underlies the approach summarized in the pre-
vious paragraph. This is consistent with the fact that, purely
within the field theory, entanglement is the more fundamen-
tal substrate from which correlators of local operators arise
[41]. Hole-ography was examined in bulk dimensions higher
than three in [42–44], and generalized to the case of time-
dependent spacelike curves in [44]. Other extensions can be
found in [45–49].

The simplest example of an entanglement wedge is the
Poincaré patch of pure AdS3, where A is obtained by delet-
ing a single point from the boundary circle that is at play
in global AdS. In the most familiar presentation of Poincaré
AdS/CFT, a conformal transformation is used to map this
open interval to the whole real line, and the dual conformal
field theory (CFT) then lives on 2-dimensional Minkowski
spacetime. It was recently pointed out in [48] that in this
setting hole-ography faces a serious challenge: generic bulk
curves in the Poincaré wedge have segments whose tangent
geodesics are not fully contained within the wedge, meaning
that they cannot be associated with entanglement entropies
in the CFT. See Fig. 2a. This challenge was overcome in [48]

2 A direct information-theoretic interpretation of E within the boundary
theory was provided in [38], and an elegant reformulation of the dual
bulk prescription was worked out in [39], employing integral geometry.
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Fig. 2 Each of these solid cylinders is a Penrose diagram for AdS3,
covered in full by the global coordinates (�, τ, θ), but only in part by
the Poincaré coordinates (t, x, r) on the left, or the Rindler coordinates
(t, x, r) on the right. aGeneric spatial bulk curves in the Poincaré wedge
(such as the circle shown in red) have segments whose tangent geodesics
(shown in orange) are not fully contained within the wedge. In spite of
this, a variant of hole-ography that employs ‘null alignment’ allows
their reconstruction with entanglement entropies in the CFT [48]. b A
Rindler wedge covers a smaller portion of global AdS, and in particular,
it does not contain a full Cauchy slice. A priori, it is not clear if the ‘null
alignment’ variant of hole-ography is sufficient to reconstruct arbitrary
bulk curves within the Rindler wedge (such as the circle shown in red)

by using a variant of hole-ography that employs ‘null align-
ment’. The key point, discovered in [44], is that E reproduces
the length of the curve even if the intervals I (λ) are obtained
not by shooting geodesics along the direction tangent to the
curve, but along a new direction that has been shifted by
a null vector orthogonal to the curve. It was shown in [48]
that, for the segments of bulk curves that cannot be recon-
structed with the standard prescription, it is always possible
to reorient the geodesics in this manner to make sure they are
contained within the Poincaré wedge, and therefore encode
entanglement entropies. The conclusion then is that all space-
like curves in Poincaré AdS are fully reconstructible.

Since the Poincaré patch has the special property that it
contains a full Cauchy slice of global AdS, a question natu-
rally arises: when considering a smaller entanglement wedge
in AdS3, e.g., an AdS-Rindler wedge, will null alignment
again suffice to ensure reconstructibility of all spacelike bulk
curves? This is the question that provides the initial moti-
vation for this paper. The fact that AdS-Rindler is smaller
than the Poincaré patch implies that there are fewer curves
that need to be reconstructed, but on the other hand, there are
more geodesics that exit the wedge. See Fig. 2b.

Our notation is established by writing the metric in the
form (2). (The transformations from global AdS3 to Poincaré
and Rindler coordinates are given in Appendix A.) We
begin by working out the explicit form of the AdS-Rindler
geodesics in Sect. 2, first at constant time in Sect. 2.1 and

Fig. 3 Entanglement shade for a Rindler wedge in AdS3, in the range
0 < ut < 10, 0 < ur < 10, having chosen the parametrization λ = x
(which implies ux = 1). The shaded region indicates the radial depths
that cannot be penetrated by geodesics with the indicated tangent vector
u, or with any other vector U obtained from it by null alignment (U =
u+n with n ·n = n ·u = 0). As expected from the analysis in the main
text, when we consider larger values of ur, corresponding to steeper
curves, the shade grows larger. On the other hand, the figure shows that
upon increasing the value of ut the shade is reduced. By symmetry, the
radial position where the shade begins is independent of the sign of ut

and ur, and of course, it is also independent of the values of t and x.
The entire region shown corresponds to spacelike u

then incorporating time dependence in Sect. 2.2. With this
information in hand, we identify in Sect. 3.1 a criterion for
points on a static curve to be reconstructible using the stan-
dard tangent alignment. In Sect. 3.2 we generalize this to
time-dependent spacelike curves, incorporating the use of
null alignment, defined in Eq. (30). The analysis reveals that
a curve is reconstructible only if the two conditions (45) and
(46) are obeyed. We then show in Sect. 3.3 that, even with
null alignment, curves in an AdS-Rindler wedge generically
have segments that cannot be reconstructed using entangle-
ment entropies in the CFT. The problem is that geodesics
anchored on the boundary fail to reach certain bulk regions
with a certain range of slopes. This obstruction is a gener-
alization of the well-known phenomenon of entanglement
shadows [50–55], which we call entanglement shade, and
depict in Fig. 3.

Section 4.1 delineates the problem in more detail, address-
ing the first step for reconstruction, which is to associate our
bulk curve with a family of intervals in the boundary the-
ory. We find that, while this can be done without difficulty
for open curves that are not too steep (including those that
can be shrunk down to describe points, as in [40,48]), all
closed curves and generic open curves have some number of
segments inside the entanglement shade, which by definition
cannot be encoded in terms of boundary-anchored geodesics,
and intervals in the CFT.
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The resolution to the problem is developed in Sect. 4.2.
Focusing first on static curves, we show that the missing
geodesics are closely related to the ones that have been very
recently conjectured to describe the concept of entanglement
of purification [56], defined in [57,58] and further explored
in [59–61]. The relevant expressions can be seen in (52) and
(53). A slight generalization of this concept, given in (54) and
(55), requires one to find the optimal purification of the given
mixed state, but then consider suboptimal bipartitions of the
auxiliary degrees of freedom associated with that purifica-
tion. We show that this variant of entanglement of purifica-
tion enables the reconstruction of the problematic segments
for static curves in an AdS-Rindler wedge. We then demon-
strate that, with the help of null alignment, the prescription
can be extended to time-dependent curves in the samewedge,
and in fact, to all spacelike curves within an arbitrary entan-
glement wedge EA in any 3-dimensional bulk geometry. This
conclusion is our main result. The task of reconstruction is
completed explicitly in Sect. 4.3, where we show that, just
like entanglement entropies can be combined to define the
differential entropy (61) that yields the length of any curve
segment outside the entanglement shade, entanglements of
purification can be combined to define the differential purifi-
cation (70) that reproduces the length of any segment inside
the shade.

From the conceptual perspective, the crucial insight that
emerges from [57,58] and is reinforced by our results is that
the optimization procedure involved in the calculation of the
entanglement of purification identifies a specific set of addi-
tional field theory degrees of freedom A′, which in the grav-
ity description live on the Ryu–Takayanagi surface �A. After
their addition, EA by itself becomes dual to a pure state, and
any curve segment can be encoded in terms of what is ulti-
mately entanglement entropy in the enlarged version of the
boundary theory. As explained in Sect. 4.2, at present the
field theory interpretation of our recipe is completely clear
only for the case where A is connected, or in the case where
A is disconnected but we restrict to bulk geometries with
a moment of time-reflection symmetry, and curves located
therein. The remaining cases require a deeper understand-
ing of the purified and excised version of subregion duality
alluded to above. Even for the best understood cases, we
would like to have better control over the explicit mapping
between A′ and �A (for which both the ‘bit thread’ picture of
[62,63] and the results of the recent work [64] will probably
be helpful), and the sense in which one should assign bound-
ary conditions on �A for the bulk fields inside EA. More gen-
erally, we need to understand in more detail the way in which
bulk modular flow [32,33,65] implements time evolution for
the purifying degrees of freedom A′ (and here again [62–64]
will likely be relevant). Other important questions that we
leave for future work are the generalization to bulk dimen-
sions higher than 3 (which presumably should be possible

at least under the symmetry conditions discussed for differ-
ential entropy in [42–44]), and the connection between the
hole-ographic method and other approaches to reconstruc-
tion [33,66–84].

