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Abstract We consider the effective type-II two-Higgs dou-
blet model originating from Dirac gaugino models with
extended supersymmetry in the gauge sector, which is auto-
matically aligned in the simplest realisations. We show
that raising the scale at which the extended supersymme-
try is manifest and including quantum corrections actu-
ally improves the alignment. Using an effective field theory
approach including new threshold corrections and two-loop
RGEs, plus two-loop corrections to the Higgs mass in the
low-energy theory, we study the implications from the Higgs
mass and other experimental constraints on the scale of super-
partners. We contrast the results of the minimal Dirac gaug-
ino model, where alignment is automatic, with the hMSSM
and the MRSSM, where it is not, also providing an hMSSM-
inspired analysis for the new models.

1 Introduction

In the absence of signals of strongly-coupled particles at the
LHC, it has become important to study the possibility of new
particles that couple to standard model (SM) states only via
couplings of electroweak strength. The bounds on such par-
ticles are still relatively weak but with much luminosity to
arrive there is still a substantial parameter space to explore,
and such theories perhaps represent now the best chance for
discoveries. Among such theories, one that has received sig-
nificant and now increasing attention is the Two Higgs Dou-
blet Model (THDM); see e.g. [1–4] and references therein.
It is important to ask the question: “does the Higgs sector
just consist of one doublet?” because the answer will give
profound information about nature. If there are indeed addi-
tional fundamental scalars that mix with the Higgs boson,
then this dramatically worsens the Hierarchy problem and
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would necessitate a rethinking of our ideas of naturalness.
On the other hand, such sectors naturally appear in the con-
text of supersymmetry (SUSY) and it is conceivable that a
second Higgs doublet could be the harbinger of a full SUSY
theory.

However, the measurements of the Higgs boson’s cou-
plings already place significant constraints on the amount
of mixing that it can suffer. It is for this reason that there
has been much interest in the idea of alignment in the Higgs
sector, i.e. that the mass eigenstates align with the vacuum
expectation value, because in this case the couplings would
be exactly SM-like.

To quantify this, consider two Higgs doublets �1,�2

which mix, and then rotate their neutral components as fol-
lows:

(
Re(�0

1)

Re(�0
2)

)
= 1√

2

(
cβ −sβ
sβ cβ

)(
v + h̃
H̃

)
(1.1)

where we shall throughout use the notation

cβ ≡ cos β, sβ ≡ sin β, tβ ≡ tan β.

In this basis, we can write the mass matrix as

M2
h ≡

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
, (1.2)

where the quantities Z1, Z5, Z6 are functions of the quar-
tic couplings and mixing angles only; we shall give explicit
expressions for this relationship later, in equation (2.20).
Clearly the mass eigenstates are only h̃, H̃ if

Z6 = 0,

and this is the condition for alignment, because the fields
align with the electroweak vacuum expectation value. On
the other hand, if Z6 �= 0, we must make a further rotation
which is conventionally parameterised by an angle α as

(
h̃
H̃

)
=
(
sβ−α cβ−α

cβ−α −sβ−α

)(
h
H

)
(1.3)
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where now h, H are the two mass eigenstates. We shall
assume throughout that h is the lightest eigenstate. In terms
of the masses of the physical bosons mh,H this gives

Z6v
2 = sβ−αcβ−α(m2

h − m2
H ). (1.4)

In both the type-I and type-II THDM, there is a Higgs eigen-
state that couples to the up-type quarks, and we define this
eigenstate to be �2. This means that the ratio of the h cou-
pling to all up-type quarks compared to the SM Higgs’ value
is

κu = cos α

sin β
,

while the ratio of the coupling to vector bosons to the SM
value is also determined entirely by the mixing (neglecting
loop effects from the rest of the extended Higgs sector):

κV = sin(β − α). (1.5)

However, there is a combined ATLAS + CMS bound [5] on
the ratio of these:

λVu ≡ κV

κu
= 1+0.13

−0.12 = 1

1 + 1
tβ tβ−α

. (1.6)

This is enough to constrain

tβ tβ−α � 7.3 ⇒ |Z6| �
∣∣∣∣∣−

7.3tβ
53 + t2

β

m2
H − m2

h

v2

∣∣∣∣∣
�
∣∣∣∣∣−0.5

m2
H − m2

h

v2

∣∣∣∣∣ , (1.7)

where the latter bound comes from the value tβ = 7.3, and
the bound is much more stringent for large or small tβ . For
mH somewhat abovemh this is a rather weak constraint, only
becoming relevant when the two states approach degeneracy.
However, in the type-II THDM, there is another constraint
from the ratio of the ratio of the neutral Higgs coupling to all
down-type quarks compared to its SM value

κd = − sin α

cos β

via

λdu ≡ κd

κu
= 0.92 ± 0.12 =

1 − tβ
tβ−α

1 + 1
tβ tβ−α

(1.8)

and, since from the previous constraint we know that the
denominator is nearly equal to one, we have

−0.04 � tβ
tβ−α

� 0.2 (1.9)

which in turn implies tβ−α � tβ and so sβ−αcβ−α � 1
tβ−α

and

−0.04
m2

H − m2
h

tβv2 � Z6 � 0.2
m2

H − m2
h

tβv2 . (1.10)

This leads to a sensible constraint; for example, for mH =
600 GeV and tβ = 5 it leads to Z6 � 0.2. So we see that
either we should take the mass mH to be large, in which case
we have decoupling, or we keep it light in order to possibly
detect it at the LHC, in which case we need alignment without
decoupling (see e.g. [6]). However, as we have seen this is
non-trivial; as the LHC measurements become more precise,
the constraints will tighten further, and it is in this spirit that
it is important to consider models where the alignment is
natural rather than ad hoc.

The problem for the different types of THDM is that align-
ment without decoupling is not generic when we choose the
masses – or equivalently quartic couplings – from the bot-
tom up. Hence it is logical to derive the couplings of the
THDM from some higher-energy theory and look for cases
where alignment arises naturally. For example, [7–9] pro-
posed models which lead to a natural alignment condition,
based on additional bosonic symmetries. Here, on the other
hand, we shall show how alignment arises automatically in
a class of supersymmetric models, in contrast to the MSSM
or NMSSM [10], with the additional benefits of (greatly)
increasing the naturalness of the model and being able to
predict the scale of new superpartners. Moreover, we shall
show that quantum corrections actually improve the align-
ment!

The class of models that we shall consider have a gauge
sector which is enhanced to N = 2 supersymmetry at a
(potentially high) scale MN=2. This fits into the framework
of Dirac gaugino models, which have been well-studied in,
for example [11–71]. In particular, the idea of N = 2 super-
symmetry in the gauge sector only and the consequences for
the Higgs sector were first explored in [16] and recently stud-
ied in [72,73]. In general, though, this was either taken to be
at the same scale as the other superpartners [73], or only a
rough estimate of the main contribution of the chiral sector
was included [16], while we shall show that increasing MN=2

improves alignment and increases naturalness!
In Sect. 2 we will describe our theory and how it leads to

natural alignment at tree level. In Sect. 3 we will outline the
effect of radiative corrections. In Sect. 4 we perform a preci-
sion study of the model using an EFT approach to obtain the
parameters at low energies, give predictions for the scale of
new physics from the value of the Higgs mass, and explore
the consequences for alignment. In Sect. 5 we consider all
of the relevant constraints on the model space, including the
latest LHC search for decays to τ pairs, b → sγ searches and
electroweak precision constraints, and show how this affects
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our model. In the appendix we give all of the one-loop thresh-
old corrections for our model at the scale of supersymmetry.
Finally, in Sect. 6 we briefly consider the case of the MRSSM.

2 Alignment from extended supersymmety

2.1 The Higgs sector of Dirac gaugino models

2.1.1 The minimal model

To endow gauginos with a Dirac mass, at a minimum we
need to add chiral fermions in the adjoint representation of
each gauge group, which means adding adjoint chiral super-
fields: a singlet S, an SU (2) triplet T, and an SU (3) octet O.
If we add just these fields, then we have the simplest Dirac-
gaugino extension of the MSSM whose Higgs sector has been
well studied [21,26,32,44,69]. However, we can then choose
the superpotential according to the symmetries that we want
to preserve. One motivation for the adjoint fields is as the
additional degrees of freedom from an N = 2 supersym-
metric gauge multiplet, and then the Hu, Hd fields become
an N = 2 hypermultiplet; in this work we shall assume that
N = 2 supersymmetry in the gauge/Higgs sector only is valid
above some scale MN=2. In this case, we can immediately
write down the superpotential

WHiggs = μHu · Hd + λSSHu · Hd + 2λT Hd · THu (2.1)

which contains the only interactions compatible with N = 2
SUSY and includes a central role for the R-symmetry. Indeed,
under the R-symmetry of the N = 1 theory the adjoint scalars
must have zero charge, and this prevents couplings of the
form S2, S3 etc which would otherwise be permitted by the
gauge symmetry. The condition of N = 2 supersymmetry
imposes

λS = 1√
2
gY , λT = 1√

2
g2 (2.2)

(where gY , g2 are the hypercharge and SU (2) gauge cou-
plings) at the scale MN=2, which we shall in general take to
be greater than the N = 1 SUSY scale.

