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Abstract In this work, we study the possibility of general-
izing solutions of regular black holes with an electric charge,
constructed in general relativity, for the f (G) theory, where
G is the Gauss–Bonnet invariant. This type of solution arises
due to the coupling between gravitational theory and nonlin-
ear electrodynamics. We construct the formalism in terms of
a mass function and it results in different gravitational and
electromagnetic theories for which mass function. The elec-
tric field of these solutions are always regular and the strong
energy condition is violated in some region inside the event
horizon. For some solutions, we get an analytical form for the
f (G) function. Imposing the limit of some constant going
to zero in the f (G) function we recovered the linear case,
making the general relativity a particular case.

1 Introduction

Since it was proposed, general relativity has been tested and
proved to be quite effective to describe phenomena in the
solar system and beyond [1–3]. Some of the most famous
results of general relativity are: the correction of precession
of perihelion of mercury [3,4], the bending of light due to the
gravitational field [5] and the existence of gravitational waves
[6–9]. Another important prediction is the existence of black
holes; astrophysical objects whose gravitational interaction
is so strong that even light can not escape from [2,10].

Even though it is effective in describing certain phenom-
ena, general relativity presents problems to describe some
situations, such as the accelerating expansion of the universe
and the galaxy rotation curves [11]. To solve these problems,
we must consider modifications in the field equations. This
can be done in two ways. The first is considering changes in
the matter/energy sector, through the presence of dark matter
and dark energy [12,13]. The other alternative would be to
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modify the geometric sector of the equations, which results
in the known alternative theories of gravity [14].

One way to obtain the field equations of general relativity
is through the variational principle using the Einstein–Hilbert
action [15]. In the case of alternative theories of gravity, we
can make modifications in this action in such a way that we
obtain new equations of motion [14]. In 1980, Starobinsky
proposed a model that describes an inflation scenario, where
he inserts a term of R2 in the Einstein–Hilbert action [16].
This kind of modification generates what we call the f (R)

theory, where the curvature scalar, in the Einstein–Hilbert
action, is replaced by an arbitrary function of this scalar. It
is also possible to use f (R) models as substitutes for dark
matter and dark energy [17]. It is possible to modify the
action by inserting functions of the stress-energy tensor, Tμν ,
as f (R, T ) [18–20] and f (R, T, RμνTμν) [21], where T is
the trace of Tμν and Rμν is the Ricci tensor.

The curvature scalar is not the only curvature invariant
that can be used to construct the Lagrangian density. There
are other invariants like RμνRμν and Rμναβ Rμναβ and even
combinations of them asG = R2−4RμνRμν+Rμναβ Rμναβ ,
Gauss–Bonnet invariant, that could be used. Something inter-
esting about the scalar G is that it is a topological invariant in
3 + 1 dimensions or lower. So that, if we include the Gauss–
Bonnet term in the Einstein–Hilbert action we will not have
modifications in the equations of motion. Even if the linear
term does not make changes in the equations of motion, it
is possible to modify the field equations including nonlinear
terms in G, which are the f (G) theories [21–29]. This theory
has been used to study the late-time accelerating expansion
of the universe [23].

Another possibility of an alternative theory of gravity is
the Teleparallel Theory (TT), where we consider zero cur-
vature and nonzero torsion of the spacetime [30–32]. In this
theory, instead of the curvature scalar, we have the presence
of the torsion scalar in Lagrangian density and the field equa-
tions obtained from the variational principle are equivalent to
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the Einstein equations. As it has been done in the case of the
f (R) theory, it is also possible to generalize the TT theory
by replacing the scalar torsion in the Lagrangian density for
a general function of T and with that we obtain the known
f (T ) theory [33–38], where we can explain the present cos-
mic accelerating expansion with no dark energy [34,36,37],
it’s also possible to include the trace of the stress-energy ten-
sor to build a f (T , T ) function [39–44]. In the context of TT
there is also an analogue of the Gauss–Bonnet term, TG , that
can be used to construct the f (T , TG) theory [45–47].

In addition to the need for dark matter and dark energy,
a problem that arises in general relativity, in the study of
black holes, is the presence of singularities [48–51], that are
points or set of points where the geodesic is interrupted and
the physical quantities diverge [52]. It is believed that the
problem of singularity arises because the theory is classical
and that in a quantum theory of gravity this problem would
be solved [48].

As we do not yet possess this complete theory of quantum
gravity, an alternative to avoiding the presence of singulari-
ties is the study of regular black holes, which has this name
because there are no singularities within it [53]. The first reg-
ular solution was proposed by James Bardeen, in 1968 [54].
The Bardeen metric has a de Sitter core with an equation of
state ρ = −p, where ρ is the energy density and p is the
pressure. This solution also satisfies the weak energy condi-
tion and violates de strong energy condition [55,56]. Since
this solution does not satisfy Einstein equations in vacuum,
Ayón-Beato and Garcia have shown that the Bardeen solution
can be obtained through Einstein equations with a nonlinear
magnetic source [55]. It is also possible to show that this
metric is a solution for the case with a nonlinear electrical
source, but in this case, it is not possible to obtain a closed
form for the electromagnetic Lagrangian [56].

After Bardeen’s proposal, several regular solutions were
studied in the literature. Most of these were developed in
general relativity [57–72], others in f (R) theory [73–75]
and f (T ) theory [76]. In Einstein’s theory it is also pos-
sible to find solutions with rotation [77–83] and even with
several horizons [84], solutions with multihorizons are also
studied in alternative theories of gravity. Regular black holes
have already been study in Einstein–Gauss–Bonnet gravity,
considering a linear term in the f (G) function, for 4 + 1
dimensions [85].