2 Rindler geodesics

Starting with the vacuum of a CFT2 on Minkowski space
coordinatized by (t, x), we take A to be an interval of length
� at fixed time. Tracing over the degrees of freedom in the
complement Ac, the CFT state is described by the reduced
density matrix ρA. The entanglement wedge of A, EA, is an
AdS-Rindler wedge, depicted in Fig. 2b in the special case
where A is at t = 0 and runs from x = −L to x = L , with L
the radius of curvature of AdS3. To study EA, it is convenient
to work in a dimensionless coordinate system adapted to the
wedge (see Appendix A for details), in which the metric takes
the form

ds2 = L2
(

−r2dt2 + (1 + r2)dx2 + dr2

1 + r2

)
. (2)

Here −∞ < t, x < ∞, 0 < r < ∞ cover EA, and
are directly analogous to the familiar Poincaré coordinates
(t, x, r): t and x run along the CFT directions, while r labels
the holographic direction. In these coordinates, the minimal
bulk surface �A has been mapped to the horizon at r = 0,
and the boundary is located at r → ∞. With the metric
in the form (2), it is most natural to work directly with the
dual CFT in the coordinates (t, x), which can be related back
to the original Minkowski coordinates through the confor-
mal transformation (79). In this description, the CFT state is
thermal [85].

2.1 Geodesics at constant time

Without loss of generality, we can parametrize the geodesics
in terms of x, using the two functions t(x), r(x). Since the
metric (2) is invariant under time translations, there is a class
of geodesics at constant t. We will study these first. They are
obtained by extremizing the proper length

L =
∫

dx

√
1 + r2 + r′2

1 + r2 , (3)

which leads to the equation

(1 + r2)r′′ − r
[
3r′2 + (1 + r2)2

]
= 0. (4)

The general solution, for a geodesic passing through the bulk
point (xb, rb ≡ r(xb)) with slope s ≡ r′(xb), is
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r(x) = rb(1 + r2
b) cosh(x − xb) + s sinh(x − xb)√

(1 + r2
b)

2 − srb(1 + r2
b) sinh[2(x − xb)] − (s2 + r2

b(1 + r2
b)

2) sinh2(x − xb)

. (5)

We can see from the numerator of this expression that static
geodesics fall into two categories. If

r2
b(1 + r2

b)
2 > s2, (6)

then r(x) vanishes nowhere, meaning that the geodesic does
not reach the horizon. Both of its endpoints are then on the
boundary, at the locations x± where the denominator in (5)
vanishes,

x± = xb

+ 1

2
ln

⎛
⎝2 + s2 + 5r2

b + 4r4
b + r6

b ± 2
√

(1 + r2
b)3(s2 + (1 + r2

b)2)

(s + rb(1 + r2
b))2

⎞
⎠ .

(7)

The geodesic can be reexpressed in terms of these parameters
as

r(x) =
cosh

(
x − x++x−

2

)
√

sinh2
(
x+−x−

2

)
− sinh2

(
x − x++x−

2

) . (8)

Alternatively, the geodesic can be written in terms of the
location (x0, r0 ≡ r(x0)) of its point of closest approach to
the horizon (where r′(x0) = 0), given by

x0 = x+ + x−
2

, r0 = csch

(
x+ − x−

2

)
, (9)

which can be inverted to obtain

x± = x0 ± arcsinh

(
1

r0

)
. (10)

The geodesic then takes the form

r(x) = r0 cosh(x − x0)√
1 − r2

0 sinh2(x − x0)

. (11)

The other category of static geodesics arises from consid-
ering bulk points (xb, rb) and slopes s such that

r2
b(1 + r2

b)
2 < s2. (12)

In this case, the numerator of (5) vanishes at

xh = xb − arctanh

(
rb(1 + r2

b)

s

)
, (13)

meaning that the geodesic crosses the horizon at this location.
Only one of the endpoints (7) then lies on the boundary (the
other one is outside the wedge, in the region r → −∞).

Denoting its location by x∞, the general expression (5) can
be presented in the form

r(x) = csch(x∞ − xh) sinh(x − xh)√
1 − csch2(x∞ − xh) sinh2(x − xh)

, (14)

where it is evident that r vanishes at xh and diverges at x∞.
It is easy to prove that there are no geodesics that cross the
horizon twice. This is in fact true in the static case for an
entanglement wedge arising from a connected region A, on
any background geometry, because it is guaranteed by the
property of entanglement wedge nesting, i.e., A ⊂ B ⇒
EA ⊂ EB [18,21,86].

Upon the requisite change of coordinates (see Appe-
ndix A), one can check that the two categories of static
Rindler geodesics obtained here agree with the planar limit
of the global BTZ geodesics worked out in Section 6.1 of
[40].

The cases with r2
b(1+r2

b)
2 = s2 lie precisely at the transi-

tion between the two categories (6) and (12), so they belong
to both, in the sense that they can be obtained as a smooth
limit of geodesics in either category. For our purposes below,
it is more convenient to assign them to the first category.
When r2

b(1 + r2
b)

2 = s2, we can see from (7) that one of
the endpoints of the geodesic lies at x = ±∞, so the length
of a geodesic of this type encodes the entanglement entropy
of a semi-infinite interval in the CFT. In the original CFT
coordinates (t, x) [related to (t, x) through the conformal
transformation (79)], this corresponds to an interval extend-
ing right up to the edge of the interval A that gave rise to our
Rindler wedge.

2.2 Time-dependent geodesics contained within the
Rindler wedge

The length of a time-dependent geodesic is given by

L =
∫

dx

√
1 + r2(1 − t′2) + r′2

1 + r2 . (15)

We restrict our attention to spacelike geodesics, so

t′2 < 1 + 1

r2 + r′2

r2(1 + r2)
. (16)

Extremizing (15) we arrive, after some simplifications, at the
following system of equations for r and t:

(1 + r2)r′′ − r
[
3r′2 + (1 + r2)2(1 − t′2)

]
= 0, (17)

r(1 + r2)t′′ + 2r′t′ = 0. (18)
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Just as in the static case examined in the previous sub-
section, there will be two categories of geodesics: those that
have both endpoints at the boundary of the Rindler wedge,
and those that cross the horizon. The novelty is that now
the latter category includes as well geodesics that reach the
horizon at both ends. As will become clear in the following
sections, for our purposes we will only need the geodesics of
the first category, which are the ones that have an interpre-
tation in terms of entanglement entropy in the CFT. To our
knowledge, these time-dependent geodesics have not been
written down in closed form in the previous literature.

To find the geodesics we proceed as follows. First, we
solve equation (18) for t′:

t′(x) = tp

(
1 + 1

r2

)
, (19)

where tp is an integration constant, which can be interpreted
as the value of t′ at r → ∞. Notice that tp can be positive
or negative, but its absolute value is bounded by condition
(16). For a geodesic of the type that interests us, having both
endpoints on the boundary, the strictest bound on |tp| comes
from the deepest point of the geodesic, (t0, x0, r0), where
r′ = 0, so we obtain

t2p <
r2

0

1 + r2
0

. (20)

Next, we plug (19) into (17) to obtain an equation for r:

r3(1 + r2)r′′ − r4
[
3r′2 + (1 + r2)2

]
+ t2p(1 + r2)4 = 0.

(21)

The general solution for r is

r(x) =
√√√√ t2p(1 + r2

0)
2 + (r2

0(1 − tp) − tp)(r2
0(1 + tp) + tp) cosh2(x − x0)

r2
0 − (r2

0(1 − tp) − tp)(r2
0(1 + tp) + tp) sinh2(x − x0)

. (22)

Finally, we plug (22) into (19), and integrate to obtain

t(x) = t0 + arctanh

(
tp(1 + r2

0) tanh(x − x0)

r2
0

)
. (23)

As a consistency check, we can see that if we set tp = 0 we
recover the static solution, with t(x) = t0 and r(x) given by
(11).

By solving for the values of x where the denominator
in (22) vanishes, it is easy to relate the 4 integration con-
stants (t0, x0, r0) and tp to the endpoint locations (t−, x−)

and (t+, x+):

x± = x0 ± arcsinh

⎛
⎝ r0√

r4
0 − t2p(1 + r2

0)
2

⎞
⎠ , (24)

t± = t0 ± arctanh

⎛
⎝ tp(1 + r2

0)
1/2

r0

√
r2

0 − t2p(1 + r2
0)

⎞
⎠ , (25)

or, equivalently,

x0 = x+ + x−
2

, r0 = 1√
1 + cosh2

(
x+−x−

2

)
sech2

(
t+−t−

2

) .

