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Abstract We analytically as well as numerically study
the effects of Born–Infeld nonlinear electrodynamics on the
properties of (1+1)-dimensional s-wave holographic super-
conductors. We relax the probe limit and further assume
the scalar and gauge fields to affect the background space-
time. We thus explore the effects of backreaction on the con-
densation of the scalar hair. For the analytical method, we
employ the Sturm–Liouville eigenvalue problem, and for the
numerical method, we employ the shooting method. We show
that these methods are powerful enough to analyze the criti-
cal temperature and phase transition of the one-dimensional
holographic superconductor. We find that increasing the
backreaction as well as the nonlinearity makes the condensa-
tion harder to form. In addition, this one-dimensional holo-
graphic superconductor faces a second order phase transition
and the critical exponent has the mean field value β = 1/2.

1 Introduction

The best-known theory for describing the mechanism behind
superconductivity from a microscopic perspective is the BCS
theory proposed by Bardeen, Cooper and Schrieffer. Accord-
ing to BCS theory, the condensation of Cooper pairs into a
boson-like state, at low temperature, is responsible for an infi-
nite conductivity in the solid state system [1]. However, when
the temperature increases, the Cooper pair decouples and thus
the BCS theory is unable to explain the mechanism of super-
conductivity for high temperature superconductors [1]. The
correspondence between gravity in an anti-de Sitter (AdS)
spacetime and Conformal Field Theory (CFT) living on the
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boundary of the spacetime provides a powerful tool for cal-
culating correlation functions in a strongly interacting field
theory using a dual classical gravity description [2]. Accord-
ing to the AdS/CFT duality proposal an n-dimensional con-
formal field theory on the boundary is equivalent to gravity
theory in (n+1)-dimensional AdS bulk [2–7]. The dictionary
of AdS/CFT duality implies that each quantity in the bulk has
a dual on the boundary. For example, the energy-momentum
tensor Tμν on the boundary corresponds to the bulk metric
gμν [3,4]. Based on this duality, Hartnoll et al. proposed a
model for a holographic superconductor in 2008 [5]. Their
motivation was to shed light on the problem of high tempera-
ture superconductors. According to the theory of holographic
superconductors, we need a hairy black hole on the gravity
side to describe a superconductor on its boundary. During
the past decade, the investigation of the holographic super-
conductor has got a lot of attention (see e.g. [6–18,20–37]).

On the other hand, BTZ (Bandos–Teitelboim–Zanelli)
black holes, the well-known solutions of general relativity in
(2+1)-dimensional spacetime, provide a simplified model to
investigate some conceptual issues in black hole thermody-
namics, quantum gravity, string theory, gauge theory and the
AdS/CFT correspondence [38–42]. It has been shown that
the quasinormal modes in this spacetime coincide with the
poles of the correlation function in the dual CFT. This gives
quantitative evidence for AdS/CFT [43]. In addition, BTZ
black holes play a crucial role for improving our perception
of gravitational interaction in low-dimensional spacetimes
[44]. These kinds of solutions have been studied from differ-
ent point of views [45–48].

Holographic superconductors dual to asymptotic BTZ
black holes have been explored widely (see e.g. [19,49–
59]). In order to construct the (1 + 1)-dimensional holo-
graphic superconductors one should employ the AdS3/CFT2
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correspondence. In [49], the (1 + 1)-dimensional holo-
graphic superconductors were explored in the probe limit
and its distinctive features in both normal and supercon-
ducting phases were investigated. Employing the variational
method of the Sturm–Liouville eigenvalue problem, the one-
dimensional holographic superconductors have been analyt-
ically studied in [50–52]. It is also interesting to study the
(1 + 1)-dimensional holographic superconductor away from
the probe limit by considering the backreaction. In [53], the
effects of the backreaction have been studied for s-wave
linearly charged one-dimensional holographic superconduc-
tors.