This work is organized as follows. In the Sect. 2 we use the
equations of motion to construct the expressions to the gravity
theory and to the electromagnetic, considering a spherically
symmetric and static source, and we formulated a theorem
for the energy conditions in f (G) gravity. In Sect. 3 we first
impose the quasi-global coordinate and, through an Ansatz,
we rewrite the expressions in terms of a mass function. After
that, we show that it is possible to generalize black hole solu-
tions from general relativity to the f (G) theory. In Sect. 4 we

construct the regular models, where we generalized the solu-
tions already known from general relativity to f (G) gravity.
As some expressions are too much large or there is no way
to find an analytical form, we analyze the results graphically.
Our conclusions and perspectives are present in Sect. 5. We
dedicate the Appendix A to show the analytical forms of
some functions as f (G) and L(P).

Through this work we consider natural units, where c =
h̄ = G = 1, and metric signature (+,−,−,−).

2 Nonlinear electrodynamics coupled with f (G)

gravity: equations of motion

The action that describes f (G) gravity coupled with a non-
linear electrodynamics is given by [22]

S =
∫

d4x
√−g [R + f (G) + 4L(F)] , (1)

where L(F) is the Lagrangian density of the nonlinear
electrodynamics, f (G) represents a general function of
the Gauss–Bonnet invariant, G = R2 − 4RμνRμν +
Rμναβ Rμναβ , with R being the curvature scalar, Rμν is the
Ricci tensor and Rμναβ is the Riemann tensor and g is the
determinant of the metric gμν .

To obtain the field equations, we may vary the action (1)
over gμν that’s results in

Gμν + 8
[
Rμανβ + Rανgβμ − Rαβgνμ − Rμνgβα

+Rμβgνα

]∇α∇β fG + (G fG − f ) gμν = κ2Tμν, (2)

where the subscript G denotes the derivation with respect to
the Gauss–Bonnet invariant, κ2 = 8π and Tμν is the stress-
energy tensor defined as [1]

Tμν = − 4

κ2√−g

δ
(√−gL

)
δ (gμν)

. (3)

For nonlinear electrodynamics, L(F) is a general function
of the scalar F = FμνFμν/4, where Fμν = ∂μAν − ∂ν Aμ

is the Maxwell–Faraday tensor and Aμ the gauge potential.
The stress-energy tensor for this theory is given by [74]

Tμν = 1

4π

[
gμνL(F) − LF F

α
μ Fνα

]
, (4)

with LF ≡ ∂L(F)/∂F . If we vary the action (1) with respect
to Aμ, we obtain the modified Maxwell equations,

∇μ

[
FμνLF

] ≡ ∂μ

[√−gFμνLF
]
. (5)

We can always recover the Maxwell theory for L(F) = F
and LF = 1.
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At least, the trace of (2) is given by

R + 8
[
Rαβ + Rgβα

]∇α∇β fG + 4 ( f − G fG)

= 2 [FLF − 4L] . (6)

To construct regular solutions, we consider spherically
symmetric and static spacetime, which is described by the
line element

ds2 = ea(r)dt2 − eb(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (7)

where a = a(r) and b = b(r) are arbitrary functions of the
radial coordinate. In this work we are considering only elec-
trically charged source, so that, we can integrate the modified
Maxwell equations (5) for the line element (7) and we find
that the only nonzero component of the Maxwell–Faraday
tensor is given by

F10(r) = q

r2 e
−(a+b)/2L−1

F , (8)

with q being an integration constant and may be interpreted
as the electric charge of the source. By the Eq. (8), the electric
field will be determined since we have LF , which is found
solving the field equations.

If we write (2) in the mixed form, the nonzero components
are

e−2b

r2

{
2
(
fG
(

2a′′ − 3a′b′ + a′2)+ 6b′ f ′
G − 4 f ′′

G

)

+eb
(

2 fG
(

2a′′ − a′b′ + a′2)− b′ (r − 4 f ′
G
)− 8 f ′′

G + 1
)

+e2b
(

1 − r2 f
)}

= 2

[
L + q2

r4 L−1
F

]
, (9)

e−2b

r2

{(
eb − 1

) (
eb − 4 fGa

′′)+ a′ (2
(
eb − 3

)
fGb

′

+4
(
eb − 3

)
f ′
G − reb

)
− 2

(
eb − 1

)
fGa

′2 − r2e2b f

}

= 2

[
L + q2

r4 L−1
F

]
, (10)

− e−2b

4r2

{
16ra′ f ′′

G − 8
(
fG − r f ′

G
) (

2a′′ − 3a′b′ + a′2)

+eb
(

2
(

8 fG + r2
)
a′′ + (a′ − b′) ((8 fG + r2

)
a′ + 2r

))

+4r2e2b f

}
= 2L . (11)

The derivative with respect to the radial coordinate is rep-
resented by the prime (′). The field equation (2) are equivalent
to the equations presented in the original work of f (G) grav-
ity (Eq. (8) in [22]) since we have the same set of Eqs. (9)–
(11). As we are working with f (G) theory, it’s also important
to calculate the curvature invariants, that are given by

R = e−b
[
a′′ + (a′ − b′) (a′

2
+ 2

r

)
+ 2

r

]
− 2

r2 , (12)

K ≡ Rμναβ Rμναβ

= 4

r4 − 8e−b

r4 + e−2b

4r2

[
4r2a′′2 − 2r2a′3b′ + r2a′4

+a′2 (r2
(

4a′′ + b′2)+ 8
)

− 4r2a′a′′b′ + 8b′2 + 16

r2

]
.

(13)

The Gauss–Bonnet invariant is

G(r) = 2e−2b

r2

[(
2a′′ + a′2) (1 − eb

)
+
(
eb − 3

)
a′b′] .