(26)

t0 = t+ + t−
2

, tp =
cosh

(
t+−t−

2

)
sinh

(
t+−t−

2

)

cosh
(
x+−x−

2

)
sinh

(
x+−x−

2

) . (27)

Notice that (25) is real as long as the bound (20) is obeyed,
but in order for (24) to be real, we must require that

t2p <
r4

0

(1 + r2
0)

2
, (28)

which is stronger than (20). If r4
0/(1 + r2

0)
2 < t2p < r2

0/(1 +
r2

0), the geodesic is spacelike but bends towards the horizon
at r = 0, so it does not belong to the class of geodesics
examined in this subsection. We can solve for the remaining
geodesics simply by relinquishing the use of (t0, x0, r0, tp)
as parameters, but we will not write the explicit expressions
because we will have no need for them in this paper.

3 Criteria for reconstructibility of curves

3.1 Static case

Following [44], we will parametrize a bulk curve by func-
tions xm(λ) = (t(λ), x(λ), r(λ)), where λ runs from some
initial value λi to some final value λ f . A hole in spacetime is
demarcated by a curve that is closed, and consequently satis-
fies periodic boundary conditions, xm(λi ) = xm(λ f ). We can
also consider open curves, which satisfy no such condition. In
this subsection we will start by focusing on the simplest case:
a curve at constant t(λ). Unlike what happens in Poincaré-
AdS [48], in a Rindler wedge this static case is already non-
trivial, because any slice at constant t includes geodesics that
exit the wedge (see Fig. 2b). On general grounds, therefore,
we expect that there will be segments of the curve that cannot
be reconstructed using tangent geodesics.

Given a static curve, our initial goal is to obtain the fam-
ily of geodesics anchored on the boundary that are tan-
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gent to it at every point. The tangent vector is given by
u = (0, x′(λ), r′(λ)) and is spacelike everywhere. Since
the metric is invariant under translations in t, the tangent
geodesics will also lie on the constant-t slice. We can directly
use the results of Sect. 2.1: at any given point λ on the
bulk curve, the tangent geodesic is obtained by plugging
xb = x(λ), rb = r(λ) and s = r′(λ)/x′(λ) into (5). We
know that this geodesic will have both of its endpoints on the
boundary only if condition (6) is obeyed, i.e., if

r(1 + r2) >

∣∣∣∣drdx
∣∣∣∣ . (29)

This then is our criterion for reconstructibility of constant-t
curves.

On segments where (29) is violated, there is still the ques-
tion of whether reconstruction can be achieved using null
alignment [44]. This means that, instead of shooting the
desired geodesic along the tangent direction u, we shoot it
along a new directionU that has been shifted by a null vector
orthogonal to the curve:

U = u + n, n · n = 0, n · u = 0. (30)

By construction, U has the same norm as u, and the crucial
fact is that, for any smooth choice of the function n(λ), the
differential entropy E obtained with U (λ) is the same as
that obtained with u(λ) [44]. (For open curves, this requires
addition of an appropriate n-dependent boundary term [48].)

We want to know whether the possibility of reorient-
ing geodesics as in (30) is enough to guarantee the recon-
structibility of segments whose tangent geodesics exit the
Rindler wedge. In [48] it was shown that this is always true in
the Poincaré wedge, for an infinite number of choices of n(λ).
The two explicit examples given in that work translate here
into nt = −ut (implying U t = 0) and nr = −ur (implying
U r = 0). The first choice does not help here, where we have
ut = 0 on account of our curve being static. If nt = 0, then

the condition n · n = 0 yields the trivial solution n = 0, and
we have no way to satisfy (29). The difference with Poincaré

is that static curves there had no nonreconstructible segments.
One can likewise check that nr = −ur does not work here.

It remains to determine if some other choice of n(λ) can
help. But while we do that, we might as well consider the
general case where the curve is at varying t, because the
calculations are essentially the same: once we add to u(λ) a
non-vanishing n(λ), the geodesics under scrutiny will not be
static.

3.2 General case

Given an arbitrary spacelike curve (t(λ), x(λ), r(λ)), we
want to identify the geodesics that, instead of being tangent
to it, are aimed along the vectorU (λ) defined in (30). At each
λ, we can specify the null vector n(λ) by choosing a value
for one of its components, say nt, and then solving the two
conditions n · n = n · u = 0 for the remaining components.
By doing so, we arrive at

n =
(
nt, nt

r2(1 + r2)utux ± rur|u|
(ur)2 + (1 + r2)2(ux)2 ,

nt(1 + r2)
r2utur ∓ r(1 + r2)ux|u|
(ur)2 + (1 + r2)2(ux)2

)
. (31)

Notice that n is determined by nt and a discrete choice of
sign.

With n in hand, we can construct the shifted vector U ≡
u + n, along which we wish to shoot our new geodesic. In
Sect. 2.2 we established that time-dependent geodesics which
have both endpoints on the boundary of the Rindler wedge
have the form (22)–(23). The four parameters (t0, x0, r0)

and tp determine the location of the endpoints (t−, x−) and
(t+, x+) through the relations (24)–(25), which yield real
values only if the bound (28) is satisfied.

To ensure that our desired geodesic touches the bulk curve
at the given point (t(λ), x(λ), r(λ)), and has its tangent along
U (λ), we need to enforce the four conditions

r =
√√√√ t2p(1 + r2

0)
2 + (r2

0(1 − tp) − tp)(r2
0(1 + tp) + tp) cosh2(x − x0)

r2
0 − (r2

0(1 − tp) − tp)(r2
0(1 + tp) + tp) sinh2(x − x0)

, (32)

t = t0 + arctanh

(
tp(1 + r2

0) tanh(x − x0)

r2
0

)
, (33)

U r

U x = r2
0(1 + r2

0)(r
2
0(1 − tp) − tp)(r2

0(1 + tp) + tp) sinh[2(x − x0)]
2
√

(1 + r2
0)

2t2p + (r4
0 − (1 + r2

0)
2t2p) cosh2(x − x0)

[
r2

0 − (r4
0 − (1 + r2

0)
2t2p) sinh2(x − x0)

]3/2
, (34)

U t

U x = r2
0(1 + r2

0)tp sech2(x − x0)

r4
0 − (1 + r2

0)
2t2p tanh2(x − x0)

. (35)

Our task is then to solve these four equations to determine
the parameters of the geodesic.
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Equation (33) can be easily decoupled, since it is the only
one with explicit dependence on t0. From this equation we
get

t0 = t − arctanh

(
tp(1 + r2

0) tanh(x − x0)

r2
0

)
, (36)

which can be used once x0, r0 and tp are known.
In order to solve the remaining three equations, we pro-

ceed as follows. First we solve (35) for tp,

tp =
r2

0

(
±
√

1 + (U t/U x)2 sinh2[2(x − x0)] − 1
)

2(1 + r2
0)(U

t/U x) sinh2(x − x0)
. (37)

We keep the two signs for now. Next, we plug (37) into (32)
and solve for r0,

r0 =
√√√√ 2r2(U t/U x)2 sinh2(x − x0)

(1 + r2)
(
±
√

1 + (U t/U x)2 sinh2[2(x − x0)] − 1
)

− 2r2(Ut/Ux)2 sinh2(x − x0)
. (38)

At this point we notice that the option with minus sign is prob-
lematic, because it would make the argument of the square
root in (38) negative. We discard this option and keep the
solution with the plus sign, both in (37) and (38). Next, we
plug (37) and (38) into (34) and obtain

U r

U x =
r(1 + r2)

(√
1 + (U t/U x)2 sinh2[2(x − x0)] − 1 − 2(U t/U x)2 sinh2(x − x0)

)
(√

1 + (U t/U x)2 sinh2[2(x − x0)] − 1
)

tanh(x − x0)
. (39)

Given a point (t(λ), x(λ), r(λ)) on the bulk curve, and a
vector U (λ) along which we wish to shoot a geodesic from
there, we can determine the geodesic parameters by solving
(39) for x0, and then using the result subsequently in (38),
(37) and (36). Proceeding in this way, we find

x0 = x − 1

2
arcsinh

(
2r(1 + r2)U xU r

�

)
, (40)

r0 =
√

−(U r)2 + r2(1 + r2)2
[
(U x)2 + (U t)2 + r2

[
(U x)2 − (U t)2

]]+ �

√
2
√

(U r)2 + (1 + r2)((U x)2 + r2
[
(U x)2 − (U t)2

]
)

, (41)

tp = r2U t

(1 + r2)U x , (42)

t0 = t − arctanh

(
−(U r)2 + r2(1 + r2)2

[
(U x)2 − (U t)2

]− �

2r(1 + r2)U tU r

)
, (43)

where

� ≡
√(

r2(1+r2)2(U x−U t)2 − (U r)2
) (
r2(1+r2)2(U x+U t)2−(U r)2

)
.