We must also add supersymmetry-breaking terms, and
these do not necessarily need to respect the same symme-
tries as supersymmetric terms. The most general choice that
we can make for the Higgs and adjoint scalar sector for the
standard soft terms is

Lstandard soft = m2
Hu

|Hu |2 + m2
Hd

|Hd |2

+ Bμ(Hu · Hd + h.c) + 1

2
Miλiλi

+ m2
S|S|2 + 2m2

T tr(T †T ) + 1

2
BS

(
S2 + h.c

)

+ BT (tr(T T ) + h.c.) + m2
O |O|2 + BO (tr(OO) + h.c.)

+ AS (SHu · Hd + h.c) + 2AT (Hd · T Hu + h.c)

+ Aκ

3

(
S3 + h.c.

)

+ AST (Str(T T ) + h.c) + ASO (Str(OO) + h.c) ,

(2.3)

where λi = {λY , λ2, λ3} are the gauginos of hypercharge,
SU (2) and SU (3) respectively, with Majorana masses
MY , M2, M3, and to these we add the supersoft operators
mDiθ

α for Dirac masses as

∫
d2θ

[√
2mDY θαW1αS + 2

√
2mD2θ

αtr (W2αT)

+2
√

2mD3θ
αtr (W3αO)

]
(2.4)

where Wiα are the supersymmetric gauge field strengths.
Since we are interested in Dirac gaugino masses and

their attractive theoretical and phenomenological properties,
we should expect that the terms that violate R-symmetry
should be small: this includes the Majorana gaugino masses;
AS, AT ; but also Bμ. However, we require that the R-
symmetry is broken at some scale, since we believe that
global symmetries cannot be exact; but also, in this model,
the Higgs must carry R-charge and so the absence of an R-
axion requires it. Indeed, the R-axion is essentially the Higgs
pseudoscalar, whose mass is controlled by the Bμ term. We
therefore, as in earlier works, take Bμ to have a small but
non-zero value. We can also take motivation from models of
gauge mediation of supersymmetry [20,68], where the tri-
linears are all small, and we shall mostly neglect them in
the following (although they do not significantly affect the
analysis).

On the other hand, in gauge-mediated models the adjoint
scalars are typically the heaviest states. Taking largemS,mT ,

mO then motivates integrating them out of the light spec-
trum. Interestingly, since Bμ should remain small due to
the approximate R-symmetry, if we were to tune the Higgs
masses such that only one remains light, then we would have
very large tan β, and would have trouble obtaining the correct
Yukawa couplings for the down-type quarks and leptons. This
implies that a second Higgs should be taken to be somewhat
light, and motivates studying the two-Higgs doublet limit of
the model.

Finally, we note that this model does not have gauge-
coupling unification. If we wish to naturally restore gauge
coupling unification, we can add additional vector-like lep-
ton fields, as was done in [55,64]. Since they are vector-like,
we could also allow them to be hypermultiplets of the N = 2
at MN=2, but their inclusion will little change the discussion
in this paper so for sake of generality we shall neglect them.
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2.1.2 The MRSSM

Another very popular realisation of Dirac gaugino models is
the MRSSM [17,54,65,66,70]. In this model, we preserve an
exact continuous R-symmetry by including some R-Higgs
doublet superfields which couple to the Higgs bosons but
do not obtain an expectation value, allowing the Higgs dou-
blets Hu, Hd to have zero R-charge. The Higgs superpotential
becomes1

WMRSSM
Higgs = μu Ru · Hu + μd Rd · Hd

+λSuSRu · Hu + λSdSRd · Hd

+2λTu Ru · THu + 2λTd Rd · THd . (2.5)

If we then impose N = 2 supersymmetry at some scale, we
can treat (Ru, Hu) and (Rd , Hd) as hypermultiplets and then
we would have

λSu = gY√
2
, λSd = − gY√

2
, λTu = λTd = g2√

2
, (2.6)

where the difference in sign is explained by the different
charges of the hypermultiplets.2

R-symmetry then limits the possible soft-supersymmetry
breaking terms to consist of only the supersoft operator,
squark/slepton masses and

LMRSSM
standard soft = m2

Hu
|Hu |2 + m2

Hd
|Hd |2

+ Bμ(Hu · Hd + h.c) + m2
Ru

|Ru |2 + m2
Rd

|Rd |2

+ m2
S|S|2 + 2m2

T tr(T †T ) + 1

2
BS

(
S2 + h.c

)

+ BT (tr(T T ) + h.c.) + m2
O |O|2 + BO (tr(OO) + h.c.)

+ AS (SHu · Hd + h.c) + 2AT (Hd · T Hu + h.c)

+ Aκ

3

(
S3 + h.c.

)
+ AST (Str(T T ) + h.c)

+ ASO (Str(OO) + h.c) . (2.7)

The terms on the last line are usually neglected, but there is
no symmetry that forbids them (even if we expect them to be
small in e.g. gauge mediation models).

2.2 Two-Higgs doublet model limit

The Higgs sectors of the models in the previous subsec-
tion have been comprehensively studied. However, here we
wish to map them onto the two Higgs doublet model once

1 We note the discrepancy of a factor of 2 for the triplet coupling terms
compared to [53,54], which arises due to a difference in definition of T
and the choice for the neutral components to take the same pre-factor
as the singlet neutral components.
2 Equivalently the second hypermultiplet could be written (Hd , Rd )

and then we would have λSd = gY /
√

2, λTd = −g2/
√

2.

the adjoint scalars have been integrated out. The standard
parametrisation of the Two-Higgs doublet model is

VEW = m2
11�

†
1�1 + m2

22�
†
2�2 −

[
m2

12�
†
1�2 + h.c

]

+1

2
λ1

(
�

†
1�1

)2 + 1

2
λ2(�

†
2�2)

2

+λ3

(
�

†
1�1

) (
�

†
2�2

)
+ λ4

(
�

†
1�2

) (
�

†
2�1

)

+
[

1

2
λ5

(
�

†
1�2

)2 +
[
λ6

(
�

†
1�1

)

+λ7

(
�

†
2�2

)]
�

†
1�2 + h.c

]
, (2.8)

To map our supersymmetric model onto this, we choose to
make the identification

�2 = Hu, �i
1 = −εi j (H

j
d )∗ ↔

(
H0
d

H−
d

)
=
(

�0
1

−(�+
1 )∗

)

(2.9)

from which we can write down

m2
11 = m2

Hd
+ μ2, m2

22 = m2
Hu

+ μ2, m2
12 = Bμ.

(2.10)

The parameters λi were given at tree-level and with some
loop corrections in [21,44] in the limit of neglecting μ

and mDY ,mD2. However, when we integrate out the adjoint
scalars and retain these terms, there are corrections due to
the presence of trilinear couplings; setting the parameters
AS, AT to zero, we find for the minimal model:

λ1 = 1

4

(
g2

2 + g2
Y

)
−
(
gYmDY − √

2λSμ
)2

m2
SR

−
(
gmD2 + √

2λTμ
)2

m2
T P

λ2 = 1

4

(
g2

2 + g2
Y

)
−
(
gYmDY + √

2λSμ
)2

m2
SR

−
(
gmD2 − √

2λTμ
)2

m2
T P

λ3 = 1

4
(g2

2 − g2
Y ) + 2λ2

T + g2
Ym

2
DY − 2λ2

Sμ
2

m2
SR

− g2m2
D2 − 2λ2

Tμ2

m2
T P

λ4 = − 1

2
g2

2 + λ2
S − λ2

T + 2g2
2m

2
D2 − 4λ2

Tμ2

m2
T P

,

λ5 = λ6 = λ7 = 0. (2.11)
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Here we have defined

m2
SR ≡ m2

S + BS + 4m2
DY , m2

T P ≡ m2
T + BT + 4m2

D2.

(2.12)

In fact, the terms suppressed bymSR,mT P all have the effect
of suppressing the Higgs quartic coupling: in the limit of large
Dirac gaugino masses so that we can neglectm2

S, BS,m2
T , BT

we find

λ1, λ2 → 0, λ3 → 2λ2
T , λ4 → λ2

S − λ2
T . (2.13)

This simply corresponds to the well-known fact (see e.g. [14])
that the adjoint scalars eliminate the D-term potential of the
Higgs, because they couple via the D-term. Writing φi for
(anti)fundamental scalars and � for adjoint scalars, we have

L ⊃ √
2mD��aDa + gDaφ∗

i T
aφi → VD

= 1

2

(√
2mD��a + gφ∗

i T
aφi

)2
(2.14)

where T a are the generators of the gauge group with coupling
g, and we see that the above will always be zero when we
integrate out �.