(14)

Since we have the equations of motion, we need to solve them
to find regular black holes solutions. In general relativity,
from the condition G0

0 − G1
1 = 0 in the Einstein tensor,

we have that a + b = 0. In alternatives theories of gravity,
it’s not necessarily the truth, for example, in the f (R) theory
it’s is just one of the possibilities [73–75]. If we subtract (9)
from (10) we get

e−2b

r2

{(
12 f ′

G + eb
(
r − 4 f ′

G

)) (
a′ + b′)

+8
(
eb − 1

)
f ′′
G

}
= 0, (15)

that is a second-order differential equations in fG . The solu-
tion of this equation is given by

fG(r) = c0

+
∫ r

1

⎛
⎜⎝c1e

∫ k3
1 −

(
12−4eb(k1)

)
(a′(k1)+b′(k1))

8
(
eb(k1)−1

) dk1

− e

∫ k3
1

(
4eb(k1)−12

)
(a′(k1)+b′(k1))

8
(
eb(k1)−1

) dk1

×
∫ k3

1

k2
(
a′(k2) + b′(k2)

)
8
(
eb(k2) − 1

) e
b(k2)+

∫ k2
1

(
12−4eb(k1)

)
(a′(k1)+b′(k1))

8
(
eb(k1)−1

) dk1

dk2

⎞
⎟⎠ dk3. (16)
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We may solve (15) since we know the relation between the
functions a and b. In the next section, we will show a way to
generalize solutions constructed in general relativity to f (G)

theory.
Since we are interested in studying regular black holes,

it is very important to analyze the energy conditions asso-
ciated with these solutions. In order to analyze the energy
conditions, we rewrite (8) as the Einstein equations with an
effective stress-energy tensor.

Gμν = κ2Tμν − 8
[
Rμανβ − Rανgβμ − Rαβgνμ

× −Rμνgβα + Rμβgνα

]∇α∇β fG − (G fG − f ) gμν

= κ2T ef f
μν , (17)

where T ef f
μν has the components

T ef f
μν = diag

(
ρe f f (r),−pef fr (r),−pef ft (r),−pef ft (r)

)
,

(18)

where ρe f f (r), pef fr (r) and pef ft (r) are the effective energy
density, radial and tangential pressure, respectively. The
energy conditions are given by [29]

SEC(r) = ρe f f + pef fr + 2pef ft ≥ 0, (19)

WEC1,2(r) = NEC1,2(r) = ρe f f + pef fr,t ≥ 0, (20)

WEC3(r) = DEC1(r) = ρe f f ≥ 0, (21)

DEC2,3(r) = ρe f f − pef fr,t ≥ 0. (22)

From (7), (17) and (18) we get

ρe f f (r) = e−2b

κ2r2

{
− 4 fGa

′′ + 6b′ ( fGa′ − 2 f ′
G

)

−2 fGa
′2 + 2eb

(
fG
(
2a′′ − a′b′ + a′2)

× +2b′ f ′
G − 4 f ′′

G

)+ 8 f ′′
G

+2r2 (F10)2 LFe
a+3b + r2e2b f + 2r2e2bL

}
, (23)

pef fr (r) = e−2b

κ2r2

{
4 fGa

′′ + 2a′ ( fG (a′ − 3b′)− 6 f ′
G

)

−2eb
(
2 fGa

′′ + a′ ( fG (a′ − b′)− 2 f ′
G

))

−2r2 (F10)2 LFe
a+3b − r2e2b f − 2r2e2bL

}
, (24)

pef ft (r) = e−2b

κ2r2

{
2
(
fG − r f ′

G

) (
2a′′ − 3a′b′ + a′2)− 4ra′ f ′′

G

−2eb fG
(
2a′′ − a′b′ + a′2)− r2e2b ( f + 2L)

}
. (25)

In the way that the equations of motion are written, the
effective energy density and the effective pressures are equal
to the components of Einstein tensor. In this sense, if we
consider the same metric, the energy conditions in general
relativity and f (G) gravity will be the same. In [75] there is
a theorem that says that the energy conditions in f (R) are

equal to Einstein theory. We can generalize this theorem to
f (G) gravity.

Theorem Given a solution of (9)–(11), described by the
functions S1 = {

a(r), b(r), f (G), L(F), F10(r)
}
, if we

have a solution in general relativity described by S2 ={
a(r), b(r), L̄(F), F̄10(r)

}
, then the energy conditions are

identical for S1 and S2 since T ef f
μν in (17) is equal to Tμν in

general relativity.

3 New black hole solutions

Imposing the symmetry that we have from the general rela-
tivity, b = −a, (15) becomes

8ea (ea − 1) f ′′
G

r2 = 0. (26)

In general, ea �= 0 and ea �= 1. In this sense, the solution
of (26) is given by

fG(r) = c0 + c1r, (27)

with c0 and c1 being integration constants. This type of
behavior is already known in f (R), where we have the No-Go
theorem. To construct the function f (G), we need calculate
G(r) from (14) and invert the function to get r = r(G) to
replace in (27). Integrating (27) in G we get that

f (G) = c0G + c1

∫
r(G)dG. (28)

A way to construct regular black holes solutions is intro-
ducing a mass function, M(r), through the component g00

by

ea = 1 − 2M(r)

r
, (29)

where M(r) satisfies the conditions limr→0 [M(r)/r ] → 0
and limr→∞ M(r) → m, with m being the ADM mass. In
terms of M(r), the Gauss–Bonnet invariant is

G(r) = 16

r6

[
r2M ′2 + rM

(
rM ′′ − 4M ′)+ 3M2

]
. (30)

Through (27) and (14), is possible write f (G) in terms of
the radial coordinate by

f (r) =
∫

fG(r)
dG(r)

dr
dr. (31)