(44)

Condition (28) together with (42) implies that the geodesic
will have both of its endpoints on the boundary of our Rindler
wedge only if

(U x)2 − (U t)2 > 0. (45)

Additionally, in order for (t0, x0, r0) to be real, we must
demand that both factors inside the square root in (44) are
positive,3

r2(1 + r2)2(U x −U t)2 − (U r)2 > 0 and

r2(1 + r2)2(U x +U t)2 − (U r)2 > 0. (46)

The first of these conditions implies the second if U x and U t

have the same sign, while the reverse is true if U x and U t

have opposite signs. By adding the two inequalities in (46)
we obtain

r2(1 + r2)2
[
(U t)2 + (U x)2

]
− (U r)2 > 0. (47)

Again, this is respectively implied by the first or second con-
dition in (46) if U x and U t have equal or opposite signs.

The inequalities (45) and (46) are our two criteria for
reconstructibility: segments where either one of these condi-
tions is violated yield geodesics that are not associated with
entanglement entropies in the CFT.Condition (45) is directly

3 We cannot use the option where both factors are negative, because in
that case (40) is found not to be a solution of Eq. (39).
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analogous to the criterion found for the Poincaré wedge in
[48]: it states that the projection ofU to the boundary ought to
be spacelike. (This is more stringent than the requirement that
U itself be spacelike, −r2(1 + r2)(U t)2 + (1 + r2)2(U x)2 +
(U r)2 > 0, which is implied by (45) regardless of the value
of r.) Condition (46), on the other hand, had no analog in
Poincaré.

If we set nt = 0, then U = u, so we are back in the
standard case of tangent alignment, and the segments where
either (45) or (46) are violated are then the ones that cannot
be reconstructed using the original recipe for hole-ography
[37]. Notice in particular that in the static case, where ut = 0,
condition (45) is satisfied automatically, and (46) correctly
reduces to (29). The latter connection shows that the exis-
tence of criterion (46) is related to the fact that Rindler
geodesics at constant t do not cover the entire boundary of
AdS.

We can go beyond tangent alignment by considering nt 
=
0. Having incorporated into the analysis of this subsection
the variant of hole-ography developed in [44], we can state in
full generality that a segment on a (possibly time-dependent)
spacelike curve will be reconstructible using null alignment
only if there is some choice of nt(λ) and some choice of sign
in (31) such that both (45) and (46) are satisfied.

3.3 Entanglement shade

Now that we have understood the criteria for reconstructibil-
ity, the next logical step is to consider situations where the
bulk curve at a given point is non-reconstructible via tangent

alignment (either by violating (45) or (46), or both), and try
to show that it is always possible to choose a value of nt in
(31) to shift u → U ≡ u+n achieving reconstructibility. But
upon attempting this, one is doomed to failure. In the case
of the Poincaré wedge, examined in [48], only the spacelike-
projection condition analogous to (45) had to be satisfied,
but for Rindler reconstruction we have in addition the small-
slope condition (46). One must show that there exists an nt

such that both inequalities are satisfied simultaneously, and
in general this turns out not to be possible.

The factor of r2 in the positive term of (46) indicates that
it will be harder to reconstruct curves located in the vicinity
of the horizon. To look for trouble in this region, assume that
we are given a specific tangent vector u, and then proceed to
expand our two conditions in a power series in r, leaving nt

in (31) arbitrary. From (45) we obtain

(ux)2 − (ut + nt)2 + 2σntuxur√
(ux)2 + (ur)2

r + O(r2) > 0, (48)

where σ = ±1 refers to the choice of sign in (31). For r small
enough that the O(r) term can be neglected, it is clear that nt

can always be chosen for this inequality to be satisfied. On
the other hand, from either version of (46) we obtain

− (ur)2 + 2σntuxur√
(ux)2 + (ur)2

r + O(r2) > 0. (49)

If r is small enough that the first term dominates, we see that
the inequality is always violated, regardless of the value of
nt.

There is a potential loophole in the preceding argument,
because even if r is arbitrarily small, we could take nt to be
arbitrarily large, and then the O(r) term in (49) cannot be
neglected. Specifically, choosing

|nt| > |ur/ux|
√

(ux)2 + (ur)2/2r

(and taking nt to have the same sign as σuxur), we would
ensure that the small-slope condition (49) is obeyed. But
then when we consider the spacelike-projection condition
(45) without any approximation,

⎡
⎢⎢⎣−1 +

r2
(

(r + r3)uxut + σur
√

(ux)2 + (ur)2

1+r2 + r2(−(ut)2 + (ux)2)

)
(
(1 + r2)2(ux)2 + (ur)2

)2

⎤
⎥⎥⎦ (nt)2

−2

⎡
⎢⎢⎣ut −

rux
(

(r + r3)uxut + σur
√

(ux)2 + (ur)2

1+r2 + r2(−(ut)2 + (ux)2)

)

(1 + r2)2(ux)2 + (ur)2

⎤
⎥⎥⎦ nt

−(ut)2 + (ux)2 > 0,

we see that it is violated, because the first term −(nt)2 dom-
inates.

We have just shown that, given any vector u with ur 
= 0,
at sufficiently small r no orthogonal null vector n exists such
that the geodesic aimed along U = u + n has both of its
endpoints on the boundary of the Rindler wedge. In a similar
fashion, one can show at all radial depths that sufficiently
steep geodesics are problematic. More specifically, given any
position r, one finds that for u with sufficiently large ur no
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n exists such that the geodesic aimed along U = u + n is
boundary-anchored. Our conclusion then is that, even using
null alignment, bulk curves passing through certain points
(t, x, r)with certain tangents u cannot be reconstructed with
entanglement entropies in the CFT.

The obstruction we have found here, which prevents
us from finding extremal curves in the bulk with cer-
tain made-to-order specifications, is analogous to the well-
known occurrence of entanglement shadows [50–55]. The
difference is that an entanglement shadow refers to a bulk
region where boundary-anchored geodesics cannot pene-
trate, whereas here we find that boundary-anchored geodesics
of a certain steepness cannot penetrate beyond a certain radial
depth. In other words, whereas a shadow is a well-delineated
subset of spacetime, the obstruction we are dealing with is
present in a subset of the spacetime tangent bundle. The fact
that the boundary of this region is not well-demarcated in
spacetime proper motivates us to refer to this phenomenon as
‘entanglement shade’, in contrast with shadow.4 The entan-
glement shade for the Rindler wedge is depicted in Fig. 3.5

4 Full reconstruction using entanglement entropy and
entanglement of purification

4.1 Mapping bulk curves to CFT intervals

To reconstruct a spacelike bulk curve C, the first step is to
associate it with a family of intervals in the field theory. As
stated before, we work with the CFT in the dimensionless
coordinates (t, x) appearing in the AdS-Rindler metric (2),

which can be related back to the original Minkowski coordi-
nates (t, x) (where our Rindler wedge arose as the entangle-
ment wedge for an interval of length �) through the confor-
mal transformation (79). For simplicity, we will focus for the
most part on reconstruction of curves at constant t, described
by the functions x(λ), r(λ). As we will see, this case already

4 It might be useful for some readers to remember that a shadow is the
dark silhouette cast by an object that blocks a source of light, whereas
shade is a region of darkness of indefinite shape. The latter concept is
normally used only when the source of light is the Sun.
5 A preliminary discussion of the existence of entanglement shades can
be found already in Section 7.1 of [53], where they were referred to as
‘partial shadows’.

contains the main novelty, and one additional trick will suf-
fice to extend the prescription that we will develop to the case
of t-dependent curves.

As in [44,48], the family of CFT intervals I (λ) that is
associated with a given bulk curve is not unique: there is one
family for each continuous choice of nt(λ) (and the sign) in
(31). The simplest possibility arises from the use of tangent
alignment [37], which amounts to choosing nt(λ) = 0 for
all λ. In this case we shoot geodesics �I (λ) along the vectors
tangent to the curve, u(λ) = (0, x′(λ), r′(λ)). On segments
whereu(λ) is not too steep, in the sense that it obeys condition
(29), the two endpoints of the geodesic lie on the boundary of
the Rindler wedge, and therefore identify a specific interval
I (λ) in the CFT. The remaining class of possibilities is to
use null alignment [44], shooting the geodesics �I (λ) along
U (λ) ≡ u(λ)+n(λ) with n(λ) given by (31), for some choice
nt(λ) 
= 0. In this case, and also for time-dependent curves,
the segments that are associated with intervals in the CFT
are those where both the spacelike-projection condition (45)
and the small-slope condition (46) are satisfied. In both cases,
the curve segments that fail to satisfy the relevant conditions
are inside the entanglement shade described in Sect. 3.3. For
these segments there are no corresponding intervals in the
CFT, and no encoding in terms of entanglement entropies.

