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Abstract In this work we extend and generalize our previ-
ous work on the scale dependence at the level of the effec-
tive action of black holes in the presence of non-linear elec-
trodynamics. In particular, we consider the Einstein-power-
Maxwell theory without a cosmological constant in (2 + 1)
dimensions, assuming a scale dependence of both the gravi-
tational and the electromagnetic coupling and we investigate
in detail how the scale-dependent scenario affects the horizon
and thermodynamic properties of the classical black holes for
any value of the power parameter. In addition, we solve the
corresponding effective field equations imposing the “null
energy condition” in order to obtain analytical solutions.
The implications of quantum corrections are also briefly dis-
cussed.

1 Introduction

Three-dimensional gravity is attracting a lot of attention
for several reasons. On one hand due to the deep connec-
tion to Yang–Mills and Chern–Simons theory [1–3]. On the
other hand in this lower dimensional gravitational theory,
there are no propagating degrees of freedom, which makes
analytic manipulations much more accessible. Furthermore,
three-dimensional black holes are characterized by proper-
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ties also found in their four-dimensional counterparts, such
as horizon radius, temperature, entropy etc. Therefore, three-
dimensional gravity allows to get deep insight into the cor-
responding systems that live in four-dimensions.

The main motivation to study non-linear electrodynam-
ics (NLED) was to overcome certain problems present in
the standard Maxwell’s theory. Initially, the so called Born–
Infeld non-linear electrodynamics was introduced in the 30’s
in order to obtain a finite self-energy of point-like charges [4].
During the last decades, these type of models reappear in the
open sector of superstring theories [5–8] as their describe the
dynamics of D-branes [9,10]. Similarly, in heterotic string
theory a Gauss–Bonnet term coupled to quartic contractions
of the Maxwell field strength appears [11–15].

Also, this kind of electrodynamics has been coupled to
gravity in order to obtain, for example, regular black hole
solutions [16–18], semiclassical corrections to the black hole
entropy [19], and novel exact solutions with a cosmological
constant acting as an effective Born–Infeld cut-off [20].

A particularly interesting class of NLED theories is the
so called power-Maxwell theory (EpM hereafter). There are
several reasons to study the Einstein-power-Maxwell electro-
dynamics, as it was recently pointed out in [21]: “In recent
years, the use of power Maxwell fields has attracted con-
siderable interest. It has been used for obtaining solutions
in d-spacetime dimensions [22], Ricci flat rotating black
branes with a conformally Maxwell source [23], Lovelock
black holes [24], Gauss–Bonnet gravity [25], and the effect
of power Maxwell field on the magnetic solutions in Gauss–
Bonnet gravity [26]”.

The EpM theory is described by a Lagrangian density
of the form L(F) = Fβ , where F = FμνFμν/4 is the
Maxwell invariant, and β is an arbitrary rational number.
When β = 1 one recovers the standard linear electrody-
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namics, while for β = D/4, with D being the dimension-
ality of space time, the electromagnetic energy momentum
tensor is traceless [27,28]. In three dimensions the generic
black hole solution without imposing the traceless condition
has been found in [21], while black hole solutions in linear
Einstein–Maxwell theory are given in [29,30]. Other inter-
esting solutions and properties of black holes in the presence
of power-Maxwell theory have been found in [22,25,31–34],
whereas some topological black hole solutions with power-
law Maxwell fields have been investigated in [35–37], as well
as Born–Infeld theory in [38,39]. Interesting features arise
from a study of the thermodynamic properties of EpM black
holes, as discussed in [32].

It is well-known that one of the open issues in modern
theoretical physics is a consistent formulation of quantum
gravity. Although there are several approaches to the prob-
lem (for an incomplete list see e.g. [40–48] and references
therein), most of them have something in common, namely
that the basic parameters that enter into the action, such as
Newton’s constant, the cosmological constant or the elec-
tromagnetic coupling, become scale-dependent quantities.
As scale dependence at the level of the effective action is
a generic result of quantum field theory, the resulting effec-
tive action of scale-dependent gravity is expected to modify
the properties of classical black hole backgrounds.

It is the aim of this work to study the scale dependence at
the level of the effective action of three-dimensional charged
black holes in the presence of the Einstein-power-Maxwell
non-linear electrodynamics for any value of the power param-
eter, extending and generalizing previous work [49], where
we imposed the traceless condition β = 3/4. We will use the
formalism and notation of [49].

