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Abstract We introduce analogue black holes (BHs) based
on ideal magnetohydrodynamic equations. Similar to acous-
tic BHs, which trap phonons and emit Hawking radiation
(HR) at the sonic horizon where the flow speed changes from
super- to sub-sonic, in the horizon of magnetoacoustic and
Alfvénic BHs, the magnetoacoustic and Alfvén waves will
be trapped and emit HR made of quantized vibrations simi-
lar to phonons which we call magnephonons and Alphonons.
We proposed that magnetoacoustic and Alfvénic BHs may
be created in the laboratory using a tube with variable cross
section embedded in a uniform magnetic field, and a super-
magnetoacoustic or a super-Alfvénic flow. We show that the
Hawking temperature for both BHs is a function of the back-
ground magnetic field, number density of fluid, and radius of
the tube. For a typical setup, the temperature is estimated to
be about 0.0266 K.

1 Introduction

In 1916 Schwarzschild gave a metric as a solution of the Ein-
stein field equation. Singularity of such a metric predicted a
gravitational BH with event horizon at Schwarzschild radius
[1]. Although, based on classical physics everything, even
light, is absorbed by BHs and cannot escape, in the context
of quantum field theory in curved space, Hawking showed
that BHs should emit black body radiation [2,3]. HR in the
universe has not been observed yet, but numerous attempts
have been done to simulate the interesting phenomena in the
laboratory. Unruh showed that HR is not only a character-
istic of gravitational BHs, it is also a characteristic of the
acoustic analogue BH [4,5]. After 1981, most of attempts
are proposed based on Bose–Einstein condensates of quan-
tum fluid, [6–10] quasi particles in superfluid [11], ultra-cold
fermions [12], in plasmas and ion rings, [13–17] slow light
in an atomic vapor, [18–21] in water [22,23], etc. Recently,
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observation of self-amplifying HR in an analogue BH laser
suggested a very promising experiment method for probing
the inside of a BH [24]. From a theoretical point of view, the
acoustic analogue BH models are developed in geometrical
acoustics and physical acoustics [25]. Using the linearized
hydrodynamic equations in the presence of initial material
flow, a wave equation for velocity potential was obtained.
Tensorial form of the wave equation results in an acoustic
metric. The acoustic metric is singular at a point where the
local sound speed is equal to the flow speed [26]. This was
interpreted as characteristic of a sonic BH [25,26].The effect
of magnetic field on the acoustic BH and HR has not been
studied, yet.

Alternatively, the idea for definition of acoustic BH can
be applied to introduce new analogue magnetoacoustic and
Alfvénic BHs in the magnetohydrodynamics (MHD) frame-
work. Magnetohydrodynamics (MHD) is an useful approach
to analyze characteristics (flow, wave and dissipation etc) of
the laboratory and astrophysical plasma [33]. After Alfvén
[34], MHD waves (Alfvén and magnetoacoustic) have been
detected, using the laboratory experiments Alfvén wave (e.g.
[35–37], in the earth-ionosphere and magnetic field [38,39],
a variety normal modes of the solar corona [40–44].

Here, first we treat the magnetoacoustic, Alfvén, and
acoustic waves based on Helmholtz theorem for a uniform
and stationary medium with constant background magnetic
field. Second, mimicking the definition of acoustic BH in
a nozzle, we introduce magnetoacoustic and Alfvénic BHs
with using a slightly variable cross section tube. We con-
clude that at the horizon of magnetoacoustic and Alfvénic
BHs should emit radiations made of the Magnephonon and
Alphonon, respectively. We define two quasi-particles Mag-
nephonon and Alphonon correspond to quantum of the mag-
netoacoustic and Alfvén waves, respectively.

This paper is organized as follows: Sect. 2 gives the proper-
ties of magnetoacoustic waves (fast, slow, and Alfvén waves)
using the Helmholtz decomposition and explains a derivation
of magnetoacoustic metric in the basis of linearized ideal
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magnetohydrodynamic equations. Section 4 introduces the
acoustic, magnetoacoustic, and Alfvénic black holes, respec-
tively. Section 5 calculate the Hawking temperature for the
acoustic, magnetoacoustic, and Alfvénic black holes. Section
6 describes the conclusions.