We may use mass functions that are already known from
general relativity and verify if the solutions are black holes
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or regular black holes. From the equations of motion (9)–
(11), the quantities related to the electromagnetic theory are
given by

L = 1

2r6

[
r2M ′′

(
16c0M + r2(8c1 + r)

)
− r6 f

+16

(
M − rM ′

)(
r

(
c1r − c0M

′
)

+ 3c0M

)]
, (32)

LF = 2q2r

{
r2
(

2(16c1 + r)M ′ + 16c1M
′2 − r(8c1 + r)M ′′

)

+16c1rM

(
rM ′′ − 7M ′ − 2

)
+ 96c1M

2
}−1

, (33)

F10 = 1

2qr3

{
r2
(

− r(8c1 + r)M ′′ + 16c1M
′2 + 2(16c1 + r)M ′

)

+16c1rM

(
rM ′′ − 7M ′ − 2

)
+ 96c1M

2
}
. (34)

Is also necessary to verify the consistency between the func-
tions L and LF . This is made by

LF = ∂L

∂F
= ∂L

∂r

(
∂F

∂r

)−1

, (35)

with F = −ea+b
(
F10
)2

/2. To electric sources, it’s very
difficult to construct an analytical form to L(F), so that is
more convenient use another function, that comes from the
Legendre transformation [57,58]

H = 2FLF − L . (36)

If we define a new tensor Pμν ≡ LF Fμν , is possible show
thatH is a function of the scalar P = Pμν Pμν/4 = (LF )2 F .
Using (8), the scalar P is given by

P(r) = − q2

2r4 , (37)

and, in terms of the mass function, H is

H = 1

2r6

[
16rM

(
r

(
c1 − (c0 + c1r)M

′′
)

+ (4c0 + 7c1r)M
′
)

−2r2M ′
(

8(c0 + c1r)M
′ + r(8c1 + r)

)

−48M2(c0 + 2c1r) + r6 f

]
. (38)

From (37) is possible invert the function to r(P) and then
we substitute in (38) to find H(P). Using the auxiliary field
Pμν , we can write L(P) as

L(P) = 2PHP − H, (39)

with HP = ∂H/∂P .

As the expressions for f (G), L are written in terms of
the mass function, each different mass function will generate
a different nonlinear electrodynamics and f (G) theory. In
[86] the authors proposed a different way to work with the
nonlinear electrodynamics in terms of an auxiliary field X =
q
√−2F and with that, they could find a closed form to L(X).

The methods applied in [86] and here are equivalent since we
must obtain the same energy conditions.

3.1 Schwarzschild case

For the Schwarzschild case, the mass function is the ADM
mass, M(r) = m, and (29) is

ea = e−b = 1 − 2m

r
. (40)

The curvature scalar and the Ricci tensor are zero for
Schwarzschild. So that, the Gauss–Bonnet invariant is equal
to the Kretschmann scalar.

G(r) = 48m2

r6 . (41)

Since we have G(r), we are able to find the r(G) and con-
struct the function f (G). Then, substituting r(G) in (28) we
get

f (G) = c0G + 6c1

5

(
48m2G5

)1/6
. (42)

Some important to emphasize is that, in the Einstein’s the-
ory, the Schwarzschild is a vacuum solution, however, in
the f (G) theory we have a nonzero stress-energy tensor. If
we analyze the components of Tμν we find some kind of
anisotropic matter/field, that is very similar to the nonlinear
electrodynamics. If we considered the stress-energy tensor
for the nonlinear electrodynamics, despite the fact that we
don’t have charge in the geometry, we will find expressions
to the electric field and the nonlinear Lagrangian,

L = 16c1m (5r − 18m)

10r5
, (43)

F10 = 32c1m (3m − r)

2qr3 . (44)

In the limit of general relativity, c1 → 0, these expressions
are zero and then the Schwarzschild solution becomes again
a vacuum solution.

3.2 Reissner–Nordström-anti-de Sitter case

To work with de Sitter/anti-de Sitter type solutions, we insert
a term with the cosmological constant, �gμν , in the left side
of (2). As we are interested in solutions with charge, we will
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consider the Reissner–Nordström-anti-de Sitter (RNAdS)
solution, that is described by the mass function

M(r) = m − q2

2r
− �r3

6
, (45)

where � is the cosmological constant. The component g00 is

ea(r) = 1 − 2m

r
+ q2

r2 + �r2

3
. (46)

The curvature and Gauss–Bonnet invariants are

R(r) = 4�, (47)

K (r) = 8
(
21q4 − 36mq2r + 18m2r2 + r8�2

)
3r8 , (48)

G(r) = 8
(
15q4 − 36mq2r + 18m2r2 + r8�2

)
3r8 . (49)

We can see that this solution presents a singularity at the
center of the black hole. From (49) is not possible to construct
an analytical form to r(G) and then we cannot find a closed
form to f (G). An alternative procedure is calculated f (G)

in terms of the radial coordinate, that is

f (G) = 8

35r8

(
35c0

(
6m2r2 − 12mq2r + 5q4

)

+2c1r

(
126m2r2 − 245mq2r + 100q4

))
, (50)

and with that we can make a parametric plot showing the
behavior fG(G) × G and f (G) × G. In Fig. 1 we show
the difference for the linear and nonlinear case of the theory
in G.