If the curve xm(λ) is open and nowhere steep, it is com-
pletely outside of the shade, which implies that it is fully
encoded by the family of intervals I (λ). This includes both
finite curves as in [40,48], or infinite curves, in particular
those that satisfy a periodicity condition at x → ±∞, as in
[42,44]. In the static case, the endpoints of the intervals are
at the locations given by (7),

x±(λ) = x + 1

2
ln

⎛
⎝

2 +
(
r′
x′
)2 + 5r2 + 4r4 + r6 ± 2

√
(1 + r2)3

[(
r′
x′
)2 + (1 + r2)2

]

(
r′
x′ + r(1 + r2)

)2

⎞
⎟⎟⎟⎟⎠ . (50)

The idea proposed in [40], of identifying any given bulk
point as a ‘point-curve’ obtained by shrinking a finite curve
down to zero size, can be implemented in the Poincaré wedge
by starting with an open curve whose slope at both endpoints
is infinite, signaling that the curve becomes vertical there
[48]. The resulting family �I (λ) comprises all geodesics that
pass through the given point, and the centers of the corre-
sponding intervals I (λ) sweep the entire x-axis once. The
analogous construction in the Rindler wedge involves an
open curve whose slope at the endpoints, rather than being
infinite, is on the verge of violating condition (29) (or (46)),
meaning that the endpoints are at the edge of the entangle-
ment shade. Upon shrinking such a curve down to zero size,
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we obtain all non-steep geodesics passing through the given
bulk point (t, x, r). The corresponding intervals, if chosen to
lie all at time t, are again those prescribed by (7),

x±(s) = x + 1

2
ln

(
2 + s2 + 5r2 + 4r4 + r6 ± 2

√
(1 + r2)3(s2 + (1 + r2)2)

(s + r(1 + r2))2

)
. (51)

Here we are taking the point-curve to be parametrized by the
slope s of the geodesics involved in the final construction,
which ranges from −r(1 + r2) to +r(1 + r2). These inter-
vals sweep the entire x-axis once.

If the curve is closed, then it necessarily has at least two
steep segments, where it enters the entanglement shade. The
simplest possibility is exemplified by the circle in Fig. 4. For
this type of closed curve, there are two non-steep segments
C1(λ), C2(λ) that can again be associated, via (50), with
families of boundary-anchored geodesics �I1(λ) and �I2(λ)

in the bulk, and with families of intervals I1(λ) and I2(λ) in
the CFT. Each of these two families will cover the full x-axis
once. These upper and lower segments of the curve are joined
on the sides by two steep segments C̃1(λ), C̃2(λ). A generic
closed curve will have N ≥ 2 non-steep segments Cn(λ),
alternating with Ñ = N segments C̃n(λ) in the entangle-
ment shade. The former will be associated with N families
of intervals In(λ), each of which sweeps over the entire x-
axis. The same is true for an open curve that has segments
inside the shade, but in that case, the number Ñ of steep seg-
ments is not necessarily equal to N . For both closed and open
curves, the situation is exactly analogous to the one described
for the Poincaré wedge in [48], with the difference being that
in that setting the segments ‘inside’ the entanglement shade
are only those that are strictly vertical, which are normally
isolated points for a generic curve.6

The upshot is that generic curves in the Rindler wedge EA

contain some number Ñ of segments C̃n(λ) in the entangle-
ment shade, which cannot be encoded as intervals within the
prescribed region A of theCFT.The corresponding geodesics
(such as the blue geodesic in Fig. 4) have one endpoint on
the boundary and one on the Rindler horizon, and are conse-
quently not associated with entanglement entropies. As we
will see in the next subsection, they are associated with a dif-
ferent measure of correlations, entanglement of purification
[56], whose holographic dual has been discussed in the very
recent works [57–61].

6 We write ‘inside’ in quotes because points or segments of curves in
Poincaré that are vertical (r ′(λ)/x ′(λ) → ±∞) are really at the edge
of the would-be shade. They can be described as limits of points or
segments that are definitely outside the shade, and the corresponding
geodesics encode the entanglement entropy of CFT intervals that are
semi-infinite. For a Poincaré wedge, then, there is strictly speaking no
(interior of the) entanglement shade [48].

Fig. 4 An example of a closed spacelike curve: a circle at constant time
t, centered at x = 1, r = 1.4, with coordinate radius a = 1. The top
and bottom, shown in solid red, have tangent geodesics of the type (8),
lying fully within the Rindler wedge. A sample such geodesic is shown
in orange, with both of its endpoints extending up to the boundary
at r → ∞. This is not true for the segments on the sides, shown in
dashed black, which violate condition (29) and therefore cannot be
reconstructed using entanglement entropies. Geodesics tangent to them,
such as the one shown in blue, are of the type (14), and have one endpoint
on the boundary but cross the horizon r = 0 on the other side. If
we parametrize the circle by λ ∈ [0, 1), with λ = 0 located at the
top, the gluing between the four segments occurs at the values λ =
0.138, 0.278, 0.722, 0.862. If we wished, we could use null alignment
(30) to reduce the size of the dashed segments, but as discussed in the
main text, no choice of n can make them disappear completely

4.2 Entanglement of purification

The entanglement of purification is a measure of correlations,
both quantum and classical, expressed in terms of entangle-
ment of a certain pure state. In more detail, given a quantum
system A bipartitioned into sets of degrees of freedom B and
C (A = BC), in a state described by a density matrix ρBC ,
we know that the von Neumann entropy SBC > 0 if the state
is mixed. In that case, the entanglement entropies SB 
= SC
quantify quantum and classical correlations between B and
C . A purification of this system is a set A′ of additional
degrees of freedom, together with a choice of pure state |ψ〉
for the overall system BCA′, such that TrA′ |ψ〉〈ψ | = ρBC .
SBC is then understood as arising entirely from entangle-
ment between BC and A′. If we further partition the auxil-
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Fig. 5 Ingredients for the holographic computation of the entangle-
ment of purification P and its generalization P ′. The disk represents a
constant-time slice of a static geometry dual to some pure state. Upon
restricting the field theory to the region A = BC , we are left in the grav-
ity description with the corresponding spatial slice of the entanglement
wedge of BC , shown as the shaded region. a In the generic case where
B and C are not contiguous, the Ryu–Takayanagi surface �BC has two
disconnected components, indicated in green. Running between them at
the narrowest part of the shaded region we see the entanglement wedge
cross section, �, whose area encodes, according to (53), the entangle-
ment of purification (52) for the bipartition BC of the given state. The
corresponding minimal surface in the overall geometry would include

the dotted segments as well, but these are excluded from the definition
of P . The degrees of freedom A′ of the purification ‘live on’ �BC , and
� partitions them into a specific choice of B ′ and C ′. b In the par-
ticular case where B and C are contiguous, one of the components of
�BC shrinks down to the transition point between B and C , and � is
seen to extend from there to the closest point in the remaining, finite
component. If the overall geometry is global AdS, the shaded region
is an AdS-Rindler wedge. c If in the setup of b we consider instead a
minimal surface �′ 
= �, we obtain a different, suboptimal partition
of A′ into B ′ and C ′, and the area of �′ is then expected to yield via
(55) the entanglement of purification (54) associated with that specific
partition

iary system A′ into B ′ and C ′, we can compute instead the
entanglement entropy SBB′ = SCC ′ , which also arises purely
from entanglement. By optimizing among all possible purifi-
cations and all possible partitions B ′C ′, the entanglement of
purification between B and C is defined as [56]

P(B : C) ≡ min
|ψ〉,B′ SBB′ . (52)

In the holographic context, a plausible counterpart of P
on the gravity side has been identified very recently [57,58].
Given a time-independent bulk geometry dual to some state
in a field theory, and a choice of spatial subsystem A formed
by two non-overlapping regions B and C at constant time
t on the boundary, we expect by subregion duality that the
density matrix ρBC encodes the portion of the bulk geometry
inside the entanglement wedge EBC [18,21,22]. The slice of
EBC at time t , which we will denote by EBC |t , is bounded by
B, C and the minimal codimension-2 surface �BC (the Ryu–
Takayanagi surface corresponding to BC). Within EBC |t , we
can find the minimal-area surface � that ends on �BC and
separates B from C . The area of � in Planck units,

P(B : C) ≡ A(�)

4GN
, (53)

was argued in [57,58] to agree with the entanglement of
purification (52), P = P.7 The construction is illustrated
in Fig. 5a. In short, the holographic dual of the entanglement
of purification is conjectured to be given by the minimal cross

7 We refrain from denoting the entanglement of purification by Ep or
EP as in [56–61], because E is the symbol of choice for differential
entropy [37–40,42–48], which we will be employing in the next sub-
section, and subscripts are used throughout this paper to refer to CFT
intervals.

section of the entanglement wedge. This conjecture can be
motivated by the tensor network interpretation of hologra-
phy [87–92], and the main evidence that supports it is the
fact that P satisfies precisely the same inequalities as P. The
extension to the case of overlapping B andC was put forward
in [59], and the generalization to the non-static setting was
given in [57,58]. The proposal has been explored further in
[59–61].

