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Abstract We probe the κ-deformation of spacetime using
a two-level atom as a detector coupled to a κ-deformed mass-
less scalar field which is invariant under a κ-Poincaré algebra
and written in commutative spacetime. To address the quan-
tum bound to the estimability of the deformation parameter
κ , we perform measurements on the two-level detector and
maximize the value of quantum Fisher information over all
possible detector preparations. We prove that the population
measurement is the optimal measurement in the estimation
of the deformation parameter κ . In particular, we show that
the relativistic motion of the detector affects the precision
in the estimation of the parameter κ , which can effectively
improve this precision comparing to that of the static detector
case by many orders of magnitude.

1 Introduction

In the quantum theory of gravity, the spacetime coordinates
get quantized, and the notion of spacetime, as well as the
notions of its symmetry, is usually modified at the micro-
scopic level. An interesting symmetry algebra of certain
quantum gravity models is the κ-Poincaré algebra [1,2]. Such
algebra is deeply connected with a “Lie algebra”-type of non-
commutative spacetime named the κ-Minkowski spacetime.
The κ-Poincaré algebra and the κ-deformed spacetime are
also known to be related to the doubly special relativity [3],
which introduces a fundamental constant of length dimen-
sion in addition to the constant velocity of light present in
the special theory of relativity. Besides, it could be possi-
ble to experimentally detectable signatures of the deformed
kinematics associated with such symmetries [4–6]. As a con-
sequence of that, a lot of attentions have recently been paying
on the physics involving κ-deformed spacetime [7–31].
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The κ-deformation parameter does not correspond to a
proper observable, and thus its value should be inferred
through some indirect measurements. In this regard, let
us note that any conceivable strategy aimed at evaluating
the quantity of interest ultimately reduces to a parameter-
estimation problem that may be properly addressed in the
framework of quantum estimation theory (QET) [32–36].
With the application of QET, one can estimate the parameter
of interest with a higher precision which is beyond the stan-
dard classical limits [37]. Recently, this theory has been suc-
cessfully applied to a wide range of metrological problems
[38], relativistic quantum field [39–45], quantum illumina-
tion [46], biology [47], the experiments with photons [48,49]
and trapped ions [50,51], and so on. Besides, to enhance the
relevant estimation, different ways, such as using of quan-
tum entanglement, feedback control, and nonlinear dynam-
ics, have been explored [52–58].

In this manuscript we study the ultimate limits of precision
in the estimation of the κ-deformation parameter employ-
ing the quantum metrology [35,59]. We consider a two-level
atom as a probe coupled to a κ-deformed massless scalar
field which is defined in the commutative spacetime [28]. In
this paper, the authors started with the κ-deformed Klein–
Gordon equation, which is invariant under the action of κ-
Poincaré algebra and written in the commutative spacetime
itself. Since the model of detector-field is constructed in the
commutative spacetime, the standard field theory techniques
developed for the commutative spacetime are allowed to
study the κ-deformed scalar theory. We calculate the QFI
of the detector and maximize it, i.e., to find the ultimate lim-
its of the precision, over all the possible detector prepara-
tions. By studying the Fisher information (FI) with respect
to the population measurement on the detector, we find its
maximal value which is equal to that of QFI, and thus the
population measurement is the optimal measurement in the
estimation of parameter κ . Especially, motivated by the rel-
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ativistic quantum information [60–67], we analyze how the
relativistic motion of the detector affects the estimation of the
parameter κ . Interestingly, our results show that the relativis-
tic motion can effectively enhance the precision in the esti-
mation of κ-deformation parameter, i.e., the moving detector
case can exceed the static detector case by many orders of
magnitude.

The paper is structured as follows. In Sect. 2, we introduce
the local QET and present the expression of QFI for arbi-
trary qubit states in the Bloch representation. We also take a
review of κ-deformed scalar theory written in commutative
spacetime and presenting its propagator. This κ-deformed
scalar field interacts with a detector whose dynamic evolu-
tion with an arbitrary initial state has been simply reviewed.
Sections 3 and 4 are devoted to studying how to estimate the
κ-deformation of spacetime and how the relativistic motion
affects the relevant estimation. Finally, Sect. 5 concludes the
paper.

Throughout the whole paper we employ natural units c =
h̄ = 1. Relevant constants are restored when needed for the
sake of clarity.

2 local quantum estimation theory and physical model

Now, we are going to exploit local QET to find out the quan-
tum measurement that maximizes the quantum Fisher infor-
mation (QFI) [35], which aims to evaluate the ultimate limits
of precision in the estimation of the κ-deformation parameter.
We explore how the precision in the estimation of the param-
eter κ changes when a two-level moving detector interacts
with κ-deformed massless scalar field.