From (32)–(34), the electromagnetic quantities are

 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10

m
4 f
(G

)

m4G

mc1=0
mc1=0.1

Fig. 1 Difference between the behavior of f (G) for mc1 = 0 and
mc1 = 1, with q = 0.1m, m2� = 0.02 and c0 = 1

L(r) = 1

210r7

[
35

(
8c0�

2r7 − 3q2r3
)

−8c1

(
35�r6 + 600q4 + 42mr2(18m − 5r)

+105q2r(3r − 14m)

)]
, (51)

LF (r) = 6q2r3
[

6q2r3 + 8c1

(
3q2r(5r − 21m)

−r2(r − 3m)

(
12m + �r3

)
+ 24q4

)]−1

, (52)

F10(r) = 1

6qr5

[
6q2r3 + 8c1

(
3q2r(5r − 21m)

−r2(r − 3m)

(
12m + �r3

)
+ 24q4

)]
. (53)

So that, the coupled between the electromagnetic and gravity
theory makes corrections in these functions. If we consider
c1 = 0 and � = 0 we recovered the Reissner–Nordström
solution in general relativity where the electromagnetic the-
ory is linear with

L(F) = F = − q2

2r4 and LF = 1. (54)

Something interesting to comments is that, if we expand
the electric field for points far from the black hole we get

F10 ≈ −4c1�r

3q
+ 4c1m�

q
+ 1

r2

(
q − 16c1m

q

)
, (55)

which clearly diverges due to the presence of the cosmo-
logical constant. If we have � = 0 the electric field is
well behaved. In f (R) theory, due to the coupled between
the gravity and the electromagnetic theory, the electric field
diverges at the infinity of the radial coordinate [74,75], that
not necessary happen in the f (G) theory.

As is not possible write an analytical form to L(F), we
will show numerically the behavior L(F)×F and L(P)× P
(the analytical form of L(P) is written in the Appendix A). In
Fig. 2 we show the nonlinear behavior of the electromagnetic
theory.

4 Regular black hole solutions

4.1 First regular solution

The first regular solution proposed by Bardeen [54] may be
generated by the mass function

M(r) = mr3

(
r2 + q2

)3/2 . (56)
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Some generalizations that have Bardeen as a particular case
have already been proposed [64,67]. Let’s consider the mass
function

M(r) = αmrn1

(rn2 + qn2)n3
, (57)

where the constant α is a parameter whose unit depends on
the constants n1, n2 and n3. The Bardeen solution is recover
for n1 = 3, n2 = 2 and n3 = 3/2. To analyze the regular
solutions, we will consider the case n1 = 3, n2 = 2, n3 =
3/2 and α = 1. Than find the following functions

ea = e−b = 1 − 2mr2√
q6 + r6

, (58)

K (r) = 12m2

(
q6 + r6

)5

×
(

8q24 − 20q18r6 + 183q12r12 − 28q6r18 + 4r24
)

, (59)

G(r) =
48m2

(
2q12 − 9q6r6 + r12

)

(
q6 + r6

)3 , (60)

f (G) =
48c0m2

(
2q12 − 9q6r6 + r12

)

(
q6 + r6

)3

+4c1m
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12r

(
q12 − 10q6r6 + r12

)

(
q6 + r6

)3 − 1

q5

[
4 tan−1

(
r

q

)

+√
3 ln

(
q2 + √

3qr + r2

q2 − √
3qr + r2

)

−2 tan−1
(√

3 − 2r

q

)
+ 2 tan−1

(
2r

q
+ √

3

)]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (61)

The analytical forms of fG(G) and f (G) in terms of the
Gauss–Bonnet invariant are given by (A3) and A4. With
that, we can see that the solution is regular in all points of
the spacetime and asymptotically flat. We have the limits
limr→∞

{
ea(r), K (r)

} = {1, 0} and limr→0
{
ea(r), K (r)

} ={
1, 96 m2/q6

}
. It clearly shows that the solution is regular.

From (60) we can write r(G) and with (27) and (61) we
construct the functions f (G) and fG(G), whose nonlinear
behavior is shown in the Fig. 3. We see that fG diverges for
small values of G(r), which corresponds to r → ∞ in (27).
The gravity theory clearly is not general relativity, however,
can always be recover to c1 = 0.

The next step is calculate the electromagnetic quantities,
that are written

F10(r) = mr

2q

(
q6 + r6

)3

{
96c1mr8

(
r6 − 5q6

)

+8c1

√
q6 + r6

(
2q12 + 25q6r6 − 4r12

)

+27q6r7
√
q6 + r6

}
, (62)

L(F) = −
24c1m2r

(
q12 − 10q6r6 + r12

)

(
q6 + r6

)3

+2c1m2

q5

(√
3 ln

[
q2 + √

3qr + r2

q2 − √
3qr + r2

]
+ 4 tan−1

(
r

q

)
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−2 tan−1
(√

3 − 2r

q

)
+ 2 tan−1

(
2r

q
+ √

3

))

+
4mc1

(
2q12 − 23q6r6 + 2r12

)

r

(
q6 + r6

)5/2
+

3mq6
(

2q6 − 7r6
)

2

(
q6 + r6

)5/2
.

(63)

Since we have (37), (62) and (63), we are able to find the
behavior of L(F) and L(P). However, is not possible con-
struct L(F) in an analytical form. So that, we show the non-
linearity of the electromagnetic in Fig. 4, which clearly is not
Maxwell [the analytical form of L(P) is written in (A2)].
From 5 we can see some new aspects in relation to gen-
eral relativity. In the Einstein theory, the electric field and
the scalar F of a regular black hole go to zero in the origin
and at the infinity of the radial coordinate and the F10 has a
maximum at the same point where F has a minimum. Here,
due to the coupled with the f (G) gravity, the function F10

presents more than one extremum, where which extremum

corresponds to a minimum in F . Expand F10 at the infinity
we get

F10 ≈ −16c1m

qr2 + 48c1m2

qr3 + O

(
1

r4

)
. (64)

Therefore, the electric field goes to zero at the infinity as in
general relativity and different of the f (R) gravity [74,75].