Our work is organized as follows. After this introduction
we present the model and the field equations. Section 3 is
devoted to introduce the classical black hole background.
In Sects. 4 and 5 we allow for scale dependent couplings,
we impose the “null energy condition”, and after that we
present our solution for the metric lapse function as well as
for the couplings in the scale dependent scenario. In Sect. 7
we briefly discuss our main findings, concluding in the same
section.

2 Classical Einstein-power-Maxwell theory

In this section we will present the classical theory of non-
linear electrodynamics in (2 + 1) dimensional spacetimes
for an arbitrary EpM theory (namely, for an arbitrary index
β). Those theories will then be investigated in the context
of scale-dependent couplings. Our starting point is the so-
called Einstein-power-Maxwell action without cosmological
constant (Λ0 = 0), assuming the EpM Lagrangian density,
i.e. L(F) = γ |F |β , which reads

I0[gμν, Aμ] =
∫

d3x
√−g

[
1

2κ0
R − 1

e2β
0

L(F)

]
, (1)

where κ0 ≡ 8πG0 is the gravitational coupling, G0 is New-
ton’s constant, e0 is the electromagnetic coupling constant, R
is the Ricci scalar, L(F) is the electromagnetic Lagrangian
density, γ is a proportionality constant, F is the Maxwell
invariant previously defined, and Fμν = ∂μAν − ∂ν Aμ is
the electromagnetic field strength tensor. We use the metric
signature (−,+,+), and natural units (c = h̄ = kB = 1)
such that the action is dimensionless. Note that β is an arbi-
trary rational number, which also appears in the exponent of
the electromagnetic coupling in order to maintain the action
dimensionless. It is easy to check that the special case β = 1
reproduces the classical Einstein–Maxwell action, and thus
the standard electrodynamics is recovered. For β �= 1 one
can obtain Maxwell-like solutions. In the following we shall
consider the general case, so that β is taken to be a free
parameter. As our solution should reproduce the classical
one, we restrict the values of this parameter by demanding
the energy conditions to be satisfied. According to [21], we
will only take into account the (naive) range β ∈ �+ (our
solution, however, could have additional forbidden values of
the parameter β). The classical equations of motion for the
metric field are given by Einstein’s field equations

Gμν = κ0

e2β
0

Tμν. (2)

The energy momentum tensor Tμν is associated to the elec-
tromagnetic field strength Fμν through

Tμν ≡ T EM
μν = L(F)gμν − LF Fμγ Fν

γ , (3)

remembering that LF = dL/dF . Besides, for static circu-
larly symmetric solutions the electric field E(r) is given by

Fμν = (δrμδtν − δrνδ
t
μ)E(r). (4)

Taking the variation of the classical action with respect to the
field Aμ(x) one obtains

Dμ

(
LF Fμν

e2β
0

)
= 0, (5)

where e2β
0 is a constant. Combining Eq. (2) with Eq. (5) we

are able to determine the set of functions { f (r), E(r)}. It
should be noted that the general solution of this problem was
previously appointed in Ref. [21] by computing the lapse
function and the electric field, as well as the corresponding
thermodynamic properties.
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3 Black hole solution for Einstein–Maxwell model of
arbitrary power

The general metric ansatz assuming circular symmetry is
given by

ds2 = − f (r)dt2 + g(r)dr2 + r2dφ2. (6)

Note that, in the classical solution, it is possible to deduce the
Schwarzschild relation, namely g(r) = f (r)−1. The classi-
cal (2 + 1)-dimensional Einstein–Maxwell black hole solu-
tion (for an arbitrary index β) is obtained after solving f0(r)
and E0(r) and was previously found in Ref. [21]. As we
will compare these results with the scale-dependent solution
provided in Sect. 6, here we will briefly comment the main
features of the classical case. Then, solving the Einstein field
equations we obtain:

f0(r) = Br1−α + C

α − 1
, (7)

E0(r) = A

[
eα+1

0

rα

]
. (8)

where the set {A, B,C} are constants of integration which
must be fixed. According to Ref. [21], the parameter C is
related with the mass of the black hole M0 while B takes into
account the classical charge Q0 (the same for the parameter
A). In addition, note that the auxiliary parameter α is defined
as follow:

