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Abstract The common nature of the dark sector—dark
energy and dark matter—as shown in Gurzadyan
(arXiv:1712.10014, 2017) follows readily from the consider-
ation of the generalized Newtonian potential as a weak-field
version of General Relativity. The generalized potential satis-
fying Newton’s theorem on the equivalence of sphere’s grav-
ity and that of a point mass located in its center contains an
additional constant, which along with the gravitational con-
stant is able to explain quantitatively both dark energy (the
cosmological constant) and dark matter. So, gravity is defined
not by one but two fundamental constants. We show that
the second constant is dimension-independent and matter-
uncoupled and hence is even more universal than the gravi-
tational constant, thus affecting the strategy of observational
studies of dark energy and of the search of dark matter.

1 Introduction

The discovery of the dark sector as a dominant constituent
of the universe is one of outstanding recent astrophysical
achievements and continues to be a key puzzle for physical
theories. Various modifications of the Newtonian gravity and
of General Relativity (GR) are being actively considered in
that context.

Among the possible approaches to modified gravity,
including GR, is the one based on a theorem proved by New-
ton in “Principia” on the equivalence of the gravity of sphere
and that of a point mass located in its center. The principal
importance of that theorem was obvious, since the motion of
the planets, which were spheres and not point masses, could
be considered to be explained by the law of gravity only upon
the proof of that theorem. Now, it appears that this theorem
provides a two-step path to modified gravity theories and
directly to the dark sector problem [1,2]:
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1. The general function satisfying that theorem provides an
additional term containing a constant and thus modifying
the Newtonian gravity;

2. modified Newtonian gravity leads to a modified GR with
the former as its weak-field limit.

So, modified GR has to initially include that additional
constant, along with the gravitational constant. As shown in
[1,2] that additional constant entering both modified Newto-
nian gravity and GR enables one to describe by its sign and
quantitative value both dark matter and dark energy. That
constant appears to be the renowned cosmological constant,
which was introduced by Einstein [3] in order to have static
solutions to the Einstein equations.

The two constants of the gravitational interaction are able
to describe self-consistently, i.e. without postulation of addi-
tional scalar or other fields, the dark matter and dark energy.
This reveals their unified, gravitational nature. Namely, the
dark matter appears as a result of the pure gravitational inter-
action, but with a law containing the additional constant.

We analyze this approach and reveal the role of that addi-
tional universal physical constant in classical and relativis-
tic gravities. The consequences of this approach can have a
direct impact on the strategy of the observational studies of
the dark energy and the search of the dark matter.

2 Newton’s theorem and General Relativity
The general function to satisfy Newton’s theorem that a

sphere acts as a point mass located in its center has the fol-
lowing form for the force [2]:

fr)=Cir7% 4 Cyr, (1

where C1 and C; are constants and f(r) is the solution of
equation
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%f”(r) +rf'(r) = f(r) =0. @

Thus, one can conclude that according to Newton’s theo-
rem the gravitational force should contain two terms, i.e. an
inversed square term and a linear one.

Considering the original formulation of gravity by New-
ton himself, it becomes clear that the constant C; is written
asC1 =G m?, i.e. with the familiar gravitational constant
G and mass m, the latter entering also the law of mechan-
ics. In this sense, the Newtonian gravity can be regarded as a
very special case, i.e. Co = 0 of all possible forms of grav-
itational fields where one can consider spherical objects as
points. Furthermore, it should be noticed that Newton him-
self did not consider the most general form of the force before
formulation of his theory of gravity, although he proved that
in the context of his theory it is possible to consider spheres
as points.