Holographic superconductors have also been studied
extensively in the presence of nonlinear electrodynamics
(see e.g. [24,25,28–33,36,37]). The most famous nonlinear
electrodynamics is Born–Infeld electrodynamics. This model
was presented for the first time to solve the problem of the
divergence of the electrical field at the position of a point par-
ticle [60–64]. It was later showed that this model could be
reproduced by string theory. In the present work, we would
like to extend the investigation of the (1 + 1)-dimensional
holographic superconductors by taking into account the non-
linear Born–Infeld (BI) electrodynamics, as our gauge field.
Furthermore, we will study the effects of backreaction on
our holographic superconductors. We perform our investiga-
tion both analytically and numerically and shall compare the
result of two methods. Our analytical approach is based on
the Sturm–Liouville variational method. In the latter study,
we find the relation between the critical temperature and the
chemical potential. Moreover, in order to study our holo-
graphic superconductors numerically, we use the shooting
method. We show that the analytical results are in good agree-
ment with numerical ones, which implies that the Sturm–
Liouvile variation method is still powerful enough for study-
ing the (1 + 1)-dimensional holographic superconductor.

The structure of our paper is as follows. In Sect. 2, the
basic field equations of one-dimensional holographic super-
conductors with backreaction in the presence of BI nonlin-
ear electrodynamics is introduced. In Sect. 3, we describe the
procedure of an analytical study of the one-dimensional holo-
graphic superconductor based on Sturm–Liouvile method
and obtain the relation between the critical temperature and
the chemical potential. In Sect. 4, the numerical approach
to the study of our holographic superconductors will be pre-
sented. Finally, we summarize our results in Sect. 5.

2 Basic field equations

The action of three-dimensional AdS gravity in the presence
of a gauge and a scalar field is given by

S = 1

2κ2

∫
d3x

√−g

(
R + 2

l2

)

+
∫

d3x
√−g[L(F) − |∇ψ − iq Aψ |2 − m2|ψ |2],

(1)

where m and q are the mass and the charge of the scalar
field, κ2 = 8πG3 and G3 is the three-dimensional Newton
gravitation constant. Also, g, R and l are the metric deter-
minant, Ricci scalar and AdS radius, respectively. In (1),
F = FμνFμν where Fμν = ∇[μAν] is the electrodynamics
field tensor and Aμ is the vector potential. L(F) stands for
the Lagrangian density of the BI nonlinear electrodynamics
defined as

L(F) = 1

b

(
1 −

√
1 + bF

2

)
, (2)

where b is the nonlinear parameter. When b → 0, L reduces
to −FμνFμν/4, which is the standard Maxwell Lagrangian
[5]. Variation of the above action with respect to the scalar
field ψ , the gauge field Aμ and the metric gμν yields the
following equations of motion:

0 = (∇μ − iq Aμ

) (∇μ − iq Aμ
)
ψ − m2ψ, (3)

0 = ∇μ
(
4LF Fμν

)
−iq

[−ψ∗(∇ν − iq Aν)ψ + ψ(∇ν + iq Aν)ψ
∗] , (4)

0 = 1

2κ2

[
Rμν − gμν

(
R

2
+ 1

l2

)]
+ 2FacFb

cLF

−gμν

2

[
L(F) − m2|ψ |2 − |∇ψ − iq Aψ |2

]

−1

2

[
(∇μψ − iq Aμψ)(∇νψ

∗ + iq Aνψ
∗) + μ ↔ ν

]
,

(5)

where LF = ∂L/∂F .
Since we would like to consider the effect of the backre-

action on the holographic superconductor, we take a metric
ansatz as follows [53]:

ds2 = − f (r)e−χ(r)dt2 + dr2

f (r)
+ r2

l2
dx2. (6)

The Hawking temperature of the three-dimensional black
hole on the outer horizon r+ (where r+ is the horizon radius
obtained as the largest root of f (r+) = 0) may be obtained
through the use of the general definition of the surface gravity
[65],

T = κsg

2π
= 1

2π

√
−1

2
(∇μχν)(∇μχν),

where κsg is the surface gravity and χ = ∂/∂t is the null
Killing vector of the horizon. Taking χν = (−1, 0, 0),
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we have χν = ( f (r+)e−χ(r+), 0, 0) and hence on the
horizon where f (r+) = 0, we find (∇μχν)(∇μχν) =
− 1

2

[
f ′(r+)

]2 e−χ(r+). Thus, the temperature is obtained:

T = e−χ(r+)/2 f
′
(r+)

4π
. (7)

We also choose the scalar and the gauge fields as [5]

Aμ = (φ(r), 0, 0), ψ = ψ(r). (8)

Substituting (6) and (8) into the field Eqs. (3)–(5), we arrive
at

0 = ψ ′′ + ψ ′
[

1

r
+ f ′

f
− χ ′

2

]
+ ψ

[
q2φ2eχ

f 2 − m2

f

]
, (9)