Now we will check if the solution satisfies the energy
conditions. To do that, we need first calculate the effective
energy density and the effective pressures, that are given by

ρe f f (r) = 6mq6

κ2
(
q6 + r6

)3/2 , (65)

pef fr (r) = − 6mq6

κ2
(
q6 + r6

)3/2 , (66)

pef ft (r) = 3mq6
(
7r6 − 2q6

)
κ2
(
q6 + r6

)5/2
. (67)

123



Eur. Phys. J. C (2018) 78 :638 Page 9 of 18 638

−50

−40

−30

−20

−10

 0

 10

 20

 0  0.5  1  1.5  2  2.5  3

m
F10

r/m

−1200

−1000

−800

−600

−400

−200

 0

 0  0.5  1  1.5  2  2.5

m
2 F

r/m

Fig. 5 Electric field and the scalar F in terms of the radial coordinate for mc1 = 1, κ2 = 8π and q = 0.7m

−4

−2

 0

 2

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
r/m

m2ρeff(r)
m2pr

eff (r)
m2pt

eff(r)

Fig. 6 Graphical representation of the fluid quantities formc1 = 1 and
q = 0.4m

From the fluid quantities, it is possible to notice that the
energy density is always positive, that obeys a equation of
state of the type pef fr = −ρe f f and an anisotropic behavior
pef fr �= pef ft . From the Fig. 6 we can see that close to the
center of the black hole we have the behavior of a isotropic
fluid pef fr ≈ −pef ft with a de Sitter equation of state pef f =
−ρe f f .

Since we have the fluid quantities is easily find the energy
conditions. From (19)–(22), the energy conditions are given
by

WEC1(r) = 0, (68)

WEC2(r) = 27mq6r6

κ2
(
q6 + r6

)5/2
, (69)

DEC2(r) = 2DEC1(r) = 12mq6

κ2
(
q6 + r6

)3/2 , (70)

DEC3(r) = 3mq6
(
4q6 − 5r6

)
κ2
(
q6 + r6

)5/2
, (71)

SEC(r) = 6mq6
(
7r6 − 2q6

)
κ2
(
q6 + r6

)5/2
. (72)

The strong energy condition is violated for r < 6
√

2/7 |q|. As
SEC is related with the fact that the gravitational interaction
is attractive, inside the regular black hole, we have a surface
of zero-gravity, r = 6

√
2/7 |q|, where inside this surface the

gravitational interaction is repulsive. Outside the black hole
DEC3 is violated for r > 6

√
4/5 |q|. This type of behavior is

already known from the Bardeen solution [56].

4.2 Hayward-type solution

An important regular black hole solution was proposed by
Sean Hayward in [69]. If we consider the mass function (57)
for n1 = 3, n2 = 3, n3 = 1 and α = 1 we get a mass function
that generates a Hayward-type solution. As we did with the
first solution, we get

ea = e−b = 1 − 2mr2

q3 + r3 , (73)

K (r) = 48m2

(
q3 + r3

)6

(
2q12 − 2q9r3 + 18q6r6 − 4q3r9 + r12

)
,

(74)

G(r) =
48m2

(
2q6 − 6q3r3 + r6

)

(
q3 + r3

)4 , (75)
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f (G) =
48c0m2

(
2q6 − 6q3r3 + r6

)

(
q3 + r3

)4

−16c1m2

3q5

(3q2r
(
r9 + 24q6r3 − 2q9

)

(
q3 + r3

)4

− ln

(
q2 − qr + r2

q2 + 2qr + r2

)
+ 2

√
3 tan−1

(
2r − q√

3q

))
. (76)

In the Fig. 7, by the behavior of K (r) and G(r), we can
see the regularity of the spacetime. For points close to the
origin these functions tend to a constant and tend to zero in
the infinity of the radial coordinate. From (75) together with
(27) and (76), we can prove that the gravity theory is not
general relativity. In Fig. 8 we compare the f (G) function
for the linear case (mc1 = 0) with the case that generates
the Hayward solution in f (G) gravity (with mc1 = 2). From

fG(G), it’s clearly the nonlinearity of the theory since from
the linearity case fG(G) must be a constant. The analytical
expressions are represented by (A8) and (A10).

From (32) and (34) we have

L = 2 3
√

2mc1

3q10/3

(
ln

(
4 3
√
m2q4 + 4 3

√
mq2r + 2 3

√
2r2

2 3
√
m2q4 − 3

√
4q2mr + 3

√
2r2

)

+2
√

3 tan−1
(

3

√
4

mq2

r√
3

− 1√
3

))

− m

3q5r

(
8c1mr

(
ln

(
q2 − qr + r2

(q + r)2

)

+2
√

3 tan−1
(
q − 2r√

3q

))

− 24c1q2

(
q3 + r3

)4

(
6q6r5(4m − r) − 2q9r2(m + 3r)

+mr11 + q12 + q3r9
)

− 9q8r

(
q6 − q3r3 − 2r6

))
, (77)
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F10 = mr

q

(
q3 + r3

)4

(
8c1

(
3q3r5(2r − 7m) + 2r8(3m − r)

+q9 + 9q6r3
)

+ 9q3r4
(
q3 + r3

))
. (78)

With F10 is simple obtain F and then we show the behavior of
these functions in Fig. 9. We can see that the electric field and
the electromagnetic scalar are always regular and have zero
value in the origin and in the infinity of the radial coordinate.
Since we have F and P we may construct L(F) and L(P),
whose the nonlinear behaviors are shown in Fig. 10. Finally,
the analytical form of L(P) is given by the Eq. (A11).

