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Abstract We investigate the properties of holographic heat
engines with an uncharged accelerating non-rotating AdS
black hole as the working substance in a benchmarking
scheme. We find that the efficiencies of the black hole heat
engines can be influenced by both the size of the benchmark
circular cycle and the cosmic string tension as a thermody-
namic variable. In general, the efficiency can be increased
by enlarging the cycle, but is still constrained by a univer-
sal bound 2π/(π + 4) as expected. A cross-comparison of
the efficiencies of the accelerating black hole heat engines
and Schwarzschild-AdS black hole heat engines suggests
that the acceleration also increases the efficiency although
the amount of increase is not remarkable.

1 Introduction

Black holes are fascinating objects which provide a use-
ful link to explore the relationship between general rel-
ativity, thermodynamics and quantum theory. More than
four decades after Hawking’s discovery of black hole radia-
tion [1,2], the black hole thermodynamics has been estab-
lished and developed into an important sub-discipline in
physics. The study of black hole thermodynamics has already
shed some light on the nature of quantum gravity in the lack
of a consistent quantum theory of it. Recently, it is found
that the thermodynamical properties of black holes in Anti-
de Sitter (AdS) space are quite different from those in flat
or de Sitter(dS) space, which are thermodynamically stable,
on one hand, and on the other hand, deep insight has been
gained into some phenomena in strongly coupled quantum
field theories by means of AdS/CFT correspondence [3–8].

So far, many approaches have been introduced to ana-
lyze black hole thermodynamics, such as, those of posit-
ing the laws of gravitation to be connected with the laws of
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thermodynamics [9,10], treating the black holes as a holo-
graphically dual system in quantum chromodynamics [11]
and condensed matter physics [12,13], and approaching the
thermodynamics of black holes geometrically [14–23]. More
recently, by elevating the negative cosmological constant �

as the pressure and defining the thermodynamic volume satis-
fying a reverse isoperimetric inequality [24,25] as the conju-
gate to the pressure in the extended black hole thermodynam-
ics [24,26–30], some interesting thermodynamic phenomena
and rich phase structures quite analogous to the van der Waals
fluids are discovered [31], and this burgeoning subject, which
named as black hole chemistry [32,33], has attracted a lot of
attention.

In the context of black hole chemistry, Johnson proposed
the concept of holographic heat engines which can extract
work with AdS black holes used as the work materials in
the pressure–volume phase space [34]. The name of “holo-
graphic” originates from the fact that the cycle represents
a journey defined on the space of dual field theories in one
dimension lower [34]. After Johnson’s pioneering work, sub-
sequent studies have generalized this concept to other black
holes [35–48]. More recently, in order to better compare the
efficiency of the heat engines with different black holes as
working substances, Chakraborty and Johnson introduced a
circular cycle of the heat engine in the P − V phase space
to benchmark black hole heat engines [49]. Since the cir-
cular cycle of a heat engine is a judicious choice for all
working substances without favoring any species of black
holes, it can be considered as a benchmarking cycle in gen-
eral.

In this paper, we plan to generalize, in the benchmark-
ing scheme, the study of holographic heat engines to the
case of AdS black holes with acceleration. The accelerat-
ing black holes are known to be described by the so-called
C-metric [50–53], which has been used to investigate the
pair creation of black holes [54], the splitting of cosmic
strings [55,56], and even to construct the black ring in five-
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dimensional gravity [57]. Recently, Appels et al. have derived
the thermodynamics of accelerating black holes [58] and gen-
eralized the results to the case of varying conical deficits for
C-metric [59,60].

The paper is organized as follows. We will review the
thermodynamics of accelerating black holes with conical
defects in C-metric in next section. In Sect. 3, we will study
the benchmarking holographic heat engines with accelerated
AdS black holes as working substances with numerical anal-
ysis. We will summarize and conclude in Sect. 4.

2 A slowly accelerating AdS black hole and its
thermodynamics

Let us now give a brief review of an uncharged slowly accel-
erating AdS black hole and its thermodynamics. The acceler-
ated AdS black holes can be described by C-metric [58,59].
However, in order to have a well-defined temperature for
these black holes, it is appropriated to restrict the acceler-
ation to be slow (slowly accelerating C-metric) so that the
acceleration horizon can be negated by a negative cosmolog-
ical constant and only the black hole horizon exists [59].