α = 1

2β − 1
. (9)

The next step consists in computing the horizon of this black
hole, which is

r0 =
(

C

B(1 − α)

) 1
1−α

. (10)

By writing the lapse function in terms of the classical horizon
we have

f0(r) = C

α − 1

[
1 −

(r0

r

)α−1
]

. (11)

Another important point is the thermodynamics of the sys-
tem. We can then define three quantities, i. e., the Hawking
temperature, TH , the Bekenstein–Hawking entropy, S, and
the specific heat, CQ . Their corresponding expressions are
given by

T0(r0) = 1

4π

∣∣∣∣ C

r0

∣∣∣∣ , (12)

S0(r0) = A0

4G0
, (13)

C0(r0) = T
∂S

∂T

∣∣∣∣
r0

, (14)

being A0 the horizon area defined as

A0 =
∮

dx
√
h = 2πr0. (15)

where hi j is the induced metric at the horizon r0.

4 Scale dependent coupling and scale setting

This section summarizes the equations of motion for the
scale-dependent Einstein-power-Maxwell theory with arbi-
trary index. The idea and notation follows [49–58]. The scale-
dependent couplings of the theory are (i) the Newton’s cou-
pling Gk (which can be related with the gravitational cou-
pling by κk ≡ 8πGk), and (ii) the electromagnetic coupling
1/ek . Furthermore, there are three independent fields, which
are the metric gμν(x), the electromagnetic four-potential
Aμ(x), and the scale field k(x). The effective action for this
theory reads

Γ [gμν, Aμ, k] =
∫

d3x
√−g

[
1

2κk
R − 1

e2β
k

L(F)

]
. (16)

The equations of motion obtained from a variation of (16)
with respect to gμν(x) are

Gμν = κk

e2β
k

T eff
μν , (17)

where

T eff
μν = T EM

μν − e2β
k

κk
Δtμν. (18)

Note that T EM
μν is given by (3) and the additional contribution

Δtμν is

Δtμν = Gk
(
gμν� − ∇μ∇ν

)
G−1

k . (19)

The equations of motion for the four-potential Aμ(x) taking
into account the running of ek are

Dμ

(
LF Fμν

e2β
k

)
= 0. (20)

It is important to note that, in any quantum field theory the
renormalization scale k has to be set to a quantity characteriz-
ing the physical system under consideration. Thus, for back-
ground solutions of the gap equations, it is not constant any-
more. However, having an arbitrarily chosen non-constant
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k = k(x) implies that the set of equations of motion does not
close consistently. This implies that the stress energy tensor
is most likely not conserved for almost any choice of the
functional dependence k = k(x). This type of scenario has
been largely explored in the context of renormalization group
improvement of black holes in asymptotic safety scenarios
[59–74]. The loss of a conservation laws comes from the fact
that there is one consistency equation missing. This missing
equation can be obtained from varying the effective action
(16) with respect to the scale field k(r), i.e.

d

dk
Γ [gμν, Aμ, k] = 0, (21)

which can thus be understood as variational scale setting
procedure [55,75–78]. The combination of (21) with the
above equations of motion guarantees the conservation of the
stress energy tensor. A detailed analysis of the split symmetry
within the functional renormalization group equations sup-
ports this approach of dynamic scale setting [79]. To apply
the variational procedure (21), however, the knowledge of
the exact beta functions of the problem is required. Since in
many cases the precise form of these functions is unknown
(or at least uncertain) one can, for the case of simple black
holes, impose a null energy condition and solve for the cou-
plings G(r), Λ(r), e(r) directly [50,51,53,54,80–82]. This
philosophy of assuring the consistency of the equations by
imposing a null energy condition will also be applied in the
following study on Einstein-Maxwell and Einstein-power-
Maxwell black holes.