2.1 Local quantum estimation theory

Any inference strategy amounts to find an estimator, i.e., a
mapping λ̂ = λ̂(x1, x2, . . . , xn) from the set of measure-
ment outcomes into the space of parameters. According to
the Cramér–Rao theorem, the optimal estimators are bounded
by the inequality

Var(λ) ≥ 1

MF(λ)
, (1)

which sets a lower bound on the mean square error of any
estimator of the parameter λ. In Eq. (1) M is the number of
measurements and F(λ) = ∑

x p(x | λ)[∂λ ln p(x | λ)]2 is
the FI. Here, p(x | λ) denotes the conditional probability of
obtaining the outcome x . Before collecting the outcomes, we
find p(x | λ) = Tr[ρ(λ)�x ], where {�x } are the elements of
a positive operator-valued measure (POVM) and saturate to∫
x dx�x = 1. Upon maximizing the FI over all the possible

quantum measurements, we have that the FI F(λ) of any

quantum measurement is upper bounded by the QFI H(λ),
i.e., F(λ) ≤ H(λ) ≡ Tr[ρ(λ)L(λ)2], where L(λ) represents
the symmetric logarithmic derivative satisfying the partial
differential equation ∂λρ(λ) = 1

2 (L(λ)ρ(λ) + ρ(λ)L(λ)).
Therefore, we have the quantum Cramér–Rao bound

Var(λ) ≥ 1

MF(λ)
≥ 1

MH(λ)
, (2)

for the variance of any estimator. The quantum Cramér–Rao
bound provides the ultimate bound to precision in the estima-
tion of parameter λ for a state of the family ρ(λ). On the other
hand, the optimal quantum measurement for the estimation
of parameter κ corresponds to POVM with the FI equal to
the QFI.

For a two-level quantum system, the reduced density
matrix of the system can be expressed in the Bloch sphere
representation as

ρ(τ) = 1

2
(I + ω · σ) , (3)

where ω = (ω1, ω2, ω3) is the Bloch vector and σ =
(σ1, σ2, σ3) denotes the Pauli matrices. As a result, the QFI
can be described as follows [68]

H(λ) =
{

|∂λω|2 + (ω∂λω)2

1−|ω|2 , (|ω| < 1) ,

|∂λω|2, (|ω| = 1) .
(4)

2.2 κ-deformed Klein–Gordon theory

Let us briefly review the κ-deformed massless scalar field
which is the external environment. It is worthy noting that
the κ-deformed Klein–Gordon theory can be written in the
commutative spacetime [28]. Since the relevant model is con-
structed in the commutative spacetime, it allows us to unam-
biguously define the trajectory of the motional detector, that
is needed for the study of the influence of the relativistic
motion on the κ parameter estimation. We start with the Lie
algebra-type commutation relation between the coordinates
of the κ-deformed Minkowski spacetime,

[x̂i , x̂ j ] = 0 , [x̂0, x̂i ] = i

κ
x̂i , i, j = 1, 2, 3 , (5)

where κ is a positive parameter donating the deformation
of the spacetime. It is well known that the symmetry of
κ spacetime is the κ-Poincaré algebra [1,2], whose defin-
ing relations involve the deformation parameter. In the limit
of κ → ∞, the Poincaré algebra is recovered. To con-
struct the κ-Poincaré algebra, we require the realizations
of the noncommutative coordinates x̂μ in terms of ordinary
commutative coordinates xμ and their derivatives ∂μ, where
∂μ = ∂

∂xμ
[24–31]. A family of realizations for noncommu-
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tative coordinates x̂μ satisfying the algebra in Eq. (5) is

x̂i = xiϕ(A) , x̂0 = x0ψ(A) + i

κ
xi∂iγ (A) . (6)

This realization defines a unique mapping from the functions
on noncommutative space to the functions on commutative
space. Note that the noncommutative coordinates x̂μ in Eq.
(6) contain three arbitrary parameters ϕ, ψ and γ which are
functions of A = − i

κ
∂0. However, applying the Eq. (6) to

(5), we have

γ = 1 + ϕ′

ϕ
ψ, (7)

where ϕ′ = dϕ
d A and these functions satisfy the boundary

conditions ϕ(0) = 1, ψ(0) = 1 and γ (0) = 1 + ϕ′(0) is
finite and all are positive functions.