For the MRSSM, for simplicity again neglecting AS, AT

– for completeness we give the full corrections in Appendix
D.4 – we find

λMRSSM
1 = 1

4

(
g2

2 + g2
Y

)
− (gYmDY − √

2λSdμd)
2

m2
SR

− (g2mD2 + √
2λTdμd)

2

m2
T P

λMRSSM
2 = 1

4

(
g2

2 + g2
Y

)
− (gYmDY + √

2λSuμu)
2

m2
SR

− (g2mD2 + √
2λTuμu)

2

m2
T P

λMRSSM
3 = 1

4

(
g2

2 − g2
Y

)

+ (gYmDY − √
2λSdμd)(gYmDY + √

2λSuμu)

m2
SR

− (g2mD2 + √
2λTdμd)(g2mD2 + √

2λTuμu)

m2
T P

λMRSSM
4 = − 1

2
g2

2

+ 2
(g2mD2 + √

2λTdμd)(g2mD2 + √
2λTuμu)

m2
T P

λMRSSM
5 = λMRSSM

6 = λMRSSM
7 = 0. (2.15)

In this case, the supersoft limit is even worse, because in
that limit all of the λi vanish. However, even with the addi-

tions of λS and λT in the minimal model, the potential is
not stable in this limit – for example if Hd or Hu are set
to zero the quartic terms vanish – and so we would require
loop corrections to prevent runaway vacua. An investigation
of whether this is even viable is beyond the scope of this
paper: instead, since we do not want to substantially reduce
the Higgs quartic coupling at low scales we shall consider
instead that |mDY | � mS, |mD2| � mT . As is also well
known (see e.g. [32,44]) and we shall later discuss, this limit
is also imposed on us by electroweak precision tests. In this
limit we have instead at tree-level

λ1, λ2 → 1

4

(
g2

2 + g2
Y

)
, λ3 → 1

4

(
g2

2 − g2
Y

)
+ 2λ2

T ,

λ4 → −1

2
g2
Y + λ2

S − λ2
T , (2.16)

and λMRSSM
i → λMSSM

i :

λMSSM
i , λMSSM

2 → 1

4

(
g2

2 + g2
Y

)
, λMSSM

3 → 1

4

(
g2

2 − g2
Y

)
,

λMSSM
4 → −1

2
g2
Y . (2.17)

Hence for the rest of the paper we shall consider our low-
energy theory to be a type-II two Higgs doublet model with
an additional (Dirac) bino and wino (the gluino must remain
heavy due to LHC constraints – currently of the order of 2
TeV). We shall fix the boundary conditions at high energies
and find some interesting conclusions.

2.3 Tree-level alignment

In [16,73] the Higgs sector of Dirac gaugino models was
investigated in the limit that the couplings λS, λT took their
N = 2 supersymmetric values at the low energy scale. How-
ever, they also pointed out that alignment in the Higgs sector
would be broken by quantum corrections to the (2, 2) element
of the Higgs mass matrix. In this section we shall consider
just the potential at tree-level, and in Sect. 4 consider loop
corrections, contrasting our results with theirs.

To begin with, the mass-matrices for the CP-even neutral
scalars in the two-Higgs doublet model can be parametrised
in the alignment basis where

(
Re(�1)

Re(�2)

)
= 1√

2

(
cβ −sβ
sβ cβ

)(
v + h
H

)
(2.18)

is (see e.g. [1–3])

M2
h =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
, (2.19)
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where, using λ345 ≡ λ3 + λ4 + λ5 we have

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2
λ345s

2
2β,

Z5 ≡ 1

4
s2

2β [λ1 + λ2 − 2λ345] + λ5

Z6 ≡ − 1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
. (2.20)

The parameter mA is the pseudoscalar mass, given by

m2
A = − m2

12

sβcβ

− λ5v
2, (2.21)

while the charged Higgs mass is

m2
H+ =1

2
(λ5 − λ4)v

2 + m2
A. (2.22)

The neutral Higgs masses are

m2
H,h = 1

2

[
m2

A + (Z1 + Z5)v
2

±
√(

m2
A + (Z5 − Z1)v2

)2 + 4Z2
6v4

]
. (2.23)

For our minimal model we have

Z1 = 1

4

(
g2

2 + g2
Y

)
(1 − s2

2β) + s2
2β

2
(λ2

S + λ2
T ) (2.24)

Z5 = 1

2
s2

2β

[(
g2

2 + g2
Y

)
2

− (λ2
S + λ2

T )

]
(2.25)

Z6 = −1

2
s2βc2β

[
(g2

2 + g2
Y )

2
− (λ2

S + λ2
T )

]
(2.26)

and

m2
H,h = 1

2

⎡
⎢⎣m2

A + v2

4
(g2

2 + g2
Y ) ± v2

⎡
⎣
(

1

4
(g2

2

+g2
Y )(2s2

2β − 1) − s2
2β(λ2

S + λ2
T ) + m2

A

v2

)2

+s2
2βc

2
2β

(
(g2

2 + g2
Y )

2
− (λ2

S + λ2
T )

)2
⎤
⎦

1/2
⎤
⎥⎦ .

(2.27)

The Higgs mass matrix is diagonalised to find the physical
Higgs masses and the mixing angle α. From the identification
of the 2HDM parameters in (2.10) we obtain

s2(β−α) = v2

m2
H − m2

h

s2βc2β

[ (
g2

2 + g2
Y

)
2

− (λ2
S + λ2

T )

]
,

cβ−α = s2βc2β v2
(
g2
Y + g2

2 − 2(λ2
S + λ2

T )
)

4

√(
m2

H − m2
h

) (
m2

H − v2

2

{
(g2

Y + g2
2)

c2
2β

2 + (λ2
S + λ2

T )s2
2β

}) .

(2.28)

The condition for alignment is the diagonalisation of M2 i.e.
Z6 → 0. From Eq. (2.26) we see this amounts at tree-level
to having

λ2
S + λ2

T = g2
Y + g2

2

2
. (2.29)

In other words, when the couplings respect their N = 2
values, the Higgs doublets are automatically aligned! From
Eqs. (2.28, 2.29) we find that in this alignment limit, cβ−α →
0 and sβ−α → 1, therefore the heavy CP-even neutral scalar
doest not take part in electroweak symmetry breaking while h
is a Standard Model Higgs-like boson. The tree-level masses
of the two neutral CP-even Higgs bosons are

mN=2
h = mZ , mN=2

H = mA, (2.30)

while the charged Higgs boson mass is given by

m2,N=2
H± = m2

A + 3m2
W − m2

Z , (2.31)

correcting the expression given in [16,73]. Hence, at tree-
level, the model exhibits alignment for any value of tan β

and the tree-level Higgs mass is independent of tan β (which
was already noted in [16,73]).

On the other hand, for the MRSSM there is no automatic
alignment, because the Higgs sector at tree-level closely
resembles that of the MSSM once the adjoint scalars and R-
Higgs fields are decoupled; this can be seen just by putting
λS = λT = 0 in the above equations. In the following we
shall therefore mostly focus on the minimal Dirac gaugino
model (with some further comments about the MRSSM).

3 Radiative corrections to alignment

As mentioned above, the perfect alignment obtained at tree-
level is not preserved when the radiative corrections to the
scalar effective potential are taken into account. In addition
to the corrections already present in the MSSM, there are
two new sources for this misalignment. The first is due to
the appearance of chiral fields, quarks and leptons, at a scale
MN=2. This scale can be identified with the fundamental
scale of the theory, or an intermediate scale where a partial
breaking N = 2 → N = 1 is achieved (while an explicit
realisation of this partial supersymmetry breaking remains
unknown for a chiral theory, there is not a no-go theorem
showing it to be impossible). The second large contribution
comes from the mass splitting between fermonic and bosonic
components of all of the superfields, i.e. coming from the
N = 2 → N = 0 (or N = 1 → N = 0) breaking. We will
discuss them here in turn.
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3.1 Misalignment from N = 2 → N = 1 (chiral matter)

When we run our couplings from the N = 2 scale MN=2 to
the scale of the N = 1 supersymmetric superparticles (which
we shall call MSUSY) there will be a splitting induced of λS

and λT relative to the N = 2 SUSY relations. This in turn
will lead to misalignment at MSUSY via a non-zero Z6:

Z6(MSUSY) = 1

4
s2βc2β

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)
]

+ threshold corrections. (3.1)

To obtain an estimate of the magnitude of this splitting, we
can integrate over the difference in the beta functions for λS

and λT to leading order:

[
2λ2

S − g2
Y

]
MSUSY

= − 2g2
Y

16π2

[
3|yt |2 + 3|yb|2 + |yτ |2

−10g2
Y

]
log

(
MN=2

MSUSY

)
, (3.2)

[
2λ2

T − g2
2

]
MSUSY

= − 2g2
2

16π2

[
3|yt |2 + 3|yb|2 + |yτ |2

−6g2
2

]
log

(
MN=2

MSUSY

)
. (3.3)

These equations are only useful for small MN=2/MSUSY,
because for large ratios the top Yukawa coupling can change
by a factor of two or more, but it gives an indication of the

amount of misalignment: even for log
(

MN=2
MSUSY

)
∼ O(10) we

find

Z6(MSUSY) ∼ − O(0.1)
tβ

1 + t2
β

(
t2
β − 1

t2
β + 1

)(
log MN=2/MSUSY

10

)
.

(3.4)

This is a small deviation from alignment indeed, and very
encouraging. We shall investigate this quantitatively in Sect.
4, and will find that due to the diminishing Yukawa couplings
at high energies,3 the actual splitting is smaller than this
naive estimate. As an aside, a similar conclusion is reached
if we extend our Dirac Gaugino theory by including addi-
tional fields to the Minimal Dirac Gaugino Supersymmetric
standard Model (MDGSSM) to restore gauge coupling uni-
fication.