2 Magnetoacoustic waves and metric

Here, we give the conditions for a definition of a magnetoa-
coustic metric, in the non-relativistic magnetohydrodynamic
(MHD) framework. In the MHD approach, the behavior of
continuous plasma is governed by a non-relativistic form of
Maxwell’s equations, together with Ohm’s law, a gas law,
equation of mass continuity, motion and energy equations
[28]. The ideal MHD equations for an adiabatic process and
irrotational flow ∇ × v = 0 are given by:

∂ρ

∂t
+ ∇.(ρv) = 0, (1)

ρ

(
∂v
∂t

+ 1

2
∇v2

)
= −∇ p + 1

μ
(∇ × B) × B, (2)

∂B
∂t

= ∇ × (v × B), (3)

∇.B = 0, (4)

p = kργ , (5)

where,ρ, p, v, B,µ,γ , and k are density, pressure, flow veloc-
ity, magnetic field, magnetic permeability, atomicity coeffi-
cient, and a constant, respectively. For the derivation of a
metric for magnetoacoustic wave we need to linearised the
MHD equations with choosing the velocity disturbances as a
velocity potential in similar analytical process for derivation
of acoustic metric from wave equation. To do this, first we
treat the propagation of magnetoacoustic waves in homoge-
nous unbounded medium choosing velocity disturbance as a
velocity potential and a vector potential. Second, the magne-
toacoustic and Alfvénic metrics are calculated.

3 Helmholtz theorem and magnetoacoustic waves

Properties of magnetoacoustic waves (fast, slow, and Alfvén
waves) in an unbounded homogenous and stationary medium
with constant density (ρ0 = cte), constant pressure (p0 =
cte), and uniform background magnetic field (B0), were
investigated in the literature [28]. The linearised ideal MHD
equations can be reduced to a single equation for disturbed
velocity as [28],

∂2v
∂t2 = c2

0∇(∇.v) + v2
A(∇ × (∇ × (v × B̂0))) × B̂0. (6)

where c0 =
√

γ p0
ρ0

is the sound speed, vA = B0√
μρ0

is speed

of the Alfvén wave, and B̂0 = B0/B0 is a unit vector. Here,
we focus on studying of the characteristics of the above
mentioned waves using a fundamental theorem of calculus
(Helmholtz’s theorem). Based on the Helmholtz decompo-
sition, a vector field with sufficient smoothness and decay
conditions [29], can be decomposed to an irrotational part
(∇φ where φ is a scaler) and a solenoidal part (∇ × A where
A is the vector potential and satisfy ∇.A = 0). The irrota-
tional (gradient) and divergence-free solutions can be used
for treating the longitudinal and transversal waves, respec-
tively.

Suppose an irrotational solution, v = ∇ϕ with ϕ =
ϕ̃ exp (ik.r − iωt) for Eq. (6), immediately we find v =
v̂ exp (ik.r − iωt) where k, ω, ϕ̃, and v̂ = ikϕ̃, are wave vec-
tor, angular frequency of oscillations, a constant, and wave
amplitude, respectively. Furthermore Eq. (6) yields,

ω2v̂ = c2
0k(k.v̂) + v2

A(k × (k × (v̂ × B̂0))) × B̂0. (7)

Equation (7) simplifies as

ω2v̂ = c2
0k

2v̂ + v2
A(v̂ − B̂0(v̂.B̂0))k

2. (8)

We note that the wave vector (k) and wave amplitude (v̂) are
parallel (k‖v̂). Considering the wave propagation parallel to
the background magnetic field (k‖B0), Eq. (8) reduces to the
dispersion relation ω2 = c2

0k
2. This indicates that, in the case

of an irrotational solution parallel to the magnetic field, only
the acoustic wave can propagate. In the case of propagation
perpendicular to the background magnetic field (k⊥B0), Eq.
(8) gives the dispersion relation ω2 = ( v2