At least, in order to analyze the energy conditions, we
calculate the effective fluid quantities

ρe f f (r) = 6mq3

κ2
(
q3 + r3

)2 , (79)

pef fr (r) = − 6mq3

κ2
(
q3 + r3

)2 , (80)

pef ft (r) = −6mq3
(
q3 − 2r3

)
κ2
(
q3 + r3

)3 . (81)

It’s clear that we have the behavior of an anisotropic fluid with
ρ = −pr . In Fig. 11 we can see how the fluid quantities,
given by the Eqs. (79)–(81), behave in terms of the radial
coordinate. The effective energy density is always positive
and it’s interesting to notice that all these quantities tend zero
in the infinity and zero in the origin of the radial coordinate.
It is also important to note that near the center of the black
hole we have an isotropic behavior, pr ≈ pt . The energy
conditions are

WEC1(r) = 0, (82)

WEC2(r) = 18mq3r3

κ2
(
q3 + r3

)3 , (83)
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Fig. 11 Effective energy density and effective pressures for the Hay-
ward solution for κ = √
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DEC2(r) = 2DEC1(r) = 12mq3

κ2
(
q3 + r3

)2 , (84)

DEC3(r) = 6mq3
(
2q3 − r3

)
κ2
(
q3 + r3

)3 , (85)

SEC(r) = −12mq3
(
q3 − 2r3

)
κ2
(
q3 + r3

)3 . (86)

The energy conditions do not depend on the parameters of
f (G) gravity, being equal to the energy condition on general
relativity in agreement with the theorem present in Sect. 2.

4.3 Culetu solution

In [70,71] Culetu proposed a regular solution that is
described by the mass function

M(r) = me−q2/(2mr). (87)

This solution behaves asymptotically as Reissner–Nordström
for regions far from the black hole and as de Sitter close to
the center of the black hole. The Culetu solution has already
been generalized for f (R) gravity in [74]. From the curva-
ture scalar, is possible construct an analytical expression for
r and then construct the f (R) function to the Culetu solu-
tion. We will see that it is not so simple in f (G) gravity.
The Kretschmann scalar and the Gauss–Bonnet invariant are
given by

K (r) = e− q2

mr

4m2r10

(
192m4r4 − 192m3q2r3

+96m2q4r2 − 16mq6r + q8
)

, (88)

G(r) =
8e− q2

mr

(
6m2r2 − 6mq2r + q4

)

r8 . (89)

The regularity of these functions is shown in the Fig. 12. We
can see that the Kretschmann scalar zero far from the black
hole and at the center and has a maximum. The Gauss–Bonnet
has a minimum and a maximum value and goes to zero in
the limits r → 0 and r → ∞. Different of the curvature
scalar, it’s not possible to invert G(r) to obtain an analytical
form of r(G). So that, to show the nonlinear behave of the
gravitational theory, we use (89) with (27) and f (G) in terms
of the radial coordinate, that is given by

f (G) = e− q2

mr

q10r8 ,

(
8c0q

10
(

6m2r2 − 6mq2r + q4
)

−8c1r

(
144m7r7 + 144m6q2r6 + 72m5q4r5 + 24m4q6r4

+6m3q8r3 − 6m2q10r2 + 7mq12r − q14
))

, (90)

to build a parametric plot, Fig. 13, showing that the gravity
theory is not the general relativity.

Substituting the mass function that generates the Culetu
solution in (34) and (32), we find that the only nonzero com-
ponent of the Faraday–Maxwell tensor and the electromag-
netic Lagrangian, in terms of the radial coordinate, are

F10 = e− q2

mr

8mqr5

(
32c1m

(
12m2r2 − 9mq2r + q4

)

+re
q2

2mr

(
8mr2

(
q2 − 16c1m

)
− q2r

(
q2 − 96c1m

)
8c1q

4
))

, (91)

L = e− q2

mr

8r7

(
re

q2

2mr

m

(
8c1

(
8m2r2 − 8mq2r + q4

)
+ q2r

(
q2 − 4mr

))

+ 32c1

q10

(
144m7r7 + 144m6q2r6 + 72m5q4r5 + 24m4q6r4 + 6m3q8r3

−6m2q10r2 + 7mq12r − q14
))

. (92)

If we expand the electric field for larges values of the radial
coordinate we find

F10 ≈ 4c1

qr2

(
12m2

r
− 4m + 5q2

r

)
− 5q3

8mr3 + q

r2 +O

(
1

r4

)
,

(93)

which clearly is regular for r → ∞. It’s interesting since in
the f (R) gravity, due to the coupled with the gravitational
theory, the electric field diverges for r → ∞ (see equation
A5 in [74]). From (92), we show the nonlinear behavior of
the electromagnetic theory in Fig. 14 where we analyze L in
terms of the scalars F and P . The analytical expression for
L(P) is given by (A12).
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At least, in order to find the energy conditions, we calcu-
late the fluid quantities, that are

ρe f f (r) = q2e− q2

2mr

κ2r4 , (94)

pef fr (r) = −q2e− q2

2mr

κ2r4 , (95)

pef ft (r) = q2e− q2

2mr
(
4mr − q2

)
4κ2mr5

. (96)

With that, the energy conditions become

WEC1(r) = 0, (97)

WEC2(r) = q2e− q2

2mr
(
8mr − q2

)
4κ2mr5

, (98)

DEC2(r) = 2DEC1(r) = 2q2e− q2

2mr

κ2r4 , (99)

DEC3(r) = q4e− q2

2mr

4κ2mr5
, (100)

SEC(r) = q2e− q2

2mr
(
4mr − q2

)
2κ2mr5

. (101)

So, as in general relativity and in f (R) gravity, SEC and
NEC2 are violated inside the event horizon while the other
conditions are always satisfied.