3.2 Misalignment from N = 1 → N = 0 (mass splitting)

More significantly, there is the potential misalignment
induced from the threshold corrections at MSUSY and then

3 This is true for reasonable values of tan β � 1.5. For values of tan β

near unity the Yukawa couplings diverge at high energies so we cannot
consistently place our N = 2 scale there.

the running between MSUSY and the scale of the THDM; let
us take the matching scale (as commonly done) to be the
electroweak vev v. These can both be approximated at one
loop by corrections to the δλi . In the approximation that the
singlet and triplet scalars are degenerate with mass M� , and
the stop squarks are degenerate with mass mt̃ and neglecting
the splitting between the couplings λS,T and their N = 2
values we find, matching at a scale μ:

δλ1 = 1

16π2 log
M2

�

μ2

[
λ4
S + 3λ4

T + 2λ2
Sλ

2
T

]

δλ2 = δλ1 + 3y4
t

8π2 log
m2

t̃

μ2

δλ3 = 1

16π2 log
M2

�

μ2

[
λ4
S + 3λ4

T − 2λ2
Sλ

2
T

]

δλ4 = 1

16π2 4λ2
Sλ

2
T log

M2
�

μ2 , (3.5)

using yt , yb, yτ to denote the top, bottom and τ Yukawa
couplings. We give full (updated) expressions in the limit
mDY ,mD2 � mS,mT in Appendix 1.

We then find the remarkable result that the singlet/triplet
scalar contributions to Z6 exactly cancel out! We then find
that the dominant contribution to Z6 is that coming from the
stops:

Z6(v) � Z6(MSUSY) + s3
βcβ × 3y4

t

8π2 log
m2

t̃

m2
t
, (3.6)

where mt is the top quark mass. Although the magnitude of
this is the same as the loop contribution to Z6 in the MSSM,
the misalignment thus induced is much smaller, because (a)
there is no tree-level contribution, and (b) it is also propor-
tional to the stop correction to the Higgs mass, which is
smaller than in the MSSM due to the tree-level boost to the
Higgs mass. To investigate the misalignment in this model
further, however, we shall in the next section perform a pre-
cision study using numerical tools, where we shall use the
logic of the hMSSM [74]/h2MSSM [73] to show that the
misalignment in the model is even smaller than the above
naive estimate.

4 Precision study

To precisely study the quantum corrections to alignment in
our minimal model, we implemented the low-energy model
consisting of the THDM supplemented by a Dirac bino and
a Dirac Wino into the package SARAH. We describe the cou-
plings of the model in detail in Appendix 1. We then modified
the code to implement the boundary at a supersymmetry scale
MSUSY and use the two-loop supersymmetric RGEs for the
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minimal Dirac gaugino extension of the MSSM [46,75] as
generated by SARAH [76–78]. While this theory does not fit
into a GUT and has no gauge coupling unification, we imple-
mented an N = 2 supersymmetry scale where the couplings
λS, λT take their N = 2 supersymmetric values. By running
all the way from a low-scale Q (which we take to be the scale
of the Dirac gauginos and Heavy Higgses, but could equally
be mtop) up to MSUSY and then MN=2 and back down, iterat-
ing until the results converge, we were able to find consistent
values of the parameters. At the scale Q, the threshold cor-
rections are those that are included in SARAH by default:

• One-loop matching of Yukawa couplings to the Standard
Model values, plus two-loop strong corrections to the top
Yukawa.

• One-loop gauge threshold corrections.
• Two-loop corrections to the Higgs masses [79–81]

(which implement the generic expressions of [80,82,83]
and the solution to the Goldstone Boson catastrophe of
[81,84]).

We employed the two-loop RGEs for this model up to MSUSY,
and then at the scale MSUSY, we implemented the following
thresholds:

• Tree-level correction to the λi from Dirac gaugino masses
given in (2.11), even if we are otherwise neglecting the
Dirac gaugino masses.

• One-loop corrections to the λi given in B.3.
• Conversion of MS to DR gauge couplings given in B.1.
• Conversion of MS to DR Yukawa couplings proportional

to the strong gauge coupling, given in B.1.

We take MSUSY to be a common mass of left- and right-
handed stops, and assume that other MSSM particles have
masses at this scale; we allow the singlet at triplet scalars
to be heavier at a scale M� . We eliminate all R-symmetry-
violating terms (such as squark trilinear couplings) and
assume that

mDY ,mD2, μ � MSUSY.

This means that we neglect squark mixing, which greatly
simplifies the thresholds. The thresholds for supersymmetric
particles that we include are then nearly complete in this
limit: the gauge and Yukawa threshold corrections vanish for
the MSSM couplings, and we only neglect the corrections
to the gauge/Yukawas induced by the adjoint scalars – since
their effect is in general very small; we leave the calculation
and implementation of these for future work. However, we
do include their contribution to the Higgs quartic couplings.
Furthermore, we know that in the limit of zero squark mixing
the two-loop corrections to the Higgs quartic couplings are

also small or even vanishing [85], and so we are justified in
neglecting them.

To perform a more general scan over the parameter
space including trilinear scalar couplings, general masses and
allowing μ,mDY ,mD2 to be of the order of MSUSY we would
need to compute the additional threshold corrections. While
we expect that the effect of μ,mDY ,mD2 on our results will
be very small, it would nonetheless be interesting to compute
these in the future.

We performed scans over the values of tan β and varied
MSUSY to obtain a light Higgs mass of 125.15 GeV. For the
other values we take

M� = 5 TeV, (mDY ,mD2, μ) = (400, 600, 500) GeV,

mtree
A = 600 GeV (4.1)

by imposing

m2
12 = − (mtree

A

)2
sβcβ. (4.2)

As we shall later see, these are compatible with all cur-
rent experimental constraints. Note, on the other hand, that
we shall not discuss collider limits on the electroweakinos
because the effect of changing their masses is tiny.

In the scans we see little deviation between mtree
A and the

mass of the heavy/charged Higgses because the mixing is
small; indeed the results are not especially sensitive to mtree

A
as a result.

4.1 Running from the N = 2 scale

At the scale Q = 400 GeV, we find gY = 0.37, g2 =
0.64 ± 0.01. These are barely different at the SUSY scale
and vary little with MN=2, but we do find some dependence
of the ratios

√
2λS/gY ,

√
2λT /g2 on this scale, which we

give in Fig. 1. The values in the plot were taken with a com-
mon supersymmetric scale of MSUSY = 3 TeV and have
essentially no dependence on mA.

An alternative way of visualising this information is in the
quantity Z1 evaluated at the SUSY scale. Since our model is
always very near alignment, this gives the “tree-level” Higgs
mass and so in Fig. 2 we plot v

√
Z1(MSUSY). We see that

for MN=2 = MSUSY this is always essentially MZ , while as
we increase MN=2 we obtain a further enhancement to the
Higgs mass at small tan β � 1.5.

If we were to include no further corrections, then the value
of Z6 at MSUSY would be given by

Z6(MSUSY) = 1

4
s2βc2β

[
g2
Y (2λ2

S/g2
Y − 1) + g2

2(2λ2
T /g2

2 − 1)

]
. (4.3)

Crucially then we see that for MN=2 > MSUSY this is domi-
nated by the relative positive shift in λT , which in turn yields
a negative contribution to Z6. The results from our scans
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Fig. 1 Variation of the ratios
√

2λS/gY and
√

2λT /g2 at the scale MSUSY with tan β, for MN=2 = MSUSY, 1010 GeV and 1016 GeV

Fig. 2 v × √
Z1(MSUSY)

against tan β for
MN=2 = MSUSY, 1010 GeV and
1016 GeV, which corresponds to
the “tree-level” value of the
Higgs mass before we take
running from MSUSY (or
equivalently the SUSY
corrections at MZ ) into account
(we take v = 246 GeV in the
figure). We see that increasing
MN=2 increases the Higgs
mass, particularly for small
tan β > 1.5

for the value of Z6 at the SUSY scale almost exactly corre-
spond to the above equation, which we plot in Fig. 3. The
differences (particularly the tiny difference from zero for the
N = 2 scale equal to MSUSY) come from the tree-level and
loop-level shifts.

4.2 Running below MSUSY

Once we include the two-loop running below MSUSY, the
picture changes substantially. This is dominated by the effects
of the stops via their absence from the RGEs; we plot the
results of Z6 for the same scan as in Fig. 3 at the scale of our
low-energy theory in Fig. 4.

Interestingly, the results can be understood by following
the reasoning of the hMSSM [74]/h2MSSM [73] treatment.
In that framework, the quantum corrections to the Higgs mass
are assumed to be dominated by the (2, 2) component – and
further that we can neglect the contributions to the other com-
ponents compared to the tree-level ones. We shall first review
what happens in the hMSSM and then apply the analysis to
our case.

4.2.1 (Lack of) alignment in the hMSSM

In the hMSSM [74], we have λ2 = M2
Z+ε

v2 , where ε encodes
the loop corrections (dominated by stops), and all other terms
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Fig. 3 Z6(MSUSY) against
tan β for
MN=2 = MSUSY, 1010 GeV and
1016 GeV, which corresponds to
just the contributions to Z6 from
the running of λS,T and the
threshold corrections. The solid
lines show the full value of Z6,
while the dashed lines are just
those given by Eq. (4.3), i.e.
without threshold corrections

Fig. 4 Z6(Q) against tan β,
where Q = 400 GeV is our
low-energy matching scale. We
find that the model shows good
alignment for all values of
tan β > 1.5, with the surprising
conclusion that raising the
N = 2 scale improves the
alignment

are taken to have their tree-level values, giving the neutral
Higgs mass matrix in the alignment basis of

m2
h,H =

(
M2

Zc
2
2β + εs4

β −M2
Z s2βc2β + s3

βcβε

−M2
Z s2βc2β + s3

βcβε m2
A + M2

Z s
2
2β + s2

βc
2
βε

)
.