0 = φ′′ + φ′
[
−beχφ′2

r
+ χ ′

2
+ 1

r

]

−2q2ψ2φ

f

[
1 − beχφ′2]3/2

, (10)

0 = f ′ − 2r

l2
+ 2κ2r

[
q2eχψ2φ2

f
+ f ψ ′2 + m2ψ2

−1

b
+ 1

b
√

1 − beχφ′2

]
, (11)

0 = χ ′ + 4κ2r

[
q2φ2ψ2eχ

f 2 + ψ ′2
]

, (12)

where the prime denotes the derivative with respect to r .
Note that in the presence of the nonlinear BI electrodynam-
ics equations (9) and (12) do not change compared to the
linear Maxwell case. In the limiting case where b → 0 the
equations of motion (10) and (11) turn into the corresponding
equations of the one-dimensional holographic superconduc-
tor with a Maxwell field [53]. The field Eqs. (9)–(12) enjoy
the symmetries

q → q/a, φ → aφ,ψ → aψ,

κ → κ/a, b → b/a2, (13)

l → al, r → ar, q → q/a,

m → m/a, b → a2b. (14)

Hereafter, we set q and l equal to unity by virtue of these
symmetries. The behavior of our model functions for large r
(near the boundary) read

χ → 0, f (r) ∼ r2,

φ ∼ ρ + μ ln(r), ψ ∼ ψ−r−�− + ψ+r−�+ , (15)

where μ and ρ are the chemical potential and the charge
density of the field theory on the boundary and �± = 1 ±√

1 + m2, which implies m2 ≥ −1. Actually, χ could be
a constant near the boundary but by using the symmetry of
the field equation, eχ → a2eχ , φ → φ/a, it could be set

to zero there. We consider ψ− and ψ+ as the source and
the dual of the order parameter, respectively. One may think
that either ψ+ or ψ− can be dual to the expectation value of
the condensation operator (or order operator) 〈O〉, while the
other is dual to its source. However, in general this is not the
case. While ψ+ can always be dual to 〈O〉, ψ− can be dual to
it only if −1 ≤ m2 < 0 where �− is positive. We give ψ− the
role of source and ψ+ the role of the expectation value of the
order parameter 〈O+〉 in this work. Since we seek for study
the effects of b and κ on our holographic superconductors
and different values of the scalar field mass do not influence
this behavior qualitatively, we consider m2 = 0 in this work.
With this choice, we have �+ = 2, �− = 0 and thus

ψ ∼ ψ− + ψ+
r2 , (16)

near the boundary. We set ψ− = 0 at the boundary and con-
sider ψ+ as the dual of order parameter 〈O+〉. In Appendix
A, we present the calculation for 〈O+〉 and show that it is
proportional to ψ+ and the other parameters do not appear
in its formula explicitly. It is remarkable that the asymptotic
solution for ψ given in Eq. (16) does not depend on the type
of electrodynamics and thus for the Maxwell case in three
dimensions the solution is the same as in Eq. (16). However,
the solution depends on the spacetime dimensions. This is
due to the fact that the equation for ψ given in (9) is inde-
pendent of the type of electrodynamics but depends on the
spacetime dimensions and the mass parameter m [34,53,66].

The next step is to solve the coupled nonlinear field equa-
tions (9)–(12) simultaneously and obtain the behavior of
the model functions. Then we could figure out the behav-
ior of different parameters of holographic superconductor,
specially the order parameter 〈O+〉 and the critical tempera-
ture, by using these functions. In this work, we use both ana-
lytical and numerical methods for studying the holographic
superconductor. For analytical study, we perform the Sturm–
Liouville method, while for numerical study, we use the
shooting method.