Then, a slowly accelerating AdS black hole can be
described by the following C-metric [53,58,59]

ds2 = 1

�2

[
f (r)dt2 − dr2

f (r)
− r2

(
dθ2

g(θ)
+ g(θ) sin2 θ

dφ2

K 2

)]
,

(1)

where

f (r) = (1 − A2r2)

(
1 − 2m

r

)
+ r2

�2 , (2)

g(θ) = 1 + 2mA cos θ, (3)

and the conformal factor � = 1+ Ar cos θ . Here, the param-
eters m and A are related to the mass and the magnitude
of acceleration of the black hole respectively, K character-
izes the conical deficit of the spacetime, and � represents the
AdS radius. For the slowly accelerating case, technically , if
A� < 3

√
3/4

√
2, there is only the black hole event horizon

r+ which satisfies f (r+) = 0 [59]. It is easy to see that there
is a conical deficit in this spacetime which is unequal at two
different poles, and it is this difference of the deficits that
produces an overall force that drives the acceleration. In fact,
if we require that the angular part of the metric be regular at
a pole, then we have

K± = 1 ± 2mA , (4)

which indicates clearly that we can not have regularity at both
poles if 2mA �= 0, and this kind of irregularity along an axis
is precisely a definition of a conical singularity that signals

the existence of a cosmic string. Actually, the tension of the
string μ is related to the conical deficit angle δ by μ = δ/8π ,
where

δ = 2π

[
1 − g(θ)

K

]
. (5)

So, the string tension varies as we move along the axis, and
on the north pole (θ+ = 0) and the south pole (θ− = π ), the
cosmic string tensions are given by

μ± = 1

4
− g(θ±)

4K
= 1

4
− 1 ± 2mA

4K
. (6)

In order to avoid the occurrence of negative tension defects,
the requirement of μ+ ≥ 0 is compulsory. Clearly, it is easy
to find out that μ+ ≤ μ− ≤ 1/4.

In order to obtain the correct thermodynamics, it has been
argued that the normalization of the timelike Killing vector
should be appropriately chosen [61]. In fact, such a normal-
ization of the time coordinate can be obtained such that it
corresponds to the “time” of an asymptotic observer, τ = αt ,
with α = √

1 − A2�2 [60]. The black hole mass associated
with the normalized time can be found by using the method
of conformal completion [62,63],

M = α
m

K
. (7)

It should be pointed out that M is usually identified with
enthalpy rather than internal energy in extended black hole
thermodynamics. As usual, the temperature T is given by
using the conventional Euclidean method associated with the
normalized time τ ,

T = f ′(r+)

4απ
= m

2παr2+
+ A2m

2απ
− A2r+

2απ
+ r+

2πα�2 . (8)

And the entropy S of the accelerating black hole still obeys
the area theorem

S = πr2+
K (1 − A2r2+)

. (9)

The thermodynamic pressure associated with the cosmolog-
ical constant in extended black hole thermodynamics reads

P = − �

8π
= 3

8π�2 , (10)

and the thermodynamic volume is

V = 4π

3Kα

[
r3+

(1 − A2r2+)2
+ mA2�4

]
. (11)
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Then, if we allow the tension of the string to vary, the first
law can be straightforwardly derived [60]

δM = T δS + V δP − λ+δμ+ − λ−δμ−, (12)

where

λ± = 1

α

[
r+

1 − A2r2+
− m

(
1 ± 2A�2

r+

)]
. (13)

Here, λ± is defined as a thermodynamic length[59,60], which
is conjugate to the tension μ±.

As we have seen, all the thermodynamic variables are the
certain combinations of the solution parameters. A change
of solution parameter A may lead to changes of the thermo-
dynamic mass M and the cosmic string tensions, so does the
change of other solution parameters. Due to the complicated
combinations of the thermodynamic variables, it is quite a
challenge to obtain the analytic expression for the efficiency
of benchmarking black hole heat engines.