5 The null energy condition

An energy condition is, basically, an additional relation one
imposes on the matter stress-energy tensor e.g. in order to
try to capture the idea that “energy should be positive” [83].
There are typically four energy conditions (dominant, weak,
strong, and null) which help to obtain desirable solutions of
Einstein’s field equations [84–86]. Among those conditions,
the null energy condition (NEC) is particularly interesting
since it is a crucial assumption of the Penrose(-Hawking)
singularity theorem [87], valid in General Relativity. Thus,
for matter obeying the NEC, there is always a singularity that
gets formed inside a black hole horizon, and any contracting
Universe ends up in a singularity, provided its spatial curva-
ture is dynamically negligible [85,86]. Thus, we will focus
our attention to the NEC. Our starting point is to consider cer-
tain null vector, called �μ, and to contract it with the matter
stress energy tensor as NEC demands, i.e.:

Tm
μν�

μ�ν ≥ 0. (22)

This “trick” was used in Ref. [50] inspired by the Jacob-
son idea [88] on getting acceptable physical solutions. Note
that in proving fundamental black hole theorems, such as
the no hair theorem [89], and the second law of black hole
thermodynamics [90], the NEC is, indeed, required. In the
scale dependent scenario, we maintain the same condition in
a more restrictive and thus more useful form by making the
inequality an equality

T eff
μν �μ�ν =

(
T EM

μν − e2β
k

κk
Δtμν

)
�μ�ν = 0. (23)

For the null vector we choose a radial null vector �μ =
{ f −1/2, f 1/2, 0}. Since the electromagnetic contribution to
the effective stress energy tensor (3) satisfies the NEC (23)
by construction, the same has to hold for the additional con-
tribution introduced due to the scale dependence of the grav-
itational coupling i.e.

Δtμν�
μ�ν = 0. (24)

6 Scale dependent Einstein-power-Maxwell theory

6.1 Solution

In order to obtain the full solution with circular symmetry, we
need to find the set {G(r), E(r), f (r), e(r)α+1}. We first start
by considering the constraint given by the NEC. The Eq. (24)
gives an explicit differential equation for the gravitational
coupling G(r), i.e.

G(r)
d2G(r)

dr2 − 2

(
dG(r)

dr

)2

= 0, (25)

which allows us to obtain

G(r) = G0

1 + εr
. (26)

After that, we use equation of motion for the 4-potential given
by Eq. (20) to get

dE(r)

dr
−

[
(α + 1)

e′(r)
e(r)

− α

r

]
E(r) = 0, (27)

which gives a relation between the electric field E(r) and the
electromagnetic coupling e(r)α+1. Then, we have

E(r) = A

[
e(r)1+α

rα

]
. (28)

Here, ε is an integration constant which controls the strength
of the scale dependence, and which is thus the called “running
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parameter”. As (26) shows, the NEC is a useful tool in order
to decrease the number of degrees of freedom of the problem.

The Einstein field equations give:

π2
7
2 − 1

2α γG0A
1
α
+1r−αe(r)α+1

+ α(2rε + 1) f ′(r) + 2αε f (r) = 0
(29)

π2
7
2 − 1

2α γG0A
1
α
+1r−αe(r)α+1

− r
(
(rε + 1) f ′′(r) + 2ε f ′(r)

)
= 0

(30)

where the lapse function f (r) and the electromagnetic cou-
pling e(r)α+1 gives the solution:

f (r) = r−α(1 + εr)−α−1
[
Br + CΓ (α − 1)rα

× 2 F̃1(α − 1,−α;α;−rε)

]
, (31)

e(r)α+1 = D

r(1 + rε)α+2

[
(1 − α)Crα(1 + 2εr)

× (1 + εr)α+1 +
[
α(1 + 2εr)2

− 2εr(2 + εr) − 1
]
×

[
(α − 1)Br + C

× rα
2F1(α − 1,−α;α;−rε)

]]
, (32)

where D is an auxiliary parameter given by

D = 2
1
2

(
1
α
−7

)
αA− α+1

α

π(α − 1)γG0
, (33)

and 2 F̃1( · , · ; · ; · ) is the so-called Hypergeometric Reg-
ularized function defined as follows:

2 F̃1(a, b; c; z) =
∞∑
s=0

1

Γ (c + s)
(a)s(b)s

zs

s! , (34)

where (c)n is the (rising) Pochhammer symbol, i.e.