A + c2
0)k

2. This
is the well-known characteristic of the fast magnetoacoustic
wave with the phase speed c2

f = ω2/k2 = c2
0 + v2

A. For
the oblique propagation k.B0 = kB0 cos θ (θ is the angle
between B0 and k), the phase speed of the slow magnetoa-
coustic wave is given by

v2
ph = ω2

k2 = c2
0 − v2

A(cos θ − 1). (9)

From the above analysis we see that, choosing the disturbed
velocity as an irrotational velocity field v = ∇ϕ, the Alfvén
waves cannot propagate along the background magnetic field
(B0).

Suppose a divergence-free solution, v = ∇ × A, with a
planar wave solution A = Â exp (ik.r − iωt), v̂ = ik × Â
and Â is a constant vector, Eq. (6) gives,

ω2v̂ = v2
A(k × (k × (v̂ × B̂0))) × B̂0. (10)

We see that the velocity amplitude is perpendicular to the
wave vector (k.v̂ = 0), and only the transversal Alfvén wave
with phase speed vph = vA can propagate.
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In the remainder of this section, the metrics for acous-
tic, magnetoacoustic, and Alfvén longitudinal waves (irrota-
tional solutions) are derived.

3.1 Magnetoacoustic metric

Here, in the presence of initial material flow the magnetoa-
coustic metric using the magnetoacoustic wave is derived.
For an irrotational flow the velocity is satisfied by a scalar
field v = ∇ϕ. We consider small perturbations from equilib-
rium as

ρ(r, t) = ρ0(x, t) + ρ0(x, t)ψ(r, t), (11)

v(r, t) = v0(x)x̂ + ∇ϕ(r, t), (12)

B(r, t) = B0 x̂ + B1(r, t), (13)

where, equilibrium quantities indicated by subscript “0”
are function of position x and time t , ψ(r, t), ϕ(r, t), and
B1(r, t) are perturbed quantities [30,31]. Equilibrium quan-
tities (ρ0,v0, B0, and p0) are satisfied by

∂ρ0

∂t
+ v0

∂ρ0

∂x
+ ρ0

∂v0

∂x
= 0, (14)

ρ0v0
∂v0

∂x
= −c2

0
∂ρ0

∂x
(15)

∇ × (v0 × B0) = 0, (16)

∇.B0 = 0, (17)

p0 = kργ
0 . (18)

Linearization of Eqs. (1)–(5) (products and squares of the
small perturbations are neglected) and after some mathemat-
ical manipulations, give

∂ψ

∂t
+ ∇ ln ρ0.∇ϕ + v0.∇ψ + ∇2ϕ = 0, (19)

ρ0∇
(

∂ϕ

∂t
+ v0.∇ϕ + c2

0ψ

)
= 1

μ
(∇ × B1) × B0, (20)

∂B1

∂t
= ∇ × (v0 × B1) + ∇ × (v1 × B0) , (21)

∇. B1 = 0, (22)

As we explained in the previous section, by choosing v = ∇ϕ

the parallel propagation of Alfvén waves along the magnetic
field (B0 = B0 x̂) is absent. Therefore, the first term on right
hand of Eq. (21) is set to zero, ∇ × (v0 × B1) = 0. A com-
bination of this assumption and the solenoidal condition for
magnetic field (∇.B0 = 0), gives ∂B1x

∂x = 0. Thus the propa-
gation of Alfvén waves along the background magnetic field
is removed from our analysis. We assume the irrotational part
of the vector v0 × B1 = ∇δ(x, y, z, t) in which δ(x, y, z, t)
is a function.

The x and z components of Eq. (20) are

∂

∂x

(
∂ϕ

∂t
+ v0.∇ϕ + c2

0ψ

)
= 0. (23)

ρ0
∂

∂z

(
∂ϕ

∂t
+ v0.∇ϕ + c2

0ψ

)
= B0

μ

(
∂Bz

∂x
− ∂Bx

∂z

)
.