Then we introduce the generators Mμν of the κ-Poincaré
algebra satisfying the ordinary undeformed so(n−1, n) alge-
bra

[Mμν, Mλρ] = ηνλMμρ − ημλMνρ − ηνρMμλ + ημρMνλ,

(8)

where ημν = diag(−1, 1, 1, 1). The generators Mμν are
required to be linear in the commutative coordinates xλ with
an infinite series in coordinates derivatives ∂λ. Furthermore,
the commutators [Mμν, x̂λ] should be linear functions of x̂λ

and Mμν , antisymmetric in the indices μ and ν, and have a
smooth limit [Mμν, x̂λ] → xμηνλ − xνημλ when κ → ∞.
Therefore, one can easily see that there are only two classes
of possible realization, one where ψ = 1 and the other one
ψ = 1 + 2A. We restrict ourselves to the first realization
ψ = 1, then the explicit of Mμν are

Mi0 = xi∂0ϕ
e2A − 1

2A
− x0∂i

1

ϕ
+ i

κ
xi∂k∂k

1

2ϕ
− i

κ
xk∂k∂i

γ

ϕ
,

Mi j = xi∂ j − x j∂i . (9)

To derive the κ-deformed Klein–Gordon equation which is
invariant under the κ-Poincaré algebra, it is natural to intro-
duce the Dirac derivatives Dμ transforming like a vector
under Mμν as follows [24–28]

Di = ∂i
e−A

ϕ
, D0 = ∂0

sinh A

A
+ i

κ
�2

(
e−A

2ϕ2

)

. (10)

These generators of the κ-Poincaré algebra, Mμν and Dμ,
satisfy

[Mμν, Dλ] = ηνλDμ − ημλDν, [Dμ, Dν] = 0. (11)

Notice that the defining relations of the κ-Poincaré algebra
are the same as that of the usual Poincaré algebra, but the
explicit form of the generators are modified and those mod-
ifications are dependent on the deformation parameter. It is

clear that the Casimir of the κ-Poincaré algebra, DμDμ, can
be expressed in terms of the � operator as

DμDμ = �
(

1 − 1

4κ2 �
)

, (12)

with

� = ∇2(
e−A

ϕ2 ) + 2∂2
0

1 − cosh A

A2 , (13)

where ∇2 = ∂i∂i . The � operator satisfies

[Mμν,�] = 0, [�, x̂μ] = 2Dμ. (14)

Note that the Casimir, DμDμ reduces to the usual relativistic
dispersion relation in the limit κ → ∞. The arbitrary real-
izations of the κ spacetime coordinates in terms of commu-
tative coordinates and their derivatives, are characterized by
ϕ appearing in the above equation. The generalized Klein–
Gordon equation is written in term of the Casimir of the
κ-Poincare algebra as

�
(

1 − 1

4κ2 �
)

�(x) − m2�(x) = 0 . (15)

Note that the κ-deformed Klein–Gordon equation is invari-
ant under the action of κ-Poincare algebra. We also note that
since the generators and Casimir of the κ-Poincare algebra
are expressed in terms of the commutative coordinates and
their derivatives, the scalar field and the operators appear-
ing in the above κ-deformed Klein–Gordon equation are
defined in the commutative spacetime. By reexpressing the
noncommutative coordinates of the κ-deformed spacetime
in terms of the commutative coordinates and their derives,
one can facilitate the construction of the κ-Poincaré algebra.
In doing so, we can map the information of the κ spacetime
to a commutative spacetime. This field operators satisfy the
commutative relation which is similar to that in the commu-
tative spacetime, but it contains the deformation parameter
already. In this case, the κ-deformed Klein–Gordon theory
was now constructed completely in the commutative space-
time. This allows us to use the standard tools of field the-
ory developed for the commutative spacetime to study the
κ-deformed Klein–Gordon theory.

It is worth mentioning that we consider the representations
of noncommutative fields in terms of commutative fields,
some characters of fields, such as nonlocal and noncausal,
will appear. We can see from the deformed dispersion relation
which satisfies the κ-deformed Klein–Gordon equation in the
Eq. (15),

4κ2 sinh2
( p0

2κ

)
− p2

i
e− p0

κ

ϕ2
( p0

κ

)

− 1

4κ2

[

4κ2 sinh2
( p0

2κ

)
− p2

i
e− p0

κ

ϕ2
( p0

κ

)

]2

= m2, (16)
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where p0 = i∂0 and pi = −i∂i . Besides, one can obtain a
complicated κ-deformed Klein–Gordon equation defined in
the commutative spacetime. Correspondingly, the Hamilto-
nian for the field is complicated and difficult to express in
a compact form. Hereafter, to simplify the above problem
and then get the Green function, we will made a specific

choice ϕ(
p0
κ

) = e− p0
2κ , as considered in Ref. [28]. During

the concrete calculation of Green function, we just take an
approximate value up to second order in 1/κ .