5 Conclusion

In this work, we have developed a method that generalizes
solutions of regular black holes, already known from general
relativity, to the f (G) theory. The method consists of writing
the gravitational and electromagnetic quantities in terms of
a mass function, in such a way that each solution generates a
different electromagnetic and gravitational theory. Through
the equations of motion and considering the symmetry a =
−b, we show that the fG(G) function has a linear dependence
on the radial coordinate, which clearly diverge in the limit
r → ∞. The divergence in fG(G) does not imply that there
will also be divergences in f (G). For the models of regular
black hole present here f (G) is always regular.

As examples of black holes, we construct the general-
ization of the Schwarzschild and RNAdS solutions and we
showed that in the f (G) gravity the Schwarzschild solu-
tion could not be interpreted as a vacuum solution. In the
Schwarzschild case, we obtained an analytical form for f (G)

and a numerical form to RNAdS. The linear term with the
Gauss invariant usually does not modify the equations of
motion, however, for RNAdS this term is coupled with the

cosmological constant such that to recover the results of gen-
eral relativity it is necessary to make both c1 = 0 and c0 = 0,
which is when we recover the linearity of the electromagnetic
theory.

For the regular models, we choose a mass function that has
the Bardeen and the Hayward solution as specific cases. We
also chose the mass function that generates the Culetu solu-
tion, so that we can compare this result with those already
known from general relativity and the f (R) theory. For the
case of coupling with general relativity, the electric field asso-
ciated with the source is always regular, tends to zero at the
origin and at infinity and has a maximum point. For the f (R)

gravity, the electric field diverge in infinity and therefore it is
necessary to analyze the electric induction tensor. This type
of divergence does not appear in the case of coupling with
the f (G) theory, but now the electric field has maximum and
minimum points.

Since it is not possible to find an analytical form to L(F),
we obtain the nonlinear behavior of these functions numeri-
cally. As we are working with electrical sources, it becomes
useful to use the auxiliary field P and with it, we can find a
closed form for L(P).

The energy conditions are the same as those obtained in
general relativity and in the f (R). For all solutions, the
strong energy condition is violated inside the black hole,
which implies that within the event horizon we have regions
in which the gravitational interaction is repulsive. For the
Culetu solution, we have that the null energy condition is
violated outside the event horizon and for the other solutions
the dominant energy condition is violated outside the black
hole.

As continuations of this work, we can try to verify the sta-
bility and the possibility of application of the f (G) models
developed here to compare with cosmological data [87]. To
do that, since in the Newtonian limit we do not have correc-
tions from the perturbations in f (G) gravity in relation to the
general relativity (compare (22) for f (R,G) = R with (51)
in [88]), it’s necessary to use the Post Newtonian and Param-
eterized Post Newtonian limit to get new corrections. With
that, it’s possible to find a regime of validity for c1, as was
done in [89] using the deflection of light, Cassini experiment,
perihelion shift retardation of light, gravitational redshift and
the equivalence principle.
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Appendix A: Analytical forms

The analytical forms for some functions are too much large.
So that, we dedicate this appendix to show the analytical
expressions.

1. Reissner–Nordström-anti-de Sitter

Due to the coupled with f (G) gravity and the presence of
the cosmological constant, the electromagnetic theory that
generates RNAdS is not linear, L(P) = P , actually we have

L(P) = P + 4c0�
2

3
+ 4c1P

4
√−P

105q5/2

[
1512 4

√
2m2P

+420m 4
√

−q2P

(√−P − 7
√

2Pq

)

+5 4
√

2q2
(

6P

(
40

√−2Pq + 21

)
− 7�

)]
. (A1)

So that, the generalized RNAdS is characterized by a non-
linear electrodynamics. If we are free of the cosmological
constant, c1 = 0 is enough to recover the Maxwell theory
and the constant c0 doesn’t appear in the electromagnetic
functions.

2. First regular solution

To regular black holes with electric sources is not possible
write an analytical form to L(F), however is still possible
find to L(P). Since we have r(P) and r(G), we replaced
r(P) in (63) and r(G) in (27) and (61) to find the analytical
expressions. The electromagnetic Lagrangian is

L(P) = c1

{
2m2

q5

[√
3 ln

(
q + 4

√−18q6P + q2
√−2P
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√−18q6P + q2

√−2P

)

+2 tan−1
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3
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In the weak field limit, we do not recover the Maxwell theory
since, for c1 = 0, we have L(P) ≈ P9/4 with P � 1.

Using (60) we get r as a function of G and substituting
(27) we get

fG(G) = c0 + c1

G1/6

{
m2
(

16 − 44 3
√

2Gq6

α1(G)

)

+2 22/3α1(G) + 64 3
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2m4
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− Gq6
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. (A3)

Where α1(G) is given by

α1(G) =
{

9G2m2q12 − 132Gm4q6 + 128m6
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√
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Integrating (A3) with respect to G and defining

α2(G) = 1
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we obtain
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3. Hayward-type solution

From (75), we may construct an analytical expression to
r(G). Defining

α3(G) = 3

√
Gm6q6

(
81G2q12 + 792Gm2q6 − 112m4

)

+90Gm4q6 − 8m6, (A5)
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we get the fG(G) function, that is given by

fG(G) = c0 − c1

(√
2α4(G) + q3 − √

2α5

)
. (A8)

Integrating this equation with respect to G we get the analyt-
ical form of f (G). For

α6(G) = 3
√

−q3 − √
2α4(G) + √

2α5(G), (A9)

f (G) is written as
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In terms of the auxiliary field P , the electromagnetic
Lagrangian that generates the Hayward-type solution in
f (G) gravity, (77), is

L(P) = 8c1m
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4. Culetu solution

For the Culetu solution is not possible write fG(G) and f (G)

in a closed. However, it is still possible to construct for L(P),
that is

L(P) = 2c1e− 4√−2q6P
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