(24)

Here after, first, we focus our analysis on the derivation of
acoustic waves with propagation along the background mag-
netic field directions (x̂) and second, magnetoacoustic wave
propagation in all directions except the magnetic field direc-
tion.

First, combining Eqs. (19) and (23) gives

− ∂

∂t

(
∂ϕ

∂t
+ v0

∂ϕ

∂x

)
+ ∂

∂x

(
c2

0
∂ϕ

∂x
− v0

(
∂ϕ

∂t
+ v0

∂ϕ

∂x

))

+ c2
0∇2ϕ = 0. (25)

Equation (25) is the well-known Klein–Gordon equation for
acoustic waves. Eliminating ∂ψ/∂x between Eqs. (19) and
(23) one obtains

v0
∂

∂x

(
∂ϕ

∂t
+ v0.∇ϕ

)
+ v0ψ

∂c2
0

∂x

− c2
0

(
∂ψ

∂t
+ ∇ ln ρ0.∇ϕ + ∇2ϕ

)
= 0 . (26)

Briefly, by choosing the irrotational solution for the velocity
disturbance, the transversal Alfvén wave is absent, and the
propagation of the longitudinal Alfvén wave parallel with the
background magnetic field is also absent as expected. Our
analysis shows that, along the magnetic field only the acous-
tic wave can propagate. Because our goal is to analyse the
magnetoacoustic black hole, hereafter, we focus our analysis
in all directions except the magnetic field direction. Second,
by differentiating Eq. (26) with respect to z and substituting
∂ψ/∂z from Eq. (24) one finds

∂

∂z

(
1

c2
0

∂

∂x

dϕ

dt

)
= 1

v0
∇2 ∂ϕ

∂z
+ 1

v0
∇ ln ρ0.∇ ∂ϕ

∂z

+ 1

v0

∂

∂t

(
− B0

μρ0c2
0

(∇ × B1)y − 1

c2
0

∂

∂z

dϕ

dt

)

+ B0

μρ0c4
0

∂c2
0

∂x
(∇ × B1)y + ∂

∂z

(
1

c4
0

∂c2
0

∂x

dϕ

dt

)
. (27)

in which, d/dt = ∂/∂t + v0.∇. Substituting − ∂
∂t (∇ × B1)y

= B0∇2 ∂ϕ
∂z from Eq. (21), into Eq. (27) and differentiating

with respect to t using ∂
∂t (∇ × B1)y = −B0∇2 ∂ϕ

∂z we derived
a single equation for velocity potential (ϕ)
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∂

∂t

(
1

N

(
1

c2
0

∂

∂x

dϕ

dt
− 1

c4
0

∂c2
0

∂x

dϕ

dt
− ∇2ϕ

v0
− ∇lnρ0.∇ϕ

v0

))

+ ∂

∂t

(
1

N

(
1

v0

∂

∂t

(
1

c2
0

dϕ

dt

)
− v2

A

c2
0v0

∇2ϕ

))
= B0∇2ϕ,

(28)

where,

N = B0

μv0

∂

∂t

(
1

ρ0c2
0

)
− B0

μρ0c4
0

∂c2
0

∂x
(29)

= v2
A

B0c2
0

(
γ

v0
+ v0

c2
0

)
dv0

dx
. (30)

For a flow having a slight change in the speed (dv0/dx � 1),
for high frequency waves (short period �t � 1) the term
�t (dv0/dx) becomes too small. In this case, the right hand
side term B0∇2ϕ of Eq. (28) can be negligible compared

to the last term ∂
∂t

(
v2
A

Nc2
0v0

∇2ϕ

)
of the left hand side. This

leaves an equation for ϕ

− ∂

∂t

(
∂ϕ

∂t
+ v0

∂ϕ

∂x

)
+ ∂

∂x

(
c2

0
∂ϕ

∂x
− v0

(
∂ϕ

∂t
+ v0

∂ϕ

∂x

))

+v2
A
∂2ϕ

∂x2 + (v2
A + c2

0)

(
∂2ϕ

∂ y2 + ∂2ϕ

∂z2

)
= 0.