The connection with our story arises from considering the
case where the bulk geometry is global AdS3, and regions B
and C are contiguous. As seen in Fig. 5b, the entanglement
wedge for A = BC is then our AdS-Rindler wedge EA, and
its minimal cross section � is a geodesic that extends from
the point on the boundary where B and C meet to the Rindler
horizon �A. This geodesic is of the type (14), just like the
blue geodesic in Fig. 4, and the other geodesics we were
missing in the attempt in Sect. 4.1 of reconstructing curves
using only entanglement entropies. But there is a difference
between the two. � in this context is determined exclusively
by the location x∞ where B and C join, because it stretches
from there to the closest point on the Rindler horizon. This
minimization condition uniquely determines the remaining
parameter xh in (14). On the contrary, for geodesics tangent
to curve segments C̃n inside the entanglement shade, such
as the blue geodesic in Fig. 4, x∞ and xh are independent
parameters, fixed by the two conditions that the geodesic
passes through the given point on the bulk curve, (x(λ), r(λ)),
and that it has the required slope, r′(λ)/x′(λ).

What does this difference signify in the CFT language?
To answer this question, let us first step back to notice from
(53) that the optimal purification called for in (52) is not the
pure state dual to the entire bulk spatial slice in Fig. 5a or b,
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which is what we had before restricting the CFT to region
A. We know this because � in (53) does not run across the
entire bulk, i.e., it does not include the dotted segments in
Fig. 5a or b. The exclusion of those segments indicates that
the degrees of freedom A′ in the optimal purification are
directly taken to ‘live on’ the Ryu–Takayanagi surface �BC ,
because in this way we get a lower entanglement entropy.
This point is somewhat implicit in [57,58],8 and has been
emphasized most clearly in [60,61]. From this, we deduce
that the difference between choosing � as in Fig. 5b or a
more generic extremal surface �′ as in Fig. 5c corresponds
in the CFT to the choice of the optimal versus a suboptimal
partition A′ = B ′C ′. The crucial aspect here is that the opti-
mization in (52) selects a specific purification (a choice of
auxiliary degrees of freedom A′ and overall state |ψ〉), and
once this is known, it is perfectly well-defined to consider the
effect of using suboptimal partitions of A′. We are thus led
to generalize (52) by using the optimal purification (A′, |ψ〉)
but prescribing a specific bipartition A′ = B ′C ′:

P′(B : C |B ′) ≡ SBB′ |(A′,|ψ〉). (54)

For generic choices of B ′, this yields an entanglement of
purification, as opposed to (52), which is the entanglement
of purification. We will refer to P′(B : C |B ′) as the entan-
glement of purification for the specified partition.

Based on the preceding discussion, if we define the holo-
graphic counterpart of (54) as9

P ′(B : C |B ′) ≡ A(�′)
4GN

, (55)

then it is natural to conjecture that P ′ = P′. This connection
was hinted at in [59]. We have argued here that it is essen-
tially a consequence of the conjecture that P = P, although,
strictly speaking, the implication runs in the opposite direc-
tion, because the latter identification is a special case of the
former. Notice that the definitions (54) and (55) are not lim-
ited to the case depicted in Fig. 5c, where B and C are con-
tiguous, but make sense as well in the generic case depicted
in Fig. 5a.

To summarize, we have found that curve segments C̃n in
the entanglement shade of our Rindler wedge EA, which by
definition cannot be associated with entanglement entropies

8 In particular, in our AdS-Rindler setting, it is consistent with the fact
that the optimal purification is not the familiar thermofield double [58].
9 For the assignment of the auxiliary degrees of freedom A′ to concrete
locations on �A, which would allow one to explicitly relate a given
bipartition B ′C ′ to a specific �′, two recent developments that provide a
one-to-one mapping between points on A and on �A might prove useful.
One is the ‘bit thread’ picture of entanglement entropy, developed in
[62,63]. The other is the recent observation [64] that bulk modular flow
[32,33,65] induces such a mapping. For our purposes here, since we
work purely on the gravity side, it is enough to know that each choice
of �′ corresponds to some bipartition of A′.

in the CFT restricted to A, can be reconstructed using entan-
glements of purification. In the process, one identifies an
optimal purification (A′, |ψ〉), under which EA is directly
described as a pure state, with the auxiliary degrees of free-
dom A′ living on the Rindler horizon �A. One then con-
siders partitions A′ = B ′C ′ that are generically subopti-
mal, and works with the associated geodesics �′. Ultimately,
then, in the extended system AA′ these geodesics do allow
us to encode the curve segments C̃n in specific intervals10

I ′(λ) = BB ′, and their lengths do encode entanglement
entropies, SI ′(λ) = SBB′ . In the next subsection, we will
show how to use these lengths to define a differential version
of the entanglement of purification, which will reproduce
the lengths of the segments C̃n that were a priori nonrecon-
structible.

Let us now explain how to deal with the case of curves that
are not at constant Rindler time. Just like in the static case,
such curves will have some number Ñ of segments C̃n inside
the entanglement shade. An important difference is that, for
ut(λ) ≡ t′(λ) 
= 0, the geodesics tangent to these segments
will exit the wedge not through �A, but through the null por-
tions of ∂EA. A priori, such geodesics cannot be associated
with entanglements of purification. We can remedy this by
using null alignment (30), choosing nt(λ) = −ut(λ) for all
λ. This ensures that the geodesics shot along the reoriented
vectors U (λ) lie at constant Rindler time, and therefore exit
EA through �A, even if each such geodesic is at a different
value of t. Notice that, unlike the situation we had in Sects. 3.3
and 4.1, where U was subject to the two constraints (45) and
(46) to directly achieve reconstructibility, the single require-
ment that we need here,U t = 0, can always be enforced, and
determines nt(λ) uniquely (up to the choice of sign σ in (31)).
With this trick, then, it is straightforward to extend our use of
entanglements of purification to the covariant case, proceed-
ing exactly as in the U t = 0 case of entanglement entropies
studied in [48]. This trick is the reason why in Sect. 2.2 we
did not need to work out the explicit form of time-dependent
geodesics that cross the Rindler horizon.

It should be noted that the authors of [40], when discussing
hole-ography for static curves in the global BTZ black hole
[93], had anticipated the need of resorting to geodesics that
cross the horizon. They assumed that the information about
their lengths would be available in the purification of the
CFT state via its thermofield double, which is dual to the
inclusion of a second asymptotic region for the black hole
(or in our language, the complementary Rindler wedge seen
in Fig. 2b). As we have seen, the recipe for full reconstruction
of curves in AdS-Rindler has become much more explicit and
compact here thanks to the use of null alignment [44,48] and

10 To avoid possible confusion, we emphasize that the prime in I ′(λ)

is part of the name of the interval, and does not refer to differentiation.
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entanglements of purification [57,58], concepts that were not
available at the time of [40].

The power and generality of these concepts is such that
our recipe for entanglement wedge reconstruction can be
extended beyond the situation, analogous to [40], of static
curves in a Rindler wedge. We have already explained that
the recipe covers the case of time-dependent curves inside
this wedge. It also works for static curves in the most gen-
eral entanglement wedge in AdS3, arising from a region A
composed of an arbitrary number of disconnected subregions
(the case of two subregions has been illustrated in Fig. 5a).
Below (54) we emphasized that our generalized version of
entanglement of purification makes sense in that setting too,
so the curve segments C̃n inside the entanglement shade will
again be encoded in the non-optimal geodesics that we have
denoted �′. This includes not just geodesics extending from
the boundary to �A, but also those that have both ends on �A

(which do not exist when A is connected).
Moving beyond pure AdS, we will now argue that the

recipe applies as well for a generic entanglement wedge
EA, arising from an arbitrary region A in any state of a 2-
dimensional field theory dual to a smooth bulk geometry M
in a theory with Einstein gravity.11 Here we will no longer
assume that the geometry is static, so EA is now constructed
with the Hubeny–Rangamani–Takayanagi [6] surface asso-
ciated with A, which we will still denote �A. In this context,
the time-dependent version [57,58] of holographic entangle-
ment of purification P involves optimal geodesics � ending
on �A. The variant that we have determined to be useful
for curve reconstruction, P ′, involves as before suboptimal
geodesics �′ ending on �A, possibly with one endpoint on
the boundary.