(4.4)

Now let us suppose that we tune the values to obtain align-
ment. We then have

−M2
Z s2βc2β + s3

βcβε = 0

M2
Zc

2
2β + εs4

β =m2
h (4.5)

which leads to

c2β = m2
h

M2
Z

> 1 or cβ = 0, (4.6)

i.e. it is impossible to achieve alignment without decoupling
or going to the large tan β limit with these approximations.
If we do not neglect the other contributions to Z6, in the case
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of exact alignment we then have

0 = Z6 = 1

v2tβ

(
m2

h − M2
Zc2β

)
− sβcβ

(
c2
βδλ1−c2βδλ345

)

0 =
(
m2

h − M2
Zc2β

)
− v2s2

β

(
c2
βδλ1 − c2βδλ345

)
(4.7)

Since we expect λ1, λ345 � λ2, and for tβ > 1 we have s2
β >

c2
β, s2

β > |c2β |, this is still impossible to satisfy.4 However,
we will find that for our scenario things are somewhat better.

4.2.2 Alignment in the Dirac-gaugino model

Using the expressions (2.16) for the quartic couplings, we
can rewrite

λ1 ≡ M2
Z

v2 + δλ1, λ2 ≡ M2
Z

v2 + ε

v2 ,

λ345 ≡ M2
Z

v2 + 1

2
(2λ2

S − g2
Y ) + 1

2
(2λ2

T − g2
2) + δλ345.

(4.8)

This leads to

Z1v
2 = M2

Z + εs4
β + δλ1c

4
β + 1

2
δλ345s

2
2β

+ v2
[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
s2
βc

2
β

Z6v
2 = s3

βcβε − v2sβcβ(c2
βδλ1 − c2βδλ345)

+ 1

2
c2βsβcβv2

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
. (4.9)

The corrections δλi can be interpreted as either coming from
running the couplings between the scale MSUSY and Q, or
alternatively from integrating out the supersymmetric parti-
cles at the scale Q. In the latter case we can obtain an estimate
of their values from the expressions (3.5) and see that they
are typically suppressed relative to ε/v2 by a numerical fac-
tor and also the ratio of the electroweak gauge coupling to
the strong gauge coupling or top Yukawa, and we find that
we can therefore continue with the hMSSM approximation
and neglect them. However, the effect from the running of
λS, λT is non-negligible: eliminating ε in exchange for the
Higgs mass and defining

δ̂λ345 ≡ 1

2
(2λ2

S − g2
Y ) + 1

2
(2λ2

T − g2
2) (4.10)

4 In the full MSSM the radiative corrections to λ345 and λ7 – which we
are neglecting – can be large enough to allow alignment for tan β � 10
[6,86]. However, this also requires significant stop mixing, which we
do not have in our model.

we have

Z6 = sβcβ

v2(m2
As

2
β + M2

Zc
2
β − m2

h)

[
(m2

A − m2
h)(m

2
h − M2

Z )

− v2δ̂λ345

(
m2

As
2
β − M2

Zc
2
β + m2

hc2β

)

+ v4c2
βs

2
β(δ̂λ345)

2
]

≈ 0.12

tβ
− 1

2

tβ
1 + t2

β

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
. (4.11)

We shall later give the expressions for eliminating λ2 and
calculating Z6 in any THDM with general λi , i = 1 . . . 4 in
Eqs. (6.3) and (6.4).

A comparison of the above formula with the curves in
Fig. 4 shows that this gives a reasonable fit. In the case of
MN=2 = MSUSY the expression is particularly simple, but
in the other cases we need to take account of the varation of√

2λS(MSUSY),
√

2λT (MSUSY) with tan β that can be seen
in Fig. 1.

The main conclusion that can be drawn from the above
formula is that the misalignment coming from the squark
corrections required to enhance the Higgs mass can be com-
pensated by the effect of running λS, λT . Indeed, we see from
Fig. 4 that for MN=2 = 1016 GeV, Z6 is essentially vanish-
ing for tan β � 3. From the curves in the figure, we see that
increasing the N = 2 scale causes a partial or total cancel-
lation of the misalignment contributions, meaning that the
Higgs boson is accidentally very Standard-Model-like, inde-
pendent of the mass of the heavy Higgs! This is the main
result of the paper.

4.3 Higgs mass bounds on the SUSY scale

Finally we consider the effect of the loop corrections in the
low-energy theory on the Higgs mass (i.e. those coming
from the Higgs sector itself, the top and the electroweaki-
nos). In Fig. 5 we show the tree-level and one-loop values
for the Higgs mass as we vary tan β (with MSUSY fixed to
ensure mh = 125.15 GeV at two loops). We find a signif-
icant upward shift of about 7 GeV at one-loop, and then a
downward shift of about 1 or 2 GeV from one to two loops.
Note that we can interpret the “tree-level” Higgs mass as
the loop-level Higgs mass in the full Dirac gaugino model
including the effects of the stops and gluinos (which in the
EFT formalism appear via the RGEs, rather than fixed-order
diagrams).

In Fig. 6 we show the final curve of tan β against MSUSY,
for different values of the N = 2 scale between MSUSY and
1016 GeV.

The plot shows that there is a minimum for MSUSY around
tan β � 2 or 3, particularly for larger values of MN=2, which
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Fig. 5 Effect of loop
corrections in the low-energy
theory on the Higgs mass. The
tree-level and one-loop values
for the Higgs mass are shown
against tan β for N = 2 scales
of the stop scale (MSUSY) and
1016 GeV; the two-loop value of
the Higgs mass is fixed to the
black dotted line

Fig. 6 SUSY scale that fits mh = 125.2 GeV against tan β. The cases
MN=2 = {MSUSY, 1010 GeV, 1016 GeV} are the solid lines in blue,
red and purple respectively and are labelled in full; the cases MN=2 =
{104, 106, 108} GeV are respectively shown in blue dashed, solid green
and solid orange curves and only labelled with {104, 106, 108}. Due
to the large range of scales MSUSY values for small tan β and the lit-

tle change for large tan β we have split the plot into three quadrants to
show the values more clearly, but for comparison we give an inset graph
showing the three curves MN=2 = {MSUSY, 1010 GeV, 1016 GeV} with
MSUSY (GeV) on a logarithmic scale on the abscissa and tan β on a lin-
ear scale on the ordinate
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can be understood in terms of the splitting of λT from its
N = 2 value and the consequent boost to the Higgs mass,
which can be clearly seen in Fig. 2.

The results in Fig. 6 contrast starkly with the MSSM case
matched onto the 2HDM as shown in e.g. [87]: due to the
enhancement to the Higgs mass from the new couplings
already seen in Fig. 2 we have a much lower SUSY scale. On
the other hand, there are significant differences from the val-
ues quoted in [73] which are most closely related to the case
MN=2 = MSUSY; here of course we have light electroweaki-
nos, although the largest difference is the significantly more
accurate EFT calculation employed here.

5 Experimental constraints

Since our model realises excellent alignment, the light Higgs
couplings are very nearly Standard-Model-like across the
whole parameter space, and so there is no significant con-
straint from those – this is in contrast to e.g. the hMSSM
scenario, where for low tan β the Higgs couplings provided
until recently the most important lower bound on the Heavy
Higgs mass. However, there are still significant constraints
on the parameter space coming from electroweak precision
tests, flavour and direct searches, as we detail below.

5.1 Electroweak precision corrections

There are two contributions to the electroweak precision
parameters: those coming from the high-energy theory, and
those coming from the low-energy theory. In the high-energy
theory there will be contributions at tree-level from the triplet
scalars: they should obtain a vacuum expectation value, and
in our EFT this manifests itself as generating effective oper-
ators.

In the limit of zero CP violation, and neglecting the terms
AS, AT we can write the effective operator arising from inte-
grating out the triplet as quite simply

L ⊃ 1

4m4
T P

tr

[
Dμ

(
σ a[(√2λTμ + g2mD2)H

†
d σ aHd

+ (g2mD2 − √
2λTμ)H†

u σ aHu
])]2

(5.1)

where we understand summation on the index a and

Dμσ a = σ a∂μ − ig2[Wμ, σ a]. (5.2)

When we give a vacuum expectation value to the Higgs, this
translates into the constraint from the expectation value of
the triplet:

�ρ = �m2
W

m2
W

= v2

m4
T P

(√
2λTμ + g2mD2c2β

)2

, (5.3)

while the experimental best-fit value is [88]

�ρ = (3.7 ± 2.3) × 10−4. (5.4)

For μ = 500 GeV and an approximately N = 2 value for
λT , with small tan β insisting that this contribution does not
exceed the experimental bound by 3σ gives

mT P > 1500 GeV (5.5)

while simply saturating without exceeding the central best-fit
value would limit instead mT P > 2 TeV.