(31)

Equation (31) describes the propagation of acoustic, Alfvén,
and magnetoacoustic waves in laboratory and astrophysical
plasma. This equation is in the form of the well-known Klein-
Gordon equation. As expected, in the case of unmagnetized
fluid (B0 = 0), Eq. (31) reduces to the acoustic wave equation
for velocity potential. Usually, a d’Alembertian equation (for
a minimally coupled massless scalar field) of motion was
derived for velocity potential in a barotropic, inviscid, and
rotational free flow [25].

Equation (31) can be reformulate in a tensorial form

1√−g
∂μ

(√−ggμν∂νϕ
) = 0, (32)

where, gμν and g are inverse metric tensor and its determi-
nant, μ and ν runs from 0 (indicates the time coordinate)
to 3 (denotes the spatial coordinate). The magnetoacoustic
inverse metric tensor gμν and metric tensor gμν are obtained
as

gμν = 1

ρ0c3
f

⎛
⎜⎜⎜⎝

−1 −v0 0 0
−v0 c2

f − v2
0 0 0

0 0 c2
f 0

0 0 0 c2
f

⎞
⎟⎟⎟⎠ ,

gμν = −ρ0c f

⎛
⎜⎜⎝
c2
f − v2

0 v0 0 0
v0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (33)

where, c2
f = v2

A + c2
0. Using metric tensor, Eq. (33), the

magnetoacoustic interval can be defined as

ds2 = gμνdx
μdxν = −ρ0c f

(
(c2

f − v2
0)dt

2

+ 2v0dtdx − dx2 − dy2 − dz2
)

. (34)

Inserting the specific time interval dτ = dt + v0dx
c2
f −v2

0
into Eq.

(34), one obtains

ds2 = c f ρ0

⎛
⎜⎜⎝−

(
1 − v2

0

c2
f

)
c2
f dτ 2 + dx2(

1 − v2
0

c2
f

) + dy2 + dz2

⎞
⎟⎟⎠ .

(35)

In the following section, the properties of acoustic, magne-
toacoustic, and Alfvénic BHs are investigated.

4 Acoustic, magnetoacoustic, and Aflvénic black holes

4.1 Acoustic black hole

The theory of gravitational BHs has been developed into the
supersonic flow by Unruh [26]. For a moving fluid medium at
the horizon where speed of medium is closed to propagation
speed of the acoustic signals “ then nothing can fight its way
back upstream and signals are trapped” [27]. In the case of
unmagnetised gas(B0 = 0), Eq. (28) reduces to the Klein–
Gordon equation, for propagation of acoustic waves in the
presence of material flow. Using the resultant equation the
acoustic metric can be derived [26].

The acoustic metric can be obtained by setting vA = 0 in
Eq. (33)

gsμν = −ρ0c0

⎛
⎜⎜⎝
c2

0 − v2
0 v0 0 0

v0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (36)

Equivalently, the acoustic interval can be expressed as

ds2 = c0ρ0

⎛
⎜⎜⎝−

(
1 − v2

0

c2
0

)
c2
f dτ 2 + dx2(

1 − v2
0

c2
0

) + dy2 + dz2

⎞
⎟⎟⎠ .

(37)
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Combination of continuity and momentum equations (Eqs.
14 and 15) in stationary state, the relation between cross
section S and velocity v is given by
(
v2

0

c2
0

− 1

)
dv0

v0
= dS

S
. (38)

This relation shows that for (dS < 0) a subsonic flow (v0 <

c0) will be accelerated and a supersonic flow (v0 > c0) will
be decelerated. If the nozzle is sufficiently narrow and with
a slightly variable cross section the speed of flow exceeds
to sound speed at the throat (sonic horizon). This shows the
acoustic interval Eq. (37) interpreted acoustic BH which has
a sonic horizon and trapped phonon in the surface gravity of
acoustic BH. This means that, when the acoustic waves cross
from upstream to downstream, the acoustic wave quanta
(phonons) are captured in the horizon of the BH where they
emit Hawking radiation made by phonons. In this regard, in
many papers a Laval nozzle setup (Fig. 1) has been proposed
to discuss the above mentioned acoustic BH. This setup uses,
an axisymmetric sufficiently thin tube with slightly decreas-
ing cross section (S(x)) that reaches its minimum cross sec-
tion at the throat and then slightly increases that. An initial
material flow (v0 = v0 (x) x̂) along the tube axis is consid-
ered.