In this context the presence of a linear term was forgot-
ten for hundreds of years until the formulation of GR and
introduction of cosmological constant A in

Guv + Aguv = «Ty,. 3)

After that it became obvious that, by considering A, as
introduced above, the GR weak-field limit will contain an
additional linear term. In this sense the metric tensor com-
ponents for the sphere’s gravity in the weak-field limit will
be

2Gm Ar? 2Gm Ar?
800=1————§ grr=1+7+_ (4)

re? 3 3

Thus, one can conclude that although first the existence of
A was proposed by Einstein in the context of GR [4], it would
be possible to find the full GR equations (Eq. (3)), if Newton
had considered both terms and formulated his theory based
on Eq. (1). In this sense, by considering Newton’s principle
and the most general form of the force, the cosmological term
appears in Einstein’s equations not by the principles of GR,
but as the second linear term of Newtonian gravity.

It should be noticed that, although Eq. (4) has been consid-
ered previously in different contexts (e.g. [4,5] and the refer-
ences therein), the approach of [1,2] from the roots of New-
tonian gravity/GR provides insight into the unified nature of
dark matter and dark energy. Namely, the presence of A as
an additional linear term in the Newtonian regime, i.e. Eq.
(4), enables one to describe the dark matter in galaxies, as
the cosmological constant in GR describes the dark energy,
and as shown in [1] both values of A, i.e. those describing
dark matter and dark energy (cosmological constant) quan-
titatively agree with each other. In the case of dark matter,
it is of principal importance since Eq. (1) describes a non-
force-free field inside a shell except for its center, while for
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Table 1 Background geometries for vacuum solutions

Sign Spacetime Isometry Group Curvature
A>0 de Sitter (dS) O(1,4) +
A=0 Minkowski (M) 10(1, 3) 0

A <O Anti de Sitter (AdS) 0(2,3) -

the Newtonian law the force-free field is entirely inside the
shell. This fact agrees with the observational evidence that
the galactic halos determine the properties of galactic disks

[6].

3 Group-theoretical analysis of Newton’s theorem

In the previous section we have shown that it is possible to
justify the existence of the second term in Eq. (1) as the weak-
field limit of the GR equations written with A. However, as
mentioned above, A was introduced not by Newton’s theo-
rem but according to conservation of the energy-momentum
tensor and the fact that 3" g,, = 0. So it seems quite rea-
sonable that, to make a more powerful justification, we try
to infer Newton’s theorem based on the above relativistic
considerations. Thus we turn to the isometry groups.

In Eq. (3), depending on A’s sign—positive, negative or
zero—one has three different vacuum solutions (three dif-
ferent asymptotic limits) for the field equations as shown in
Table 1.

The interesting feature of all these 4D maximally symmet-
ric Lorentzian geometries is that for all of them the stabilizer
subgroup of isometry group is the Lorentz group O(1, 3).
This means that at each point of all these spacetimes, one
has an exact Lorentz symmetry. Since O(1, 3) is the group of
orthogonal transformations, one can conclude that all above
spacetimes possess spherical symmetry (in Lorentzian sense)
at each point. Speaking in terms of geometry, for the above
three spacetimes we have

01,4
T 01,3

_10(1,3)
0,3

02,3

ds = .
0(1,3)

(&)

It is clear that in the non-relativistic limit the full Poincaré
group 10(1, 3) is reduced to the Galilei group Gal(4) =
(0(3) x R) x R®, which is the action of O(3) x R (as the
direct product of spatial orthogonal transformations and of
time translation) on the group of boosts and spatial transla-
tions R®. In the same way one can find the non-relativistic
limit of O(1, 4) and O(2, 3) groups,

0(1,4) - (0(3) x 0(1, 1)) x RS,
0(2,3) = (0(3) x 0(2)) x RS. (6)
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Table 2 3D background geometries with O(3) as the stabilizer

Space Isometry group Curvature
Spherical O4) 4
Euclidean E(3) 0
Hyperbolic 07 (1,3) -

where Agq-1 denotes the Laplace operator defined on §d=1
and the constant C; defines the mathematical feature of the
geometrical point. Now due to spherical symmetry we can
write

Furthermore, considering the fact that the Galilei spacetime
is achieved via quotienting Gal(4) by O(3) x R3 (the group
generated by orthogonal transformations and boosts), one can
continue the analogy and find the so-called Newton—Hooke
NH(4)* spacetimes by the same quotient group, but now for
the groups of Eq. (6) (see [7-9]). In this sense, depending on
the sign of A, we cannot only find the general form of the
Newtonian modified gravity (according to Sect. 2), but also
the non-relativistic background geometries of the Lorentzian
spacetimes in Table 1 and their symmetries.