(c)s =
{

1 if s = 0
c(c + 1) · · · (c + s − 1) if s > 0

(35)

Please, note that 2 F̃1(a, b; c; z) is finite for all finite values of
a, b, c, and z as long as |z| < 1. Outside the circle |z| < 1, the
function is defined as the analytic continuation with respect to
z of this sum, the parameters a, b, c held fixed [91]. Besides,
the special case 2 F̃1(a, b; c; z) = 0 is forbidden because
we assume a non-null 2 F̃1 in the computation of thermody-
namic quantities. In general, the constants are chosen such
that the solution matches the classical case when the running
parameter is switched off ε → 0. However, as the final result
depends on the value of the free index β (or α), we first need

to take some particular values of these parameters. We must
emphasize the number of integration constants involved into
the problem. Firstly, the scale-dependent gravitational cou-
pling introduce two of them, i.e. G0 and ε. This is because
we are in the presence of a second order differential equa-
tion. The electromagnetic field gives and additional integra-
tion constant A whereas the solution for the lapse function
implies two additional integration constants B and C (for
the same reason as is the gravitational coupling case). Thus,
the integration constant C can be associated with the clas-
sical mass of the black hole M0, an the constant B encodes
the classical charge Q0. Following Ref. [21] we can set the
relation between our integration constants and the classical
counterpart as:

C → ηM0 = −8G0M0(α − 1), (36)

B → ξQ
1+α
α

0 = 8πG0

(α − 1)α
Q

1+α
α

0 . (37)

Thus, we have a link between the usual solution and the
scale-dependent one. We emphasize that M0 is the classical
mass, not to be confused with the mass of the scale-dependent
black hole. The M0 identification is made when we take the
limit ε → 0, since the scale-dependent solution tends to the
classical one in that limit. According to the previous expres-
sions we observe that the parameters of the theory depend
on the power β of the theory, in total agreement with the
classical one. Furthermore, an important check is that our
solution reproduces the results of the classical theory in the
limit ε → 0, i.e.

lim
ε→0

G(r) = G0,

lim
ε→0

E(r) = E0(r) = A

[
BD(1 − α)2

rα

]
,

lim
ε→0

f (r) = f0(r) = − C

1 − α
+ Br1−α,

lim
ε→0

e(r)α+1 = eα+1
0 = BD(1 − α)2.

(38)

where the parameters {A, B,C, D} have fixed values accord-
ing to [21] in terms of their meaning in the absence of scale
dependence [50]. The scale dependent scenario introduces
small corrections to the fixed-scale background, as can be
easily seen by

G(r) ≈ G0

[
1 − εr

]
+ O(ε2), (39)

E(r) ≈ E0(r)
[
1 − (α − 2)rε

]
+ O(ε2), (40)

f (r) ≈ f0(r) +
[

2Cr

1 − α
− (α + 1)B

rα−2

]
ε + O(ε2), (41)

e(r)α+1 ≈ eα+1
0

[
1 − (α − 2)rε

]
+ O(ε2). (42)
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Fig. 1 The lapse function f (r) and the electromagnetic coupling
e(r)α+1 versus radial coordinate r for three cases. The first line corre-
spond to the lapse function while the second line correspond to the elec-
tromagnetic coupling. The first (left), second (center) and third (right)
column correspond to the cases α = {2, 3, 4} respectively. We show
the classical model (solid black line) and three different cases for each

figure: (i) ε = 0.1 (dashed blue line), (ii) ε = 0.2 (dotted red line)
and (iii) for ε = 0.3 (dotted dashed green line). We have used the
set {Q0, M0, γ,G0} = {1, 1, 1, 1/8} in both set of figures. Besides,
to complete the scale setting we have used certain A values such as
eα+1

0 remains as unity. They are {A(α = 2), A(α = 3), A(α = 4)} =
{0.891, 0.841, 0.812}

Finally, we should remark that certain values of the power
α are forbidden. As our solution must be valid indeed in the
classical case, the first step is to analyze this solution. In
order to avoid singularities in the classical lapse function,
α = 1 is excluded. Following the same line of thought, the
scale-dependent lapse function implies that α �= 0 is forbid-
den. Hence, the two parameters α = {0, 1} are not permitted.
Besides, all complex numbers except the non-positive inte-
gers (where the function has simple poles), are, in principle,
possible. Despite that, we will focus on cases where α ≥ 2.
In Fig. 1 we observe the behaviour of the lapse function
and the electromagnetic coupling for different values of the
parameter β.