3 Benchmarking black hole heat engines and efficiency

For a valid cycle of a holographic heat engine, the efficiency
is defined by

η = 1 − QC

QH
, (14)

where QC denotes a net output heat flow in one cycle, and QH

represents a net input heat flow. In general, we can compute
the efficiency by keeping the corresponding tensions fixed
through the heat engine cycle, then the enthalpy M can be
considered as a function of S and P .

In the benchmarking scheme of black hole heat engines
[38,48], a circular or elliptical cycle has been suggested
in order to allow for cross-comparison of the efficiencies
of holographic heat engines with different black holes as
working substances. The cycle is described by the following
parameterized equation in the P − V plane,

P(θ) = P0(1 + p sin θ), V (θ) = V0(1 + v cos θ), (15)

where (V0, P0) is the center of the cycle. Strictly speaking,
the precise shape of the closed contour in the P − V plane
should be elliptical since the units of P and V are different
from each other.

For the special case of CV = 0, i.e., the specific heat
capacity at constant volume is vanishing, then enthalpy M
can be considered as a function of V and P . By tilling the
circular/elliptical cycle with a series of rectangles, a net out-
put heat flow can be written in a simple form by applying
Eq. (15)

QC = M(V0(1 + v), P0) − M(V0(1 − v), P0)

− π P0V0 pv

2
. (16)

Performing a similar algorithmic manipulation, we can also
get QH . Then the efficiency of the benchmarking black hole
heat engine can be calculated exactly. However, for rotating
black holes or the case with multiple complicated thermo-
dynamic variables, it is not easy to exactly determine which
part of the cycle curve is related to the output heat flow, then
Eq. (16) may be inapplicable to determining the net out-
put heat flow, and a numerical integration of TdS will be
needed [48].

For convenience, we can adjust the unit of each coordinate
axis in the P−V plane so that the shape of the cycle contour
looks like a circle with a radius of a numerical value R. Then
the circular cycle Eq. (15) reads

P(θ) = P0 + R sin θ, V (θ) = V0 + R cos θ. (17)

In order to keep the pressure and volume positive on the
circular cycle, the radius R needs to be constrained by the
circle center P0 and V0, i.e., R < P0 and R < V0. In the
following, we will examine properties of heat engines of an
accelerated AdS black hole by numerical estimations.

Now, without loss of generality, we choose K = K+ =
g(θ+) = 1 + 2mA in Eq. (6) so that the metric is regular on
the north pole (i.e., μ+ = 0), then the cosmic string tension
on the south pole becomes

μ− = K − 1

2K
. (18)

For fixed tension, the corresponding cycle contour in the
T − S plane can also be directly obtained by some algebraic
manipulations of the thermodynamic variables (see Fig. 1).

According to Eqs. (9) and (11), it is not difficult to deduce
thatCV �= 0 in the case of accelerated black holes. Therefore,
the numerical treatment should be called for.

In Fig. 2, we display the relation between the efficiencies
of holographic heat engines and the size of the circular cycle
in the P −V plane. Here, the Carnot efficiency is defined by
ηC = 1−TC/TH with maximum temperature TH and minim
temperature TC in the entire cycle process. We can see from
the figure that both the efficiency η and Carnot efficiency ηC
grow with the increasing radius R and the Carnot efficiency is
always higher than the efficiency of benchmarking black hole
heat engines. Furthermore, the larger the radius of the circle,
the bigger the difference. Therefore, the efficiency η cannot
approach the Carnot efficiency ηC even when the working
area of the P − V plane becomes larger. Besides these, it
is worth noting that the universal upper-bound proposed in
Ref. [48] is still valid, i.e.,
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(a) (b)

Fig. 1 For fixed tension μ− = 0.2, the corresponding cycle diagram of an accelerating black hole heat engine is respectively plotted in a P − V
plane and b T − S plane. Here, the center of the circle in P − V plane is (V0, P0) = (100, 20) with the radius R = 10

Fig. 2 The efficiency of a heat engine of accelerating black holes is
plotted as a function of radius R. Here, we assume the center of the
circular cycle in P − V plane is (V0, P0) = (100, 20) with the cosmic
string tension μ− = 0.2, then the radius for a valid heat engine cycle
should satisfy R < 20. Note that ηC denotes Carnot efficiency and ηD
means the upper-bound value of efficiency

η ≤ ηD = 2π

π + 4
, (19)

and the efficiency η approaches the upper-bound in the limit
of R → P0 .