3 Sturm–Liouville method

In this section, we employ the Sturm–Liouville eigenvalue
problem to investigate analytically the phase transition of the
one-dimensional s-wave holographic superconductor in the
presence of BI nonlinear electrodynamics. In addition, we
calculate the relation between the critical temperature Tc and
the chemical potential μ near the horizon. Furthermore, we
study the effect of backreaction and BI nonlinear electrody-
namics on the critical temperature. For future convenience,
we define a new variable z = r+/r (∈ [0, 1]). With this new
coordinate, the field equations (9)–(12) could be rewritten as
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0 = ψ ′′ + ψ ′
[
f ′

f
− χ ′

2
+ 1

z

]
+ ψ

[
r2+eχφ2

z4 f 2 − m2r2+
z4 f

]
,

(17)

0 = φ′′ + φ′
[
bz3eχφ′2

r2+
+ χ ′

2
+ 1

z

]
− 2r2+ψ2φ

z4 f
ϒ

3
2 , (18)

0 = f ′ + 2r2+
z3 + 2r2+κ2

z3

×
[

1

b
(1 − ϒ− 1

2 ) − z4 f ψ ′2

r2+
− eχψ2φ2

f
− m2ψ2

]
,

(19)

0 = χ ′ − 4κ2

[
r2+eχψ2φ2

z3 f 2 + zψ ′2
]

, (20)

where ϒ = 1−bz4eχφ′2/r2+ and now the prime indicates the
derivative with respect to z. Since in the vicinity of critical
temperature the order parameter is small, we can consider it
as an expansion parameter

ε ≡ 〈Oi 〉,

where i = + or −. We focus on solutions for small values
of condensation parameter ε, therefore we can expand the
model functions as

ψ ≈ εψ1 + ε3ψ3 + ε5ψ5 + · · · ,

φ ≈ φ0 + ε2φ2 + ε4φ4 + · · · ,

f ≈ f0 + ε2 f2 + ε4 f4 + · · · ,

χ ≈ ε2χ2 + ε4χ4 + · · · ,

where ε � 1 near the critical temperature. Moreover, by con-
sidering δμ2 > 0, the chemical potential can be expressed
as

μ = μ0 + ε2δμ2 + · · · → ε ≈

(
μ − μ0

δμ2

)1/2

.

During a phase transition, μc = μ0, thus the order parameter
vanishes. Meanwhile, the critical exponent β = 1

2 is in good
agreement with the mean field theory result.

At zeroth order of ε, the gauge field equation of motion
(18) reduces to

φ′′ + φ′

z
+ bz3φ′3

r2+
= 0, (21)

which could be rewritten as a first order Bernoulli differential
equation by taking φ′ as a new function [67]. Therefore, one
obtains

φ′ = λr+
z
√
bλ2z2 + 1

(22)

for small values of b where we define λ = μ/r+ and fix the
integration constants by looking at the behavior of φ near the
boundary given in (15). Integrating (22) and using the fact
that φ(z = 1) = 0,1 we can obtain

φ0(z) =
∫ z

1

λr+
z

(
1 − 1

2
bλ2z2

)
dz

= λr+ log(z) − 1

4
bλ3r+(z2 − 1). (23)

When b = 0 the above equation reduces to the one of [50].
Note that at the zeroth order with respect to ε, ψ0 = χ0 = 0.
Substituting (22) in (19), the equation for f at zeroth order
with respect to ε has the following form:

f0(z) = r2+g(z),

g(z) = 1

z2 − 1 + 1

8
bκ2λ4

(
1 − z2

)
+ κ2λ2 log(z). (24)

The asymptotic behavior of the scalar field ψ was given
in (15). Near the boundary, we define the function F(z) so
that

ψ(z) = 〈Oi 〉 z�i

√
2r�i+

F(z). (25)

Inserting Eq. (25) in Eq. (17) yields

F ′′(z) + F ′(z)
[
g′(z)
g(z)

+ 2�

z
+ 1

z

]

+F(z)

[
�g′(z)
zg(z)

− m2

z4g(z)
+ �2

z2

]

− F(z)

2z4g(z)2 [λ2 log(z)(bλ2r+(z2 − 1) − 2 log(z))] = 0.

(26)

We can rewrite this equation in the Sturm–Liouville form as

[
T (z)F ′(z)

]′ + P(z)T (z)F(z) + λ2Q(z)T (z)F(z) = 0,

(27)

where the functions T , P , Q are defined as

T (z) = z2�+1
[

1

z2 − 1 + 1

8
bκ2λ4

(
1 − z2

)
+ κ2λ2 log(z)

]
,

(28)

P(z) = �

z

(
g′(z)
g(z)

+ �

z

)
− m2

z4g(z)
, (29)

1 It is necessary so that the norm of the gauge potential is finite at the
horizon.
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Q(z) = − log(z)
(
bλ2r+