6.2 Asymptotic behaviour

The asymptotic behaviour will be studied using two curvature
invariants, i.e. the Ricci scalar as well as the Kretschmann
scalar. These invariants give information related to possible
divergences, which is crucial for the diagnostic of our solu-
tion. To complete the analysis, we will include in our dis-
cussion the coordinate dependent (not invariant) asymptotic
lapse function. Given the metric function (6), the scalars are
given by

R = − f ′′(r) − 2
f ′(r)
r

, (43)

K ≡ Rμναβ R
μναβ = f ′′(r)2 + 2

(
f ′(r)
r

)2

, (44)

which, in our particular case, take the form:

R = C(α + 2αrε − 2)

r2(rε + 1)2 − r−α−2(rε + 1)−α−3

×
[
(α + 2αrε)2 − α(2rε(rε + 4) + 3) + 2

]

× Br + CΓ (α − 1)rα
2 F̃1(α − 1,−α;α;−rε),

(45)

K = r−2(α+2)(rε + 1)−2(α+3)

Γ (α)2

[
2(rε + 1)2

×
{
BrΓ (α)(α + 2αrε − 1) − CΓ (α − 1)rα

×
(

(α − 1)(rε + 1)α+1 − Γ (α)(α + 2αrε − 1)

× 2 F̃1(α − 1,−α;α;−rε)

)}2

+
{
BrΓ (α)

×
[
α

(
−2r2ε2 + 2rε + 1

)
− (α + 2αrε)2 + 2rε

]

+ CΓ (α − 1)rα

[
Γ (α)(α

(
−2r2ε2 + 2rε + 1

)
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− (α + 2αrε)2 + 2rε) 2 F̃1(α − 1,−α;α;−rε)

+ (α − 1)(α + 2αrε + 2rε)(rε + 1)α+1
]}2]

.

(46)

Thus, the classical values for the scalars are

R0 ≡ lim
ε→0

R = (α − 2)(1 − α)B

rα+1 , (47)

K0 ≡ lim
ε→0

K = (α − 1)2
(
α2 + 2

)
B2

r2(α+1)
. (48)

6.2.1 Asymptotics for r → 0

First, the lapse function in this regime is given by

f (r → 0) = f0(r) − 2Cεr

α − 1
+ O(r2), (49)

whereas the invariants take the form:

R(r → 0) = R0 + 4Cε

(α − 1)r
+ O(r−α), (50)

K(r → 0) = K0 + 8BCεr−(α+2) + O
(
r−(1+2α)

)
. (51)

We see that the scalars have singularities in the scale depen-
dent scenario, i.e. when we include the running of the cou-
pling constants, just like their scale-independent counterpart.
It would be interesting to investigate how and to which extent
those singularities could be cancelled by an additional con-
tribution from the effective stress energy tensor as discussed
in [53].

6.2.2 Asymptotics for r → ∞

As before, it is very useful compute the lapse function for
this regime, i.e.

f (r → ∞) = r−α

(rε + 1)α+1

[
Br + 1

2
Cεαr2α

×
[

2

2α − 1
+ α

(α − 1)rε

]
+ Crε1−α

× Γ (1 − 2α)Γ (α − 1)

Γ (−α)

]
+ O

(
1

r

)2

(52)

Besides, we have that the Ricci scalar can be written up to
zeroth order as:

R(r → ∞) = 1

(rε + 1)α+3

[
R0(r → ∞) − 4(α − 2)

× αBεr−α + 2(1 − 2α)αBε2r1−α

− αCεα+1rα−1
[

4α3 − 11α + 8

2α2 − 3α + 1
+ 2rε

]

−Cε1−α

r1+αΓ (−α)

(
(α + 2αrε)2 − α(2rε(rε

+ 4) + 3) + 2
)
Γ (1 − 2α)Γ (α − 1)

]

(53)

The Kretschmann scalar has a complicated expansion, and it
is avoided for simplicity. It is remarkable that the invariants
in that limit maintain the singularity present in the classical
theory.