To complete the proof, one has to check whether it is pos-
sible to apply Newton’s theorem to these spacetimes or not.
As stated above, to apply the gravity law to planets (spheres)
Newton considered them as points. Speaking in terms of
mathematics it means that at each point one should have O(3)
symmetry. This statement is similar to what we showed for
the 4D geometries of Table 1 and the Lorentz group O(1, 3).
The possible 3-geometries with such a property are listed in
Table 2.

Recalling that for non-relativistic theories we have two
absolute notions of space and time geometry (in contrast
to relativistic theories where space and time are unified in
spacetime geometry), the last step is to check whether the
spatial geometry of two NH(4)® spacetimes and the Galilei
spacetime are equal to one of the geometries mentioned in
Table 2 or not. There are several ways to check this state-
ment; however, the most straightforward one is to check the
algebraic structure of spatial geometry. Recalling the fact
that for both NH(4)* spacetimes and Galilei spacetime the
spatial algebra is identical and equal to the Euclidean algebra
E(3) = R3 x O(3), we can conclude that for all above space-
times we have an exact O(3) symmetry at each point of spatial
geometry. In this sense we will arrive at Newton’s theorem
based on a group theoretical analysis of GR equations.

4 Newton’s theorem in d dimensions

To shed more light on the constant A we consider the higher
dimensional cases, which simply means that the gravitational
field defined on S¢~! should be equal to that defined for a
single point at d-dimensional space. For the potential one has

Aga-1® = (1, @)

1 d 4.,d
— —& | =C. 8
rd—=1 (drr dr ) ! @)

So the most general form of the gravitational potential @ of
a sphere in the d-dimensional case according to Newton’s
theorem is

d(r)=C PG
N=C—+——.
124 T @ =22

©)
In this equation Cj is the constant of Eq. (7) and the constant
C» arises on solving the equation. Note that for d = 2 the
second term becomes logarithmic but the first one remains
unchanged.

The potential @ in Eq. (9) at d = 3 is not only in full
agreement with Eq. (1), but it also leads to further insights.
One can identify C3 in Eq. (9) with the A constant at the d-
dimensional generalization of ordinary Newtonian gravity,

GaM  Ac*r?
rd=2 2d

P(r) =— (10)
where G4 indicates the d-dimensional gravitational constant.

Note a remarkable fact: comparing the two constants—
the gravitational constant G and A—one can see their
essential difference. Namely, the gravitational constant G
is dimension-dependent and couples to matter, while A is
neither dimension-dependent nor matter-coupled. Such uni-
versality of A can be considered as fitting its vacuum content
noticed by Zeldovich from completely different principles
[10].

Thus, gravity has not one, but two fundamental constants—
G and A—and the second one (the cosmological constant) is
more universal (dimensional-independent) than the gravita-
tional constant! The two constants together are able to explain
quantitatively the dark energy and the dark matter [1].

Then the metric component of d + 1-dimensional space-
time is

20
800:1+C—2- (11)

We have the d-dimensional Gauss law,

d

212
A® = _Gap — A, (12)
r(g)
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where p is the d-dimensional density of matter. Consequently
one gets the Einstein constant,

SES

Q

4
r(

d

(13)

Kq =

[SIESH
'S

)c

This completes the generalization of Newton’s theorem to
arbitrary dimension and its correspondence to classical and
relativistic theories of gravity.