(
z2 − 1

) − 2 log(z)
)

2z4g(z)2 . (30)

We can consider the trial function F(z) = 1 − αz2, which
satisfies the required boundary conditions F(0) = 1 and
F

′
(0) = 0. Then the eigenvalue problem could be solved for

(27) by minimizing the expression

λ2 =
∫ 1

0 T (F ′2 − PF2)dz∫ 1
0 T QF2dz

, (31)

with respect to α. For the backreaction parameter, we could
use the iteration method and define [68]

κn = n�κ, n = 0, 1, 2, . . . , (32)

where �κ = κn+1 − κn . Here, we take �κ = 0.05. Since
we are interested in finding the effects of nonlinearity on
backreaction up to the order κ2, we have

κ2λ2 = κn
2λ2 = κn

2(λ2|κn−1) + O[(�κ)4], (33)

where we take κ−1 = 0 and λ2|κ−1 = 0. We shall also retain
the linear terms with respect to the nonlinearity parameter b,
and therefore

bλ2 = b
(
λ2|b=0

)
+ O(b2). (34)

Then the minimum eigenvalue of Eq. (31) can be obtained.
At the critical point, the temperature is defined as (see Eq.
(7) and note that at zeroth order with respect to ε, χ is zero.)

Tc = f ′ (r+c)

4π
. (35)

Using Eqs. (11) and (23), we obtain

f ′ (r+c) = 2r+c + 2κ2r+c

b

[
1 − 1√

1 − bφ′ (r+c) 2

]
, (36)

and thus

Tc = 1

4π
(
μ

λ
)[2 − κ2

n (λ2|κn−1)

−3

4
bκ2

n (λ4|κn−1,b=0) + bκ2
n (λ4|κn−1,b=0)]. (37)

As an example, if b = κ2 = 0 we have

λ2 =
2
3α2 − 4

3α + 1

− 251α2

864 + 9α
16 + α2ζ(3)

4 − αζ(3)
2 + ζ(3)

4 − 1
4

.

Inserting α = 0.759, λ2
min = 13.76 and Tc = 0.429μ. The

latter result perfectly agrees with [50].
The values of Tc/μ for different backreaction and nonlin-

earity parameters are listed in Table 1. As shown, the effect
of increasing the backreaction parameter κ for a fixed value
of nonlinearity parameter b follows the same trend as raising
b for a fixed value of κ . In both cases, the critical temperature
Tc diminishes by the growth of the backreaction or nonlin-
earity parameters. It shows that the presence of backreaction
and Born–Infeld nonlinear electrodynamics makes the scalar
hair harder to form. In the next section, we will re-study the
problem numerically using the shooting method.

4 Shooting method

In this section, we will study our holographic superconductor
numerically. In order to do this, we use the shooting method
[8]. In this method, the boundary values are found by setting
appropriate initial conditions. So, for doing this, we need to
know the behavior of the equations of motion both at horizon
and at the boundary. Using a Taylor expansion at the horizon
around z = 1, we get

f (z) = f1 (1 − z) + f2 (1 − z) 2 + · · · , (38)

φ(z) = φ1 (1 − z) + φ2 (1 − z) 2 + · · · , (39)

ψ(z) = ψ0 + ψ1 (1 − z) + ψ2 (1 − z) 2 + · · · , (40)

χ(z) = χ0 + χ1 (1 − z) + χ2 (1 − z) 2 + · · · . (41)

Note that φ = 0 at horizon, otherwise it will be ill-defined
there. In our procedure, we find all coefficients in terms of φ1,
ψ0 and χ0 by using the equations of motion. Varying them at
the horizon, we try to get ψ− = χ = 0 at the boundary. So,
the values of ψ+ and μ are obtained. In addition, we will set
r+ = 1 by virtue of the equations of motion’s symmetry,

r → ar, f → a2 f, φ → aφ.