Consider first the case where A is connected and M is
geodesically complete, which can be dealt with by an argu-
ment very similar to the one we gave four paragraphs above.
As usual, a generic curve will have segments C̃n inside the
entanglement shade, which are associated with geodesics that
are not fully contained within the wedge. Typically, these
geodesics will exit the wedge through the null portions of
∂EA, perhaps just on one side, but possibly on both. We can
use null alignment to reorient any such geodesic, imposing
the single condition that one of its endpoints hits �A. We
then have no room for maneuvering the other endpoint, so if
it happens not to lie on the boundary or on �A, we would a
priori be uncertain about the interpretation, because such a
geodesic would not be of the �′ type directly associated with
an entanglement of purification P ′. But this cannot happen
when A is connected. The reason is the following. We can
continue the geodesic beyond EA, to find its final endpoints

11 Extensions beyond Einstein gravity would involve the generaliza-
tions of Ryu–Takayanagi [5] or Hubeny–Rangamani–Takayanagi [6]
developed in [9–12].

p and q on ∂M . In the scenario that worries us, p and q
are both outside of DA. The fact that the geodesic touches
�A guarantees that p and q are spacelike-separated from A,
so we can choose a time slice in the field theory that con-
tains all three of these objects. Under the stated assumption
that A is connected, the interval pq between p and q would
then be contained inside Ac, so by the nesting property of
entanglement wedges [18,21,86], it would have to be the
case that Epq ⊂ EAc . But this contradicts the claim that the
geodesic in question enters EA. We conclude then that, even
in this more general covariant setting, null alignment suffices
to ensure that the segments C̃n can always be reconstructed
using entanglements of purification.

The final extension is to lift the requirement that A be
connected and M be geodesically complete. In this case, we
lose the possibility of bringing in the property of entangle-
ment wedge nesting for the final part of the argument, so
in general there will be geodesics needed for reconstruction
that (even after their optimal reorientation via null alignment)
have one endpoint on �A and the other on the null portion
of ∂EA. We have noted above that this problem does not
arise for static curves on pure AdS3, and more generally, it is
avoided for curves that happen to be located at a moment of
time-reflection symmetry of an otherwise arbitrary geometry.
Generally, though, we do need a field theory interpretation
for geodesics exiting the wedge through the null portion of
∂EA.

To relate such geodesics to an entanglement of purifi-
cation, we must make an identification between points on
�A and points on the rest of ∂EA, through some notion of
time evolution for the purifying degrees of freedom A′. The
natural notion is provided by bulk modular flow [32,33,65]
(see in particular [64], and also the previously mentioned ‘bit
thread’ picture [62,63]). The key lesson here is that, once we
learn from [57–61] that the purifying degrees of freedom A′
live on �A, it is natural to conjecture that the optimal state
|ψ〉 is dual to a spacetime geometry that is nothing more
and nothing less than the entanglement wedge EA. This pro-
vides a new, self-contained, instance of holographic duality,
where modular evolution in the boundary theory is imple-
mented by modular evolution in the bulk. In this context, all
geodesics are available as ordinary entanglement entropies
in the extended field theory that lives on AA′. Strictly speak-
ing, of course, there is no modular evolution for �A itself,
so in practice one must take the degrees of freedom A′ to
live on a regulated version �A, akin to the stretched horizon
familiar from discussions of black hole dynamics [95]. This
is directly analogous to what we do at the opposite side of the
wedge, where we are accustomed to associating the original
degrees of freedom A with a surface at some radial location
r = rmax < ∞ that serves as a UV cutoff. A deeper inves-
tigation of this excised version of subregion duality would
surely be worthwhile, but we leave it for future work.
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A different generalization involves the passage to d-
dimensional field theories with d > 2. Presumably, the story
we have developed here can be so extended at least under
the same special conditions that allow higher-dimensional
discussions of differential entropy [42–44], but we will not
pursue that direction here.

4.3 Differential entropy and differential purification

In the previous subsection we understood that, with the aid
of entanglement of purification and null alignment, all curve
segments in the entanglement shade of an arbitrary entan-
glement wedge EA in any 3-dimensional bulk geometry can
be associated with families of intervals in the purified ver-
sion of the boundary theory. We will now carry out explicitly
the final task for reconstruction, showing how to recover the
lengths of generic curves using entanglements. For simplic-
ity, we will work again with static curves in the AdS-Rindler
wedge.

Consider first the original version of the boundary CFT2,
before we purify. Given an interval I = (x−, x+) at constant
time, we know that the corresponding entanglement entropy,
SI , is determined by the length of the associated geodesic �I ,
via the Ryu–Takayanagi formula (1). In Sect. 2.1, we showed
that this geodesic, expressed in terms of the endpoints of the
interval, takes the form (8), i.e.,

r(x) =
cosh

(
x − x++x−

2

)
√

sinh2
(
x+−x−

2

)
− sinh2

(
x − x++x−

2

) . (56)

The portion of this geodesic running from xi to x f is found
to be

x f∫
xi

ds = L

2
log

(
x − x−
x − x+

) ∣∣∣x f

xi
. (57)

As expected, this length diverges when xi → x− and/or
x f → x+, because we are then considering the entire
geodesic, extending all the way to the boundary. To reg-
ulate this divergence, we introduce a radial UV cutoff at
r = rmax � 1. Through (56), this is equivalent to perform-
ing the integral (57) only from xi = x− + ε to x f = x+ − ε,
where

ε = 1

2r2
max

coth

(
1

2
(x+ − x−)

)
. (58)

The entanglement entropy (reported for convenience in units
of 4GN ) then acquires the form

S(x−, x+) = L ln

(
2r2

max
sinh(x+ − x−)

coth( 1
2 (x+ − x−))

)
. (59)

(Instead of using this bare quantity, one could choose to work
with the holographically renormalized version of entangle-
ment entropy, defined in [94].)

In a similar fashion, for a geodesic of the type (14), with
one endpoint located at xh on the Rindler horizon �A and
the other at x∞ on the boundary, we can compute the UV-
regulated length. As explained in the previous subsection,
this is interpreted via (55) as the entanglement of purification
[57,58] between the two segments in the CFT demarcated
by x∞, choosing a specific bipartition B ′C ′ for the purifying
degrees of freedom A′, that corresponds to partitioning �A

at xh. The result (again in units of 4GN ) is

P ′(x∞, xh) = L ln

(
1

2rmax cosh(xh − x∞)

)
, (60)

where again, rmax denotes the UV cutoff. Put in other words,
in the optimal purification of EA, where the purifying degrees
of freedom A′ are understood to live on �A, the quantity P ′
is simply the entanglement entropy SI ′ for the interval in the
purified CFT that is dual to the interval I ′ = (x∞, xh) on
∂(EA|t ).

Now, given an arbitrary static curve C, we know from
Sect. 4.1 that it consists of some number N of segments
Cn outside of the entanglement shade, and some number Ñ
of segments C̃n inside the shade. Each segment of the for-
mer type can be encoded in a family of geodesics with end-
points at the boundary, giving rise to a family of intervals
I (λ) = (x−(λ), x+(λ)). We can combine the corresponding
entanglement entropies SI (λ), given by (59), to form the dif-
ferential entropy E associated with the segment. This quan-
tity was originally defined in [37], but the most compact and
useful expression for it was written down in [44]. Employing
this formula and (59), we find12

E ≡
λ f∫

λi

dλ
∂S(x−(λ), x+(λ))

∂λ

∣∣∣
λ=λ

= L

λ f∫
λi

dλ coth( 1
2 (x+ − x−))x′+. (61)

In order to get a concrete expression for E , we should sub-
stitute in (61) the values of x±(λ) in terms of the coordinates
(t, x(λ), r(λ)) of the bulk curve coordinates. The association
between the two arises from the fact that, for any given λ, the
desired geodesic �I (λ) must pass through the given point on
the curve, with the appropriate slope. From the solution (11),
this means that the following two equations must be satisfied

12 As explained in [44], the definition of E can be given alternatively by
differentiating with respect to λ instead of λ. Since the relation between
the two definitions involves integration by parts, the boundary function
fE (λ) identified in (68) would then be modified.
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r = r0 cosh(x − x0)√
1 − r2

0 sinh2(x − x0)

, (62)

r′

x′ = r0(1 + r2
0) sinh(x − x0)