On the other hand, we also have a contribution from the
electroweakinos at loop level, which increases as the Dirac
mass/μ-term become smaller. Hence they cannot be arbitrar-
ily light. In Fig. 7 we plot the value of �ρ calculated in the
low-energy theory for the scan values (4.1) and find that they
are below the experimental limit across the whole parameter
space.

5.2 Bounds on tan β and mA

The most stringent constraints on the parameter space of our
model come from the searches for pp → H/A → ττ at
the LHC; and the decay B → sγ determined in [89], which
bounds the charged Higgs mass to be heavier than 580 GeV
independent of the value of tan β (which in turn bounds
the mass of the pseudoscalar Higgs to be above around
568 GeV).

The bounds from run 1 of the LHC were rather mild on
the hMSSM: they restricted tan β < 8 for low mA (see e.g.
[86,91]). In [73] it was claimed that in the h2MSSM these
bounds would apply unaltered; while it is true that the cou-
plings to the pseudoscalar are the same in the h2MSSM and
hMSSM, the “heavy” Higgs does have altered couplings at
small mA and tan β – since it is more aligned. Since the pro-
duction of the Heavy Higgs is dominated at small tan β by
gluon fusion, and at large tan β by the bbH process, then
we would expect some differences at small tan β. However,
recently, ATLAS produced a much enhanced bound [90]
on gluon fusion and bbH production and then decay to τ

pairs; they also interpreted this in terms of the hMSSM. To
compare to our model we computed Higgs production using
SusHi [92–98] and rescaled the production cross-sections
according to b-quark and gluon couplings computed in our
SARAH/SPheno code, then multiplied by the tau decay
branching fraction, and combined the bound assuming that
the signals from H/A production overlap for small mass
differences. We show the result in Fig. 8, where we also
show the bound from [90] on the hMSSM. We find almost
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Fig. 7 �ρ calculated at
one-loop in the low-energy
theory, for different values of
MN=2 given in the legend. We
see that the magnitude is
roughly equal to the
experimental error, and we are
always well within 3σ of the
experimental central value
(which is anyway above the
Standard Model value by 1.6σ )

Fig. 8 Bounds from
pp → H/A → τ+τ− (blue
region) and B → sγ (red
region, mA � 568 GeV)
interpreted in the mA/ tan β

plane for the hMSSM (taken
from [90]) and our model

no difference, except that the bound on our model is very
slightly weaker once decays to the electroweakinos are per-
mitted. However, the branching ratio to electroweakinos in
that region is never significant enough to reduce the τ decay
fraction.

6 Alignment in the MRSSM

For completeness we now discuss the case of the MRSSM
in the same limit as for the DG-MSSM. Since the tree-level
THDM parameters are the same as those of the MSSM in
the limit of large adjoint scalar and R-Higgs masses,5 there
is no contribution to Z6 from the running of the parameters

5 So therefore Z1, Z5, Z6 are the same as in the MSSM case, i.e. Eqs.
(2.24)–(2.26) with λS = λT = 0.

λSu,d , λTu,d . We can first write the neutral Higgs mass matrix
as

m2
h,H =

(
M2

Z c
2
2β + v2�Z1 −M2

Z s2βc2β + v2�Z6

−M2
Z s2βc2β + v2�Z6 m2

A + M2
Z s

2
2β + v2�Z5

)
.

(6.1)

If we consider the loop corrections due to λSu,d , λTu,d to
be small, then the analysis of alignment is identical to the
MSSM case, and we can apply the hMSSM logic. However,
if we instead take them to be non-negligible – such as in [53,
54,65,66] – then the contributions to λ2 no longer dominate,
and the hMSSM reasoning may no longer apply. On the other
hand, the largest contribution from the other particles will still
be to λ2, and so we can assume that

λ2 = M2
Z + ε

v2 , λ1 = M2
Z

v2 + δλ1
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λ5 = 0, λ345 = λ34 = −M2
Z

v2 + δλ34. (6.2)

To eliminate ε, we eliminate λ2 in terms of the Higgs mass,
which for general λi , i = 1 . . . 4 (and λ5 = λ6 = λ7 = 0):

λ2v
2s2

β + m2
Ac

2
β = m2

h + s2
βc

2
β(m2

A − λ34v
2)2

λ1v2c2
β + m2

As
2
β − m2

h

; (6.3)

this can then be substituted into the expression for Z6:

Z6 = − sβcβ

λ1v4c2
β + m2

Av2s2
β − m2

hv
2

×
[
(λ1v

2c2
β − m2

h)(λ1v
2c2

β − m2
h + m2

A − λ34v
2c2β)

+ λ34s
2
βv2(m2

A − λ34c
2
βv2)

]
. (6.4)

We give the loop corrections to the λi from the adjoint
scalars in Appendix C.3, but in the simplified case of mT+ =
mT− = mSR = mSI = M� and gY = g2 = 0 we have, for
matching at a scale μ:

δλ1 = 1

16π2 log
M2

�

μ2

(
5λ4

Td + 2λ2
Sdλ

2
Td + λ4

Sd

)

δλ2 = 1

16π2 log
M2

�

μ2

(
5λ4

Tu + 2λ2
Suλ

2
Tu + λ4

Su

)

δλ3 = 1

16π2 log
M2

�

μ2

(
5λ2

Tdλ
2
Tu + λSdλSuλTdλTu + λ2

Sdλ
2
Su

)

δλ4 = 1

16π2 log
M2

�

μ2

(
− 4λ2

Tdλ
2
Tu − 4λTdλTuλSdλSu

)
.

(6.5)

If we then take (as in [54,65,66]) λSu = −λSd ≡ λ, λTu =
λTd ≡ �, and allow an additional contribution ε/v2 to λ2

from the stops, then we have

Z6 = − 1

2
s2βc2β

(
2M2

Z

v2 + 2�4

16π2 log
M2

�

μ2

)
+ ε

v2 s
3
βcβ

�Z1 = 1

16π2 log
M2

�

μ2

[
λ4 + 2λ2�2 + 3�4 + 2�4c2

2β

]
+ ε

v2 s
4
β .

(6.6)

We see that when the couplings λ,� are large enough, the
alignment will always be improved compared to the MSSM,
because the enhancement to Z1 is always greater than that to
Z6. We note three cases of particular interest:

1. If we increase the contributions from the adjoint scalars
to the point that we can neglect those from the stops, then
we see that for small tan β we will easily have alignment
(in contrast to the MSSM case).

2. Alternatively, we could enhance the contributions from
λ rather than �, since the former coupling does not con-
tribute to Z6.

3. On the other hand, if we take the N = 2 supersymmetric
limit

λTu = λTd = g2√
2
, λSu = gY√

2
, λSd = − gY√

2
, (6.7)

we find, using the expressions in Appendix C.3 (and no
longer neglecting the gauge couplings):

δλ1 = 1

16π2 log
M2

�

μ2

1

4

(
3g4

2 + 2g2
2g

2
Y + g4

Y

)

δλ2 = δλ1

δλ3 = 1

16π2 log
M2

�

μ2

1

4

(
3g4

2 − 2g2
2g

2
Y + g4

Y

)

δλ4 = 1

16π2 log
M2

�

μ2

(
g2

2g
2
Y

)
(6.8)

giving

δλ345 = δλ1 ≡ δλ, (6.9)

so there is no shift to Z6 from the adjoint scalars, but we
do have a shift to Z1, i.e

�Z1 = δλ, �Z6 = 0. (6.10)

If the mass of the adjoint scalars is comparable to the mass
of the stops, then this will however never be significant.
On the other hand, if we take the adjoint scalars to be
very heavy, then this indicates that we can have improved
alignment relative to the MSSM. To quantify this, we can
use our above expression for Z6 (6.4):

Z6 = − sβcβ

(M2
Zv2 + δλv4)c2

β + m2
Av2s2

β − m2
hv

2

[
�0

+ δλv2(m2
A − m2

h + 2c2
βM

2
Z )

]
(6.11)

where

�0 =m2
h(m

2
h − m2

A − M2
Z (4c2

β − 1))

+ M2
Zc2β(m2

A + 2M2
Zc

2
β) (6.12)

which is the numerator for the MSSM case. In the case
that m2

A � m2
h (which corresponds to our case of interest

– even though we would like mA small enough to not
entirely be in the decoupling limit), we therefore find

Z6 � 1

tβ

[
m2

h − M2
Zc2β

v2 − δλ

]
. (6.13)
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For M� = 100MSUSY (a rather extreme value) and
matching at MSUSY we therefore find

δλ � 0.04
m2

h

v2 , (6.14)

and so the deviation of Z6 from the MSSM value due
to the adjoint scalars should be less than 4%. On the
other hand, as we shall see below, they can still have a
significant effect on the SUSY scale.

Therefore, from the analysis above, in all three cases of
interest, the alignment will never be as good as for our min-
imal Dirac gaugino model, because of the tree-level contri-
bution to misalignment: we shall illustrate this for the N = 2
case in the next subsection.

6.1 Numerical analysis of an N = 2 MRSSM

To compare with our previous analysis of the DG-MSSM,
here we present a simplified numerical analysis for an N = 2
MRSSM, as defined in point 3 above and Eq. (6.7). From
our estimations above, the alignment should only differ from
the MSSM when relatively extreme values are taken for the
adjoint scalar masses, and so to perform a precise analy-
sis we would need to have a tower of effective field the-
ories and the appropriate threshold corrections. Instead we
decided to neglect all loop-level threshold corrections other
than those from the adjoint scalars (although we use 2-loop
RGEs throughout) and performed a simple analysis where
the low energy model was approximated by the Standard
Model and type-II two-Higgs doublet model. In this way we
should obtain an idea of how the adjoint scalar masses cause
the SUSY scale and alignment to vary from the predictions
of the MSSM.