6.3 Horizons

The event horizon is given when the lapse function vanishes,
i.e. f (rH ) = 0. Given the functional structure of f (r), it is
required to select a certain value of the index β (or α). Note
that the effect of scale dependence (ε �= 0) can be understood
as a non-trivial deviation from the classical solution (ε = 0).
As we commented before, we will focus on models where
α ≥ 2. The corresponding lapse functions in that regime has
a polynomial structure and the roots usually have a complex
form. As a benchmark point, we will revisit the solution for
α = 2 which was previously discussed in Ref. [49]. Note that,
although we are able to produce physical solutions for α ≥ 2,
only a single case will be shown here explicitly. Figure 2
show the behavior of that solution plus two additional cases
assuming α = {3, 4}. The scale dependent lapse function
f (r;α) is, for α = 2,

f (r; 2) = 3B + Cr(rε(rε + 3) + 3)

3r(rε + 1)3 , (54)

whereas the corresponding classical solution is:

f0(r) = C + B

r
. (55)

In order to connect the classical with the scale-dependent
counterpart, we compute the classical horizon, i.e. r0 =
−B/C . Then we obtain the scale-dependent horizon rH (ε;α)

using the classical value, as

rH (ε; 2) = −1

ε

[
1 − (1 + 3εr0)

1/3
]
. (56)

Finally, we recover the classical case expanding the solution
for small values of ε, that is
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Fig. 2 The evolution of event horizon rH versus the classical black
hole mass M0 for three cases. The first (left), second (center) and third
(right) column correspond to the cases α = {2, 3, 4}, respectively. We
show the classical model (solid black line) and three different cases for

each figure: (i) ε = 0.1 (dashed blue line), (ii) ε = 0.2 (dotted red line)
and (iii) for ε = 0.3 (dotted dashed green line). We have used the set
{Q0,G0} = {1, 1/8} in all set of figures

rH (ε; 2) ≈ r0

[
1 − εr0 + O(ε2)

]
. (57)

One notes that the horizon radius in the scale dependent sce-
nario rH is reduced with respect to its classical counterpart r0,
this effect can also be appreciated from the graphical analysis
in Fig. 2.

6.4 Thermodynamic properties

The horizon structure provides the required information in
order to obtain thermodynamic properties like temperature
and entropy. On one hand, the Hawking temperature for the
ansatz (6) is given by

TH (rH ) = 1

4π

∣∣∣∣ lim
r→rH

∂r gtt√−gtt grr

∣∣∣∣, (58)

i.e.

TH (rH ) = 1

4π

∣∣∣∣ C

rH (1 + εrH )

∣∣∣∣. (59)

One notes that the functional structure of Hawking temper-
ature remains invariant under changes of the parameter α.
In addition, note that we recover the classical solution after
demanding ε → 0. Taking into account the scale-dependent
philosophy, the solution can be expanded around ε = 0

TH (rH ) ≈ T0(r0)

∣∣∣1 + εr0 + O(ε2)

∣∣∣, (60)

where r0 is the classical horizon. Clearly, the classical result
T0 is recovered for ε → 0. In Fig. 3 we show the scale-
dependent temperature which takes into account the running
coupling effect. On the other hand, the Bekenstein–Hawking
entropy for Brans–Dicke type theories is known to be

S = 1

4

∮
dx

√
h

G(x)
, (61)

where hi j is the induced metric at the horizon. In presence
of circularly symmetric solution and taking advantage of the
fact that G(x) = G(rH ) is constant along the horizon, this
integral takes the form [50,51]

S = AH (rH )

4G(rH )
= S0(rH )(1 + εrH ). (62)

Note that the relation (62) naively suggests that the entropy
increases for increasing ε, this effect is however overcompen-
sated by the decrease in the black hole horizon rH as it can be
appreciated from e.g. (57). In the lower part of Fig. 3 we show
the entropy for the generalized (2+1)-dimensional Einstein-
power-Maxwell scale dependent black hole. It is evident that
the running effect is important when εr is large, however, we
remain small values of the parameter ε following the idea
that quantum correction should be just small corrections to
the classical solution. To conclude, the heat capacity can be
obtained from the usual relation

CQ = T
∂S

∂T

∣∣∣∣
Q

, (63)

which gives

CQ = −S0(rH )(1 + εrH ), (64)

where we have used the chain rule through the relation
∂S/∂T = (∂S/∂rH )(∂rH/∂T ). It is important to note that
solution (64) is an exact result and, indeed, gives us the clas-
sical solution after demanding ε → 0. Besides, due to a
weak ε dependence it was necessary to plot all the figures
with very large values of ε in order to generate an apprecia-
ble effect. The scale dependent effect is notoriously small for
those quantities.