4.2 Magnetoacoustic black hole

The magnetoacoustic metric Eq. (35) is singular at the mag-
netoacoustic point, where v0 = c f , determines a magnetoa-
coustic horizon. The speed of super magnetoacoustic plasma
flow reduces to local propagation speed of magnetoacous-
tic wave at horizon; then signal of magnetoacoustic wave
is trapped and therefore it can be called magnetoacoustic
BH. Similar to the HR emitted from acoustic and gravita-
tional BHs, the magnetoacoustic BH also should emit HR.
In this regard, we propose a setup (Fig. 2) to discuss the above
mentioned BH. The setup consists of an axisymmetric suffi-
ciently thin tube with slightly variable cross section (S(x)),
a uniform force free magnetic field B0 = B0 x̂ and an initial
material flow (v0 = v0 (x) x̂) along the tube axis (Fig. 2).

A similar treatment of sub and supersonic flow in
tube configuration can be explained for sub and super-
magnetoacoustic flow based on Eq. (38). In other words, the
super-magnetoacoustic flow (v0 > c f ) will be decelerated
along the tube where its cross section slightly decreases. It
is possible to release a super-magnetoacoustic flow in the
tube, which its speed tends to the speed of magnetoacous-
tic wave (v0 = c f ) at the horizon. The boundary between
sub-magnetoacoustic and super-magnetoacoustic flow could
be called the magnetoacoustic horizon, analogous to the
sonic horizon in acoustic BHs. Phononic version of HR is
an inevitable result of trapping acoustic wave at the acoustic

horizon [24,32]. Under a likely scenario, the magnetoacous-
tic wave cannot escape from the magnetoacoustic horizon,
therefore should emit HR made of magnephonon. Indeed, a
magnephonon will be a quantum for magnetoacoustic wave,
analogous to the phonon which is a quantum for acoustic
wave.

4.3 Alfvénic black hole

In the limit ofc0 << vA (zero β plasma condition), the mag-
netoacoustic wave (Eq. 31) reduces to an Alfvén wave in the
presence of initial material flow. The resultant Alfvén wave
equation is in the form of Klein–Gordon equation. Imme-
diately, the Alfvénic metric can be derived from magnetoa-
coustic metric (Eqs. 33 and 35) by setting c0 tends to 0,

gA
μν = −ρ0vA

⎛
⎜⎜⎝
v2
A − v2

0 v0 0 0
v0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (39)

Equivalent Alfvénic interval is given by

ds2 = vAρ0

⎛
⎜⎜⎝−

(
1 − v2

0

v2
A

)
v2
Adτ 2 + dx2(

1 − v2
0

v2
A

) + dy2 + dz2

⎞
⎟⎟⎠ .

(40)

The Alfvénic metric (Eq. 40) is singular at the location of
Alfvénic point where v0 = vA. This singular behaviour of
Alfvénic metric leads to an Alfvénic BH. We propose a setups
that is illustrated in Fig. 3, the condition for occurrence of
an Alfvénic BH can be discussed. For compressional (longi-
tudinal) Alfvén wave, the plasma density is nearly constant.
As a result of mass continuity, the flux, S(x)v0(x), is con-
stant in the tube cross section. Consider a super-Alfvénic
flow in a tube with increasing cross section (Fig. 3), speed of
the flow decreases along the tube axis and reaches to Alfvén
velocity v0 = vA at Alfvénic point and then transformed
to sub-Alfvénic flow. Therefore, we call Alfvénic horizon
to be the interface between super-Alfvénic flow and sub-
Alfvénic flow. In horizon of the Alfvénic BH, the Alfvén
wave is trapped and it is expected to be radiated by Alphonon.
Alphonon is introduced as a quantum particle for Alfvén
wave packet.