6.1.1 Procedure

Two-loop Standard Model matching values were imple-
mented at mt for the standard model gauge, Yukawa, and
Higgs quartic couplings from [99] and a two-loop Stan-
dard Model running was performed up to an intermediate
scale Q = 600 GeV, where the λi (Q) couplings were given
approximate values to be determined through future iter-
ations between the scales Q and MN=2. The two-Higgs
doublet model 2-loop running was implemented up to the
supersymmetry breaking scale defining the leading squark
masses, MSUSY , where guesses were made for the inputs of
the parameters λS,Tu,d . The MRSSM was then run to 2-loops
to some high scale MN=2 where the N = 2 boundary con-
ditions (6.7) were implemented. All two-loop beta functions
were generated in SARAH, and the value of mtree

A = 600
GeV was taken as in the minimal Dirac gaugino case. In this
simplified model, as the electroweakinos are not taken to be

light, the intermediate scale Q is taken to match the choice
of heavy Higgs mass. Indeed, with these choices we should
understand the Dirac gaugino masses mDY ,mD2,mD3 and
the higgsino mass to be at MSUSY, and also the masses of
the R-Higgs fields Ru,d should be at that scale, because we
do not implement any threshold corrections from those fields
(leaving these to future work).

On the run down, λi (MSUSY ) were matched to the 1-loop
threshold corrections coming from the heavy S, T scalars as
given in Appendix C.3, taking the adjoint scalars to be degen-
erate with mass M� . This process was iterated, re-matching
the gauge and Yukawa couplings onto their 2-loop Standard
Model running values at the scale Q, while the λi and λS,Tu,d

couplings were matched to the outputs from the previous run-
ning until their values converged. Finally, the λi parameters
were mapped back onto the Higgs quartic coupling using
λ(Q) = Z1(Q) and the Standard Model couplings were run
back down to mt . The correct Higgs mass was selected from
the criterion λ(mt ) = 0.252±0.002, corresponding to a pole
Higgs mass of mh = 125 ± 0.5 GeV.

This process was executed for scans over the val-
ues tan β ∈ [2, 20]; MSUSY ∈ [0.5, 10] TeV; M� =
{5, 10, 100} MSUSY and MN=2 = {106, 1010, 1016

}
GeV.

6.1.2 Running from the N = 2 scale to MSUSY

The ratios in Figs. 9, 10 are taken with a common MSUSY

scale of 10 TeV, while the associated value of mh is uncon-
strained. M� is kept fixed - in Figs. 9, 10 chosen as M� =
10 MSUSY . Here the modulus of the ratio is plotted, since the
λSd ratio is negative to respect the N = 2 supersymmetry
relations. As expected, the model is closest to the alignment
limit when the N = 2 scale is closer to the MSUSY scale. It
can be seen that the Higgs mass is boosted to a greater extent
by the down-type couplings than the up-type, where the ratio√

2λTd /g has the largest effect, especially for higher values
of N = 2 scale.

Fig. 9 Variations in the ratio
√

2λSu,d /gY against tan β at the MSUSY

scale for N = 2 scales 106, 1010 and 1016 GeV
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Fig. 10 Variations in the ratio
√

2λTu,d /g against tan β at the MSUSY

scale for N = 2 scales 106, 1010 and 1016 GeV

Fig. 11 v
√
Z1(MSUSY ) against tan β for N = 2 scales 106 and 1016

GeV, corresponding to the “tree-level” value ofmh before running down
in low-energy effective theory

Figure 11 shows the “tree-level” Higgs mass against
tan β before running down from MSUSY (where the value
of the Higgs mass calculated at mt matches the experimen-
tal value). For the lowest values of MN=2 and M� plotted,
v
√
Z1(MSUSY ) is approximately MZ , and where the former

increase, so does the boost to the Higgs mass. This boost
grows substantially for the simultaneously highest values of
MN=2 and M� , owing to the large (almost non-perturbative)
λT couplings. While not shown here, it should be noted
that even for MN=2 = 1010 GeV and M� = 100 MSUSY ,
v
√
Z1(MSUSY ) replicates almost identical behaviour to the

red curve for MN=2 = 1016 GeV and M� = 5 MSUSY shown
here.

6.1.3 Running from MSUSY → Q → mt

Figure 12 shows little deviation in the results for Z6(Q),
regardless of M� and MN=2. Indeed, as anticipated above,
the results are almost indistinguishable from the MSSM case,
since the adjoint scalars in the MRSSM never give a large
boost to the quartic couplings even for the extreme cases we

Fig. 12 Z6(Q) against tan β for a Higgs mass of 125 GeV at mt , for
values of M� = 5, 100 MSUSY and MN=2 = 106 and 1016 GeV

Fig. 13 MSUSY against tan β for a Higgs mass of 125 GeV at mt and
where Q = 600 GeV, plotted for values of M� = 5, 100 MSUSY and
MN=2 = 106 and 1016 GeV

have taken. Exceptionally, the couplings in the case of very
heavy scalars and very high MN=2 are considerably enhanced
and deviate from the N = 2 relations, making the alignment
in this case just marginally worse. While the adjoint scalars
give only a very small boost to the Higgs mass, on the other
hand it is enough to cause noticeable effects in the predicted
MSUSY scale, shown in Fig. 13, because of the logarithmic
nature of the contributions from other SUSY states.

Figure 13 shows the values of MSUSY against tan β over
the parameter scan producing a Higgs mass corresponding to
mh = 125±0.5 GeV: this margin is reflected in the enclosed
transparent area.6 For tan β < 4, MSUSY is required to be,
at the very least, 20 TeV for the highest values of MN=2

and very heavy M� , and is closer to ∼ 100 TeV for lower
values. MSUSY stabilises around tan β = 10 for all values
of M� and MN=2, where at this point MSUSY can be as
low as several hundred GeV for MN=2 = 1016 and very

6 The variation of 0.5 GeV is, however, not to imply the total error
(which is hard to estimate, but should be comparable to this value
although it may be smaller for large values of MSUSY ) but to give an
indication of the sensitivity of the results on the final Higgs mass value.
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heavy scalars. In this final extreme case (which is of course
excluded experimentally, but we give as an indication of the
possible effects) the logarithms being resummed in the RGEs
become smaller, it is possible that any neglected threshold
effects could make a significant difference and the results
become unreliable, but we leave this additional analysis to
future work.

7 Conclusions

We have considered the the consequences for the simplest
realisation of Dirac gaugino models when we impose N = 2
supersymmetric boundary conditions for the Higgs/gauge
sector at some energy scale. We found that the model nat-
urally realises alignment in the Higgs mass matrix, and that
surprisingly this is preserved even by quantum corrections.
Even more interestingly, the departure from N = 2 rela-
tions due to running of the couplings actually leads to both
an enhanced Higgs mass (and thus lower SUSY scale/more
natural model) and also improved alignment when we take
the effects of the squarks into account.

We have provided the most accurate calculation to date
for the SUSY scale for a Dirac gaugino model by employing
the effective field theory approach, with one-loop boundary
conditions at the high scale and two loops at the THDM scale.
This leads to the prediction that the scale of coloured super-
partners should be above 3 TeV (when we allow a very high
scale for the breaking of the approximate N = 2 SUSY) but
across most of the parameter space it is below 10 TeV. While
this is not encouraging for the detection of stops/gluinos at
the LHC, this is well within the reach of a future 100 TeV
collider. On the other hand, the LHC or a future e+e− col-
lider should be able to explore the electroweak sector of the
model, including the Higgs sector and the electroweakinos
(if they are light).

There are many possible avenues for future work: improv-
ing the accuracy of the matching at MSUSY (as noted recently,
matching at two-loop order is often necessary for accuracy
of the loop expansion to include all non-logarithmic cor-
rections [100], although in this class of models as we have
discussed all of the missing corrections are believed to be
small) and including the effects of the electroweakinos in the
matching at one loop, so that we can consider the model with
mDY ∼ mD2 ∼ MSUSY; also with the full set of thresholds
we could perform an estimate of the error in the calculation
(which, again, should already be small – see e.g. the esti-
mates for the MSSM case in [101]); or including the effects
of possible R-symmetry violating terms. On the other hand,
it would also be interesting to more fully explore the con-
sequences for different Dirac gaugino models, such as the
MRSSM, where we have only performed a preliminary anal-
ysis.
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A THDM with light electroweakinos

The limit that we are interested in has the electroweakinos
much lighter than the singlet and triplet scalars; in order to
avoid washing out the tree-level Higgs quartic coupling and
generating a large contribution to ρ they should be light. At
energies below the stop/sbottom masses, then, we have an
effective theory of the two-Higgs doublet model augmented
by light electroweakinos. This looks a little like Split super-
symmetry or the scenario of [102] (which considered a split
scenario with both Higgs doublets light), except that our elec-
troweakinos have Dirac masses and our gluino is heavy; here
are therefore new Yukawa couplings between the Higgs dou-
blets �i , the left and right bino B̃i and wino W̃ a

i for i = 1, 2,
and the higgsinos h̃u,d :

L ⊃ − 1√
2

[
g̃i j1u�

∗
i B̃ j h̃u + g̃i j2u�

∗
i W̃

a
j σ

ah̃u

+ g̃i j1d�i B̃ j h̃d + g̃i j2d�i W̃
a
j σ

ah̃d + h.c.