Performing a numerical solution, we can find the values
of Tc/μ for different backreaction and nonlinearity parame-
ters. In order to compare the latter results with the analytical
ones, we list both of them next to each other in Table 1. It
is obvious that there is a reasonable agreement between the
results of both methods. Moreover, in Table 1, the results of
[53] for b = 0 have been recovered for different values of
the backreaction parameter. As one could see in this table,
increasing the backreaction parameter for a fixed value of
b decreases the critical temperature. This means that larger
values of the backreaction parameter make the condensation
harder to form. Similarly, for a fixed value of κ , increasing the
nonlinearity of the electrodynamic model makes scalar hair
harder to form because it diminishes the critical temperature.
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Table 1 Analytical results of
Tc/μ for different values of
backreaction and nonlinearity
parameters.

b = 0 b = 0.04 b = 0.08

Analytical Numerical Analytical Numerical Analytical Numerical

κ2 = 0 0.0429 0.0460 0.0360 0.0410 0.0275 0.0362

κ2 = 0.05 0.0399 0.0369 0.0337 0.0326 0.0260 0.0286

κ2 = 0.1 0.0381 0.0295 0.0311 0.0260 0.0218 0.0227

κ2 = 0.15 0.0352 0.0236 0.0280 0.0207 0.0174 0.0180

κ2 = 0.2 0.0313 0.0189 0.0242 0.0165 0.0136 0.0143

κ2 = 0.25 0.0264 0.0151 0.0195 0.0131 0.0089 0.0114

(a) (b) (c)

Fig. 1 The behavior of the condensation parameter as a function of the temperature for different values of backreaction

(a) (b) (c)

Fig. 2 The behavior of the condensation parameter as a function of the temperature for different values of the nonlinearity parameter b

Figures 1 and 2 give information about the effect of the
backreaction and nonlinear electrodynamics on condensa-
tion. All curves follow a same trend. As b → 0, we regain
the results of the Maxwell case presented in [53]. As the
figures show, the condensation gap increases by making the
backreaction and nonlinearity parameters larger, while the
other one is fixed. So, it can be understood that it is harder to
form a superconductor. This is in agreement with the results
obtained from the behavior of the critical temperature before.

5 Summary and discussion

In this work, by using the Sturm–Liouville eigenvalue prob-
lem, we analytically investigated the properties of the (1+1)-
dimensional holographic superconductor developed in a BTZ
black hole background in the presence of BI nonlinear elec-
trodynamics. We have relaxed the probe limit and further
assumed that the gauge and scalar fields do backreact on the

background metric. We determined the critical temperature
for different values of backreaction and nonlinear param-
eters. We have continued our study by using the numerical
shooting method and confirmed that the analytical results are
in agreement with the numerical approach. We observed that
the formation of scalar hair is harder in the presence of BI
nonlinear electrodynamics and backreaction and it becomes
harder and harder to form by increasing the strength of either
the nonlinear or the backreaction parameters.

Finally, it would be of interest to extend this procedure
for other nonlinear electrodynamics like the Power-Maxwell
version and logarithmic cases and investigate the effects
of nonlinear electrodynamics on the critical temperature
and condensation operator of one-dimensional holographic
superconductors. These issues are now under investigation
and the results will appear elsewhere.
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Appendix A: Holographic calculation of 〈O+〉

Here, we present the calculation for the expectation value of
the order parameter 〈O+〉. In this work, we have considered
m2 = 0 and thus the behavior of the scalar field ψ near the
boundary is

ψ ∼ ψ− + ψ+
r2 . (A1)

ψ− plays the role of source. From gauge/gravity duality, we
know that the expectation value of the order parameter 〈O+〉
for this case is given by

〈O+〉 = ∂L

∂ (∂rψ)

∣∣∣∣
r→∞

, (A2)

where L is the Lagrangian density which could be obtained
from Eq. (1) via the formula S = ∫

d3xL. Employing Eq.
(A2) and the method of holographic renormalization [69,70],
one can obtain 〈O+〉.

The term ∂rψ appears in L as

L = −e−χ/2r f (∂rψ)2 + · · · . (A3)

Note that we have set l to unity by virtue of the symmetry
(13). From (A2) and (A3), we have

〈O+〉 = −2 lim
r→∞ e−χ/2r f ∂rψ. (A4)

Using (15) and (16), one could easily show that 〈O+〉 =
4ψ+. This result shows that the expectation value of the order
parameter is proportional to ψ+ and the other parameters do
not appear in its formula explicitly. It is worth to mention that
the divergence terms which may arise when one calculates
holographic quantities (via Eq. (A2) or other similar ones)
do not affect the value of it and can easily be eliminated
by using holographic renormalization approach. In the latter
method, the divergence is canceled by adding appropriate
counterterms to the action [69,70].
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