5 Hawking temperature

Hawking temperature is an important characteristic of BHs.
Unruh showed that fluid flows mimic BHs. Hawking temper-
ature (TH ) for acoustic BH was obtained
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Fig. 1 A schematic
presentation of a acoustic black
hole in Laval nozzle tube. The
speed of super sonic flow
reduces to local propagation
speed of acoustic wave at sonic
horizon; then acoustic signals
are trapped

sonic horizon

sub−sonic flowsuper−sonic flow
x

Fig. 2 Sketch of a tube with a
slightly variable cross section
embedded in a slightly uniform
magnetic field.
Super-magnetoacoustic flow,
v0 > c f , sub-magnetoacoustic
flow, v0 < c f , and
magnetoacoustic wave trapped
in the horizon are presented

Fig. 3 A schematic
presentation of a Alvénic black
hole. Sketch of a tube with a
slightly variable cross section
embedded in a uniform
magnetic field. The speed of
super Alfvénic flow reduces to
local propagation speed of
Alfvénic wave at horizon; then
Alfvénic signals are trapped

TH−acoustic = h̄

2πkcs

d(v2
0 − c2

s )

dx

∣∣∣∣∣
horizon

, (41)

where, h̄ = h/2π , h is the plank constant and k is the Boltz-
mann constant. Since the Hawking temperature is indepen-
dent of metric conformal factor. It will therefore be as fol-
lowing for the magnetoacoustic BH,

TH−magnetoacoustic = h̄

2πkc f

d(v2
0 − c2

f )

dx

∣∣∣∣∣
horizon

. (42)

In the limit of vA tends to zero, Eq. (42) then reduces to
Hawking temperature for acoustic BH. Although, in the
zero β plasma condition the above mentioned equation can
describe the Hawking temperature for Alfvénic BH,

TH−Alfvénic = h̄

2πkvA

d(v02 − vA2)

dx

∣∣∣∣. (43)

At the horizon where the tube cross section radius is equal to
R, Eq. (42) can be simplified as

TH−magnetoacoustic ≈ h̄ c f

2πk R
, (44)

where, the term 1
c f

d
dx (c f − v0) is approximately equal to

1
R . For a plasma with a ratio of χ = c0/vA in which χ is a
positive number, Eq. (44) gives

TH−magnetoacoustic ≈ 2.66 × 104
(

1 + χ2
)0.5 B0

R
√
n
, (45)

where, n is the number density of plasma and all units are in
SI. For a typical plasma with magnetic field strength B0=1
Tesla, number density n = 1018 m−3, R = 1 mm, and χ2 �
1, the Hawking temperature is estimated about 0.0266 K.
For a typical natural fluid in a Lavel nozzle experiment, the
Hawking temperature was estimated about 10−6 K [27].
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6 Conclusion

In this study, we introduced the magnetoacoustic and
Alfvénic analogue BHs. In the horizon of magnetoacoustic
and Alfvénic BHs, the magnetoacoustic and Alfvén waves
are trapped, respectively, and should emit magnephonons and
Alphonons version of HR at Hawking temperature. The next
logical step is to investigate the physical properties of both
magnephonon and Alphonon quasi-particles based on quan-
tum approach. As stated in the literature, for acoustic BH
in a natural fluid, the Hawking temperature is a function of
sound speed and geometry of nozzle setup at the horizon.
However, Hawking temperature for magnetoacoustic BH is
related to the sound speed with additional positive terms that
depends on the magnetic field and density. Magnephonons
and Alphonons are particles (quanta) corresponding to mag-
netoacoustic and Alfvén waves, respectively. The idea for
definition of acoustic, magnetoacoustic, and Alfvénic BHs
can be applied to theoretical and/or experimental prediction
of new non-gravitational BHs. Perhaps, the study of new BHs
could help us observe HR.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Commons license, and indicate if changes were made.
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