]
. (A.1)

This gives neutral and charged fermion mass matrices

Mχ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

MB 0 − 1
2vkgki1d

1
2vkgki1u

0 MW − 1
2vkgki2d − 1

2vkgki2u

− 1
2vkgki1d − 1

2vkgki2d 0 −μ

1
2vkgki1u − 1

2vkgki2u −μ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Mχ± =
⎛
⎝ MW

1√
2
vkgki2u

− 1√
2
vkgki2d μ

⎞
⎠ (A.2)
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where the bases are χ0 = (B̃1, B̃2, W̃ 0
1 , W̃ 0

2 , h̃0
d , h̃

0
u) and

the charged mass terms are L ⊃ −(W̃−
i , h−

d )Mχ±
(
W̃+

i
h+
u

)
.

Note that MB, MW are 2 × 2 matrices.
At the SUSY scale, we match the above to the correspond-

ing couplings in the Dirac gaugino theory:

LDG ⊃ − gY√
2
H∗
u B̃1h̃u − g2√

2
H∗
u W̃

a
1 σ ah̃u

+ gY√
2
H∗
d B̃1h̃d − g2√

2
H∗
d W̃

a
1 σ ah̃d

− λSHu · B̃2h̃d − λSh̃u · B̃2Hd − λT Hd

· W̃ a
2 σ ah̃u − λT h̃d · W̃ a

2 σ aHu + h.c. (A.3)

We choose to make the definition

�2 = Hu, �i
1 = −εi j (H

j
d )∗ ↔

(
H0
d

H−
d

)
=
(

�0
1

−(�+
1 )∗

)

(A.4)

meaning Hu · Hd ↔ −�
†
1�2, which leads to the identifica-

tions

g11
1d = 0, g21

1d = √
2λS, g11

1u = −√
2λS, g21

1u = 0
(A.5)

g12
1d = gY , g22

1d = 0, g12
1u = 0, g22

1u = gY (A.6)

g11
2d = 0, g21

2d = √
2λT , g11

2u = √
2λT , g21

2u = 0 (A.7)

g12
2d = −g2, g22

2d = 0, g12
2u = 0, g22

2u = g2. (A.8)

These are, however, given in terms of the DR parameters:
making the conversion to MS we find

(g̃i j1u,d)MS = (g̃i j1u,d)DR

[
1 − 1

4

g2
Y

32π2 − 3

4

g2
2

32π2

]

(g̃i j2u,d)MS = (g̃i j2u,d)DR

[
1 − 1

4

g2
Y

32π2 + 5

4

g2
2

32π2

]
. (A.9)

B Threshold corrections

In this section we give the one-loop threshold corrections to
the couplings in our theory. Throughout we use the definitions

κ ≡ 1

16π2

log x ≡ log
x

μ2

PSS(x, y) ≡ x logx − ylogy

x − y
− 1, (B.1)

where μ is the renormalisation scale at which the quantities
are evaluated.

B.1 Conversion from MS to DR

The conversion of the gauge couplings from the MS to DR
renormalisation scheme is given by

(gY )MS = (gY )DR

(g2)MS = (g2)DR

[
1 − κg2

2

3

]

(g3)MS = (g3)DR

[
1 − κg2

3

2

]
. (B.2)

For the Yukawa couplings, we retain only the strong gauge
coupling dependence:

yt,b
MS

� yt,b
DR

(
1 + 4

3
κg2

3

)
. (B.3)

For the Higgs quartic couplings, we define

λMS
i = λDR

i + δλi (B.4)

and then

δλ1 = δλ2 = − κ

4

(
g4
Y + 3g4

2 + g2
Y g

2
2

)

δλ3 = − κ

4

(
g4
Y + 3g4

2 − 2g2
Y g

2
2

)

δλ4 = − κg2
Y g

2
2 . (B.5)

If we express the quartic couplings in terms of the MS gauge
couplings at tree level, then we have a further shift from the
shift to g2 of + κ

6 g
4
2 for λ1,2 and − κ

6 g
4
2 for λ3.

B.2 Squark contributions

B.2.1 Matching at the SUSY scale

In the limit that we take in the body of the paper, all of
the threshold corrections coming from squarks vanish at the
matching scale. However, to extend the results of [87,103] to
our model, we have computed the corrections coming from
stops, sbottoms and staus to the quartic couplings allowing
non-zero squark trilinears and μ. They are given by

δλi ≡ δ
(1)
th λi + δ

(1)
� λi , (B.6)

where the δ
(1)
th λi contributions are those from bubble, trian-

gle and box diagrams and are unchanged from the MSSM
case given in [87,103], while the δ

(1)
� λi are the wavefunction

corrections that are modified for our model:

κ−1δ
(1)
� λ1 = − g2

2 + g2
Y

12M2
S

(
3A2

b + 3y2
t μ

2 + A2
τ

)
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κ−1δ
(1)
� λ2 = − g2

2 + g2
Y

12M2
S

(
3A2

t + 3y2
bμ

2 + μ2y2
τ

)

κ−1δ
(1)
� λ3 = − g2

2 − g2
Y + 8λ2

T

24M2
S

(
3A2

t + 3A2
b

+3(y2
b + y2

t )μ
2 + A2

τ + y2
τ μ2

)

κ−1δ
(1)
� λ4 = g2

2 − 2λ2
S + 2λ2

T

12M2
S

(3A2
t + 3A2

b

+ 3(y2
b + y2

t )μ
2 + A2

τ + y2
τ μ2)

κ−1δ
(1)
� λ5 = 0

κ−1δ
(1)
� λ6 = λ2

S + λ2
T

12M2
S

μ (3At yt + 3Abyb + Aτ yτ )

κ−1δ
(1)
� λ7 = κ−1δ

(1)
� λ6. (B.7)

B.2.2 Matching at a general scale

If the squarks are not degenerate or we integrate them out at
a scale other than a common SUSY scale, then in our limit
we have

κ−1δλ1 = 1

24

[
(9g4

2 + g4
Y − 36g2

2 y
2
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Y y
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b )logm2
Q
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b )
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D

]

+ 1

8
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Y y
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τ )logm2
L . (B.8)

If we consider all squarks to be at a common SUSY scale
MS , then these simplify to

κ−1δλ1 = 1

6
logM2
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[
3g4
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Y )(3y2
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Y )(3y2
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]
.

(B.9)

B.3 Contributions from the S, T scalars

Here we present the contributions to the quartic cou-
plings coming from the adjoint scalars S, T , in the limit
mDY ,mD2 � mS,mT , BS, BT and assuming no CP-
violation. The scalars have masses

m2
SR =m2

S + BS + 4m2
DY � m2

S + BS, m2
SI = m2

S − BS

(B.10)

m2
T P =m2

T + BT + 4m2
D2 � m2

T + BT , m2
T M = m2

T − BT .

(B.11)

The loop corrections to the quartic couplings are:

δλ1 = δλ2 = 1

16π2

1
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[
λ4
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2
SI
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T log
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T )2PSS(m
2
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(
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2
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2
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2
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)]
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[
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S log

m2
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2
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2
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+ (g2
2 − 2λ2

T )2PSS(m
2
T M ,m2

T P )

− 2λ2
Sλ

2
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(
PSS(m

2
SR,m2

T P ) + PSS(m
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(
PSS(m
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2
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2
T M )

)]
.

(B.12)

These results update those previously given in the literature
by including the electroweak contributions.

C One-loop RGEs

For our numerical study we use two-loop RGEs through-
out, as generated by SARAH. They are too long to put into
print; however, for illustration we provide here the one-loop
expressions for the low-energy theory of the THDM with
electroweakinos, after making the simplification that:

• Only third generation Yukawa couplings are included.
• No CP-violation, hence all couplings real.
• Once we respect the matching conditions (A.5–A.8), the

beta functions for the couplings that are zero at the super-
smmetry scale are zero along the flow, and hence we set
the couplings g11

1d , g21
1u , g22

1d , g12
1u , g11

2d , g21
2u , g22

2d , g12
2u to

zero.

We then define

dx

d log μ
≡ κβ(1)

x + κ2β(2)
x + · · · (C.1)

and give below the RGEs for the dimensionless quantities in
the theory.

C.1 Gauge couplings
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C.2 Yukawa couplings
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C.3 Quartic scalar couplings
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. (C.4)

D MRSSM corrections

Here we collect the tree-level and leading one-loop threshold
corrections to the THDM paramters in the MRSSM.

D.4 Tree-level

The tree-level λi are given by

λ1 = λ2 = 1

4
(g2

2 + g2
Y ), λ3 = 1

4
(g2

2 − g2
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λ4 = −1

2
g2

2 . (D.1)

The shifts from integrating out the adjoint scalars give

δλ1 = − (gYmDY − √
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δλ7 = AS(gYmDY + √
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(D.2)

D.5 One-loop

The one-loop corrections from the adjoint scalars in the limit
that we can neglect the Dirac gaugino masses are given by:
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