(1 − r2
0 sinh2(x − x0))3/2

, (63)

or in the opposite direction,

x0 = x − arcsinh
( r′/x′√

r2(1 + r2)2 − r′2/x′2
)
, (64)

r0 =
√
r2(1 + r2)2 − r′2/x′2
(1 + r2)2 + r′2/x′2 . (65)

Differentiating the entanglement entropy with respect to
the parameter of the right endpoint, x+(λ), we substitute Eqs.
(10) (64), and (65) into the differential entropy expression
(61), to obtain

E = L
∫

dλ

[
x′|x′| (1 + r2)3/2√

(1 + r2)2x′2 + r′2

+ |x′|(1 + r2)3/2
(1 + r2)rr′x′′ + x′

(
(1 + 3r2)r′2 − (1 + r2)rr′′

)
√

(1 + r2)2x′2 + r′2((1 + r2)2r2x′2 − r′2)

− (1 + r2)2x′r′ (1 + 2r2 + r4)rx′3 + (1 + r2)r′x′′ + (3rr′2 − (1 + r2)r′′)x′

((1 + r2)2x′2 + r′2)((1 + r2)r2x′2 − r′2)

]
. (66)

This expression looks quite different from the sought
curve length,

A = L

λ f∫
λi

dλ

√
(1 + r2)x′2 + r′2

1 + r2 . (67)

However, we must recall that there is no reason for the inte-
grands in these two formulas to match directly. In the con-
text where differential entropy was originally defined and
explored [37,42,44], the curves under consideration were
closed (or infinite with a periodicity condition at infinity),
so the claim that A = E requires only that the integrands
in (66) and (67) differ at most by a total derivative. In the
case of open curves, considered in [40,48] and needed for
the segments Cn under consideration here, this total deriva-
tive, upon integration, will give rise to a boundary function,
that we call fE (λ). Importantly, this boundary function itself
can be interpreted in terms of entanglement entropy in the
CFT [40,48].

Because of the close analogy between the case of the
Poincaré wedge studied in [48] and the AdS-Rindler wedge
that we are considering here, we can anticipate the form of
the boundary function fE . For this purpose, consider the tan-
gent geodesic, �(λ), to the point (x(λ), r(λ)) on the curve
labeled by λ. Then, as an ansatz, we propose that fE will turn
out to be given by the length of the arc of this geodesic that

stretches from (x(λ), r(λ)) to (xε+, rmax). Using the alterna-
tive parametrization (11), we find that this distance takes the
form

fE (λ) ≡
xε+∫
x

ds = L

[
log
(2rmax

r0

)

− arctanh
(√

1 + r2
0 tanh(x − x0)

)]
. (68)

And indeed, by means of (64) and (65), it can be shown that
(68) is precisely what we need to accomplish the desired
equality between (66) and (67), namely

A = E − fE (λ f ) + fE (λi ). (69)

For closed curves, the boundary contribution of course
drops out.

Let us now move on to the more interesting case of a curve
segment C̃n inside the entanglement shade, where the crite-
rion (29) is not obeyed, and we need to resort to geodesics
with one end on the horizon. In order to deal with it in com-
plete parallel with our preceding analysis, we propose the
new notion of differential purification, denoted by D. This
quantity is constructed using the family of geodesics �I ′(λ)

associated with the intervals I ′(λ) = (x∞(λ), xh(λ)) in the
purified CFT. We imitate the procedure in (61), differentiat-
ing the entanglement of purification (60) to obtain

D ≡
∫

dλ
∂P ′(x∞(λ), xh(λ))

∂λ

∣∣∣
λ=λ

= −L
∫

dλ tanh(x∞ − xh)x′
h. (70)

The main novelty in this expression is that we are varying the
location of the point at the horizon, xh(λ). The justification
for this is that, in bulk description of the optimally-purified
CFT, the horizon �A is exactly on the same footing as the
rest of the boundary of EA|t .13

13 As explained in the previous footnote, we could alternatively vary the
location of the boundary endpoint, x∞(λ), and the form of the boundary
function fD(λ) would then differ from (74).
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In this case, the equations analogous to (64) and (65) are

x∞ = x + arccsch

(√
r′2 − (r + r3)2x′
(1 + r2)3/2x′

)

− arcsinh

(
r(1 + r2)x′√

r′2 − (r + r3)2x′2

)
, (71)

xh = x − arcsinh

(
r(1 + r2)x′√

r‘2 − (r + r3)2x′2

)
. (72)

By substituting (71) and (72) in (70) we obtain

D = L
∫

dλ
(r(1 + r2)3/2x′((r + 2r3 + r5)x′3 + (r′ + r2r′)x′′ + x′(3rr′2 − (1 + r2)r′′))

((r + r3)2x′2 − r′2)
√

(1 + r2)2x′2 + r′2
)
. (73)

Motivated by our previous results for entanglement entropy
and differential entropy in the Rindler wedge, we propose an
expression for the boundary function: we expect f (λ) to be
the length of the geodesic tangent to the curve at the point λ,
within the region (x, xh). The resulting expression is

fD(λ) ≡
xh∫
x

ds = − L

2
ln

(
sinh(x + x∞ − 2xh)

sinh(x∞ − x)

)
. (74)

And indeed, we can verify that this is precisely what we
need to attain the desired equality between the differential
purification (73) and the length of the bulk curve (67):

A = D − fD(λ f ) + fD(λi ). (75)

We have thus succeeded in showing through explicit com-
putation that curve segments inside the entanglement shade
can be reconstructed using differential purification. Com-
bined with the more familiar story of entanglement entropy,
described before, this completes the demonstration of com-
plete reconstructibility for arbitrary static curves in the AdS-
Rindler wedge. From the arguments in the previous subsec-
tion we know that there is no obstruction for similarly recon-
structing generic curves in an arbitrary wedgeEA, using again
differential entropy and differential purification.
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Appendix: Coordinate transformations

We start with AdS3 in global coordinates,

ds2 = L2

cos2 �

(
−dτ 2 + d�2 + sin2� dθ2

)
, (76)

where τ ∈ (−∞,∞), � ∈ [0, π/2) and θ ∈ [0, 2π). The
transformation

t = L sin τ

cos τ + sin � cos θ
,

x = L sin θ sin �

cos τ + sin � cos θ
,

z = L cos �

cos τ + sin � cos θ
, (77)

brings the metric to the familiar Poincaré form

ds2 = L2

z2

(
−dt2 + dx2 + dz2

)

= r2

L2

(
−dt2 + dx2

)
+ L2

r2 dr
2, (78)

with r = L2/z. Next, we focus on a specific spatial region
A at constant t in the boundary CFT: an interval of length
�, which, without loss of generality, can be taken to be cen-
tered at x = 0. The corresponding minimal surface �A is
the semicircle x2 + z2 = �2. The entanglement wedge of A,
EA, is a AdS-Rindler wedge, and we wish to transform to
coordinates adapted to it.

In the CFT, the (inverse of the) conformal transformation

t = � sinh t
cosh x + cosh t

,

x = � sinh x
cosh x + cosh t

, (79)

maps the causal diamond DA to the full plane t ∈ (−∞,∞),
x ∈ (−∞,∞). In so doing, it transforms the reduced density
matrix ρA to a thermal density matrix, so the entanglement
entropy SA reduces to thermal entropy [85]. The correspond-
ing bulk transformation is [96]

t = �
√
r2 − 1 sinh t

r cosh x + √
r2 − 1 cosh t

,

x = �r sinh x

r cosh x + √
r2 − 1 cosh t

,

z = �

r cosh x + √
r2 − 1 cosh t

, (80)

where r ∈ (1,∞). Notice that (t, x, r) have been chosen to
be dimensionless. In these coordinates, the bulk metric takes
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the planar BTZ form

ds2 = L2
(

−(r2 − 1)dt2 + r2dx2 + dr2

r2 − 1

)
. (81)

The presence of the horizon at r = 1 encodes the thermal
character of the state. This transmutation of what is originally
an acceleration horizon in the CFT into the horizon of a bulk
black hole was first examined in [97], in the context of the
holographic implementation of the Unruh effect (where one
is dealing with the special case where A is semi-infinite).

The Rindler wedge EA is the exterior of the black hole,
r > 1. For our purposes it will be more intuitive to use the
radial coordinate

r =
√
r2 − 1, (82)

which covers the entire range r ∈ (0,∞), in direct analogy
with the Poincaré wedge. Our final form for the metric is then

ds2 = L2
(

−r2dt2 + (1 + r2)dx2 + dr2

1 + r2

)
. (83)

The horizon is located at r = 0, and the boundary at r → ∞.
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