Then for the three possible maximally symmetric (d 4 1)-
dimensional spacetimes defined by the value of A one has
the following geometries:

Js,. — 0d+1D _10(1,d)
d+1 = o, d) ’ d+1 = o, d) )
0Q2,d)
Ade+1 = m, (14)

as the generalizations of Eq. (5); ford = 3 one easily recovers
the 4-dimensional results. It is clear that in such a case, irre-
spective of which geometrical spacetime is considered, one
has exact O(1,d) symmetry at each point, which in its turn
indicates the existence of spherical symmetry of Lorentzian
geometry for all points. Fixing the relativistic geometries and
symmetries one easily finds their non-relativistic limits,

O(l,d) — (0(d) x 0(1, 1)) x R¥,
02,d) — (0(d) x 0(Q2)) x R*,
10(1,d) — (0(d) x R) x R*. (15)

As in Sect. 3, one can find the non-relativistic background
geometries for each case by quotienting O(d) x R? for
all three symmetric groups. The resulting spacetimes are
Gal(d+1), NH"(d + 1), NH™(d + 1), and clearly atd = 3
one obtains the classical spacetimes. As we have mentioned
earlier, the interesting feature of these non-relativistic geome-
tries is the fact that, in contrast to the relativistic case, they
are not metric geometries because they do not admit sin-
gle metric structure and their properties can be studied via
the corresponding affine connection. Furthermore, from the
geometrical point of view, for all these three cases the spa-
tial geometry seems to be Euclidean and the pure spatial
algebra is equal to the Euclidean algebra E(d). Then, since
E(d) = R? x O(d), one easily concludes that in the spatial
geometry the O(d) is the stabilizer group, which in its turn
means that all points can be considered as d-dimensional
spheres, S¢~!. This proves that for all these three geometries
Newton’s theorem holds. However, as mentioned above, the
spatial parts of all three geometries are equal to each other,
and the question is how A affects these geometries. The
answer becomes clear if one considers the temporal parts
of Eq. (15). Indeed, the sign of A indicates that we are living
either in an oscillating NH(d + 1), a flat Gal(d+1) or an
expanding NH(d + 1) universe. One can also check that,
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for all these cases, depending on the sign and the value of A,
the affine connection can be flat, for the Gal(d+1) case, and
either positive or negative for NH(d + 1)™ and NH(d + 1),
respectively.

To conclude this brief but principal discussion, we write
down the d-dimensional (d # 2) Schwarzschild metric for
non-zero A,

2GaM Ar?
2 2 4.2
ds <1 — —2 — _) codt

-1
2GaM  Ar?
—(1—W—T> drz—rzdﬂffl. (16)

Although d-dimensional cases have been considered before,
our approach to GR and its weak-field limit justifies the
consideration of point-like dynamics for higher-dimensional
spheres based on Newton’s original theorem.

S Conclusions
Thus, according to our analysis:

1. Gravity has not one but two fundamental constants, the
gravitational constant G and an additional one, A, which
appears readily in General Relativity with the weak-
field limit as modified Newtonian gravity. Moreover, the
A constant (the cosmological constant) is dimension-
independent and matter-uncoupled and hence can be con-
sidered as even more universal than the gravitational con-
stant G.

2. The A constant of gravity emerges from Newton’s theo-
rem on the identity of the sphere’s gravity and that of the
point mass located in its center.

3. Bothconstants, G and A, jointly are able to explain quan-
titatively dark energy and dark matter [1], which hence
appear as gravity effects.

Also, the AdS spacetime of AdS/QFT emerges here read-
ily from the genuine structure of classical and relativistic
gravities. A positive A constant is an essential condition in
conformal cyclic cosmology [11,12].

The accuracies of the current tests of GR (e.g. [13]) are still
far from enabling one to probe modified gravity as discussed
above; however, for example, the astronomical observations
of galactic halos [14] can be efficient in testing the predictions
regarding the nature of dark matter.
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