For a fixed circular cycle radius, we have plotted the
benchmarking heat engine efficiency as a function of the cos-
mic string tension in Fig. 3, which shows that a stronger cos-
mic string tension will in principle lead to a somewhat higher
efficiency, but the change in efficiency is actually insignifi-

Fig. 3 The efficiency of a heat engine of accelerating black holes is
plotted as a function of μ−. Here, the circular cycle is assumed to satisfy
R = 10 with origin at (V0, P0) = (100, 20)

cant since the difference shows up only in the 5th significant
figure.

Now, we cross-compare the efficiency of different black
hole heat engines in the benchmarking scheme. The black
hole heat engines we choose are those of the slowly accel-
erating AdS black holes we just studied, the ideal gas black
holes and the Schwarzschild-AdS black holes. We plot the
efficiency of the benchmarking heat engine as a function of
the radius R with different black holes as working substances
in Fig. 4. It is worth noting that both the ideal gas black hole
and Schwarzschild-AdS black hole have a vanishing specific
heat at constant volume (i.e.,CV = 0, the detailed thermody-
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(a) (b)

Fig. 4 a The efficiencies vs the radius R for three different families
of black holes as the working material, including accelerating AdS
(denoted by η with μ− = 0.2), the ideal gas (denoted by ηI ) and
Schwarzschild-AdS (denoted by ηS) black holes. The differences in the

efficiencies are described in b, where ηI −η and ηS −η are represented
by the black dashed line and the green dotted line respectively. Note that
all the benchmarking circular cycle is centered at (V0, P0) = (100, 20)

namic quantities can be found in Refs. [31,48,49]), and the
holographic heat engine efficiency, which can be obtained
directly by using Eq. (16) in the benchmarking scheme, has
been studied in Ref. [48].

Figure 4 reveals that the work efficiency of holographic
heat engines of slowly accelerating black holes, in gen-
eral, is larger than that of Schwarzschild-AdS black holes,
but smaller than that of ideal gas black holes. Since in the
zero acceleration limit the metric (1) approaches that of a
Schwarzschild-AdS black hole, one may conclude that with
acceleration, the holographic heat engine efficiency is usu-
ally larger than that without although the difference is tiny.

4 Conclusion

We have explored the properties of holographic heat engines
with accelerating black holes as the working substances.
This family of accelerating AdS black holes described by C-
metric represents a black hole with conical deficits along one
axis. These conical deficits provide a driving force to generate
the acceleration of a black hole. Physically, the topological
defect originated from the conical deficit can be interpreted
as a finite-width cosmic string core. Due to the fact that all
thermodynamic variables of the accelerating black holes are
non-linear combinations of the solution parameters r+, m, �

and A, it is quite a challenge to obtain an analytical expres-
sion for the efficiency of the holographic heat engines and
numerical estimations are resorted to.

In a benchmarking scheme, we have examined the influ-
ence of the size of a benchmarking circular cycle and the cos-

mic string tension on the efficiency of black hole heat engines.
We find that the efficiency can be increased by enlarging the
cycle, but the efficiency cannot exceed the Carnot efficiency
as we would expect. Moreover, it is also constrained by a
universal bound 2π/(π + 4) proposed in Ref. [48]. When
the cosmic string tension is varied, the efficiency in principle
increases with the increasing cosmic string tension, but the
amount of increase is tiny.

A cross-comparison of the holographic heat engines with
slowly accelerating AdS black holes and the Schwarzschild-
AdS black holes in a same benchmarking cycle shows that the
presence of acceleration also increases the efficiency some-
what. Finally, it is worth pointing out that the thermodynam-
ics and the behavior of holographic heat engines, when the
accelerating black hole is charged, is an interesting but non-
trivial issue, which we would rather leave to a future work.
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