Regarding the Smarr formula and the first law of black
hole mechanics, we remark a couple of facts first: given that
we work in the framework of non-linear electrodynamics, we
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Fig. 3 The Hawking temperature TH and Bekenstein Hawking entropy
S versus the classical mass M0 for three cases. The first line correspond
to the Hawking temperature while the second line correspond to the
Bekenstein Hawking entropy. The first (left), second (center) and third
(right) column correspond to the cases α = {2, 3, 4}, respectively. We

show the classical model (solid black line) and three different cases for
each figure: (i) ε = 1 (dashed blue line), (ii) ε = 2 (dotted red line)
and (iii) for ε = 3 (dotted dashed green line). We have used the set
G0 = 1/8 in all set of figures

expect to have a modified relation compared to Maxwell’s
linear theory, as it has been shown in [92]. Furthermore,
the Smarr formula requires knowledge of the total mass M ,
which unfortunately in the present work is unknown. In spite
of that, to get some insight into the underlying physics, we
take the case where α = 2 to exemplify how the new Smarr-
like relation looks like. It is straightforward to check that in
the classical theory one obtains:

M0 = T0S0, (65)

while in the scale-dependent scenario, to leading order in ε,
we find

M ≈ M0 ≈ TH SH − ε

(
1

2
πQ3/2

0

)
. (66)

Note that in the weak regime (rε 
 1) we have approximated
the total mass as the classical one. This should be a good
approximation, as we expect that any deviations from the
classical value will be small. A more detailed analysis of the
Smarr formula is beyond the purpose of this paper, and we
hope to be able to address this issue in more detail in a future
work.

Before we conclude our work a final comment is in order
here. The no-go theorem of [93], which links the existence of
smooth black hole horizons to the presence of a negative cos-
mological constant, does not apply in the given case. First,
the theorem is based on unmodified classical Einstein Field

equations, which is not the case in scale-dependent scenar-
ios. Second, the no-go theorem assumes the dominant energy
condition which is not part of our assumptions. Instead, we
take advantage of the so-called null energy condition. Fur-
thermore, and most importantly, given the solutions previ-
ously presented one can check that they do have smooth hori-
zons and well behaved asymptotic spacetimes, and therefore
they are black holes. Note that even the classical solution in
[21] was shown to be a black hole in this sense, even for a
vanishing cosmological constant.

7 Conclusions

In the present article we have studied the effect of scale
dependent couplings on charged black holes in the pres-
ence of three-dimensional Einstein-power-Maxwell non-
linear electrodynamics for any value of the power parameter,
extending and generalizing a previous work. First we pre-
sented the model and the classical black hole solution assum-
ing static circular symmetry, and then we allowed for a scale
dependence of the couplings, both the electromagnetic and
the gravitational one. We solved the corresponding effective
field equations applying the same formalism already used
in our previous work, namely by imposing the “null energy
condition”. Black hole properties, such as horizon structure,
Hawking temperature, Bekenstein–Hawking entropy as well
as asymptotic properties, are discussed in detail. In order to
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show how the scale-dependent scenario modifies the classical
solution, we have considered three different benchmark cases
taking α = {2, 3, 4} which are shown in Figs. 1, 2 and 3. The
aforementioned solutions have a manageable mathematical
structure which allows to obtain analytical expressions for
the physical quantities. The solutions obtained in this work
and our main numerical results show that the scale-dependent
scenario allows us to induce deviations from classical black
hole solutions, confirming a result already reported in [21].
In particular, it is worth mentioning that the behavior of the
electromagnetic coupling depends drastically on the choice
of the parameter α. Regarding the basic black hole proper-
ties, we have found that for a fixed classical black hole mass,
the Hawking temperature increases with ε, while both the
event horizon radius and the Bekenstein–Hawking entropy
decrease when the strength of the scale dependence increases.
Our findings imply that quantum corrections may have an
remarkable effect, i.e. the black hole becomes hotter and at
the same time loses less information compared to its classical
counterpart. This is in agreement with the findings in [59–
74]. Finally, it is well-known that a black hole, viewed as a
thermodynamical system, is locally stable if its heat capacity
is positive [94]. We have found that the black holes stud-
ied here are unstable (CQ < 0), both classically and in the
scale dependent scenario. To conclude, our results allow us
to gain a solid understanding of the most important modifi-
cations that a possible scale dependence would imply for the
Einstein–Maxwell black holes of arbitrary power in 2 + 1
dimensions.
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