2.3 Dynamical evolution of a two-level detector interacts
with κ-deformed massless scalar field

We treat the two-level detector as an open quantum sys-
tem and derive its dynamic evolution by tracing over all the
degrees of freedom of the massless scalar field. Let us note
that this model has been fruitfully applied in the relativistic
scenario recently [43–45,58,69–73]. The total Hamiltonian
of the detector-field system can be described as

H = Hs + H�(x) + HI , (17)

where Hs = 1
2ω0σz denotes the Hamiltonian of the detec-

tor, H�(x) is the Hamiltonian of the κ-deformed massless
scalar field, and HI represents their interaction Hamiltonian.
Note that ω0 is the detector’s energy-level spacing, and σz is
the Pauli matrix. As considered in Ref. [28], the interaction
Hamiltonian representing the interaction between the detec-
tor and scalar field up to first order in the parameter 1/κ

can be described by the conventional Hermitian interaction
Hamiltonian

HI (τ ) = μm(τ )�(x(τ )) = μ[σ+(τ ) + σ−(τ )]�(x(τ )),

(18)

where μ is the coupling constant, m(τ ) is the monopole
matrix of the detector whose spacetime coordinates are given
by x(τ ) with τ being the proper time, σ+ (σ−) is the atomic
rising (lowering) operator, and �(x) corresponds to the
scalar field operator. Notice that since the κ-deformed Klein–
Gordon theory was constructed completely in the commuta-
tive space-time, this allowed us to guarantee the Hermiticity
of the interaction Hamiltonian without modification. More-
over, due to the fact that the first nonvanishing 1/κ depen-
dent modification to κ-deformed Klein–Gordon theory is
in the second order in 1/κ , the interaction Hamiltonian up
to first order in the parameter 1/κ does not receive any
modification.

As in the commutative spacetime, the field is assumed
to be in Minkowski vacuum state |0〉, which is defined by
ak|0〉 = 0 for all k. The initial state of the whole system
can be written as the density matrix ρtot = ρ(0) ⊗ |0〉〈0|,
in which ρ(0) is the reduced density matrix of the detector.

For the total system, its equation of motion in the interaction
picture is

∂ρtot (τ )

∂τ
= −i[HI (τ ), ρtot (τ )] , (19)

where τ is the proper time of the detector. In the limit of weak
coupling between the detector and the field, the master func-
tion of the detector, by tracing over the field degrees of free-
dom, can be written in the Kossakowski-Lindblad form [74–
76]

∂ρ(τ)

∂τ
= −i[Hef f , ρ(τ )] + L[ρ(τ)] , (20)

where

Hef f = 1

2
�σz = 1

2
{ω0 + μ2Im(�+ + �−)}σz , (21)

is the effective Hamiltonian in which μ2Im(�+ + �−) can
be neglected because it is far less than ω0, and

L[ρ(τ)] =
3∑

j=1

[2L jρL
†
j − L†

j L jρ − ρL†
j L j ] , (22)

is the dissipator resulting from the scalar field that the detec-
tor couples to. Here, �± = ∫ ∞

0 eiω0τG+(s ± iε)dτ ,

L1 =
√

γ−
2 σ−, L2 =

√
γ+
2 σ+, L3 =

√
γz
2 σz , γz = 0 , γ± =

μ2
∫ ∞
−∞ e∓iω0τG+(τ − iε)dτ and τ = τ − τ ′. It was

shown in Ref. [28] that the correlation functionG+(x−x ′) =
〈0|�(x)�(x ′)|0〉 = 1

4π2(x2−t2)

[

1 − 1
4κ2

x2+3t2

(x2−t2)2 −
1
κ2

(x2+t2)t2

(x2−t2)3

]

corresponding to the massless κ-deformed

Klein–Gordon operator in Eq. (15) terms up to second order
in 1/κ , which satisfies G+(x− x ′) = G−(−(x− x ′)), where
x = |x − x ′| and t = t − t ′. However, if one includes
higher order terms in parameter 1/κ this may not be true, as
the exact correlation function should exhibit the violation of
Lorentz invariance due to the κ deformation.

If we choose the initial state of the detector as |ψ(0)〉 =
sin θ

2 |0〉 + e−iφ cos θ
2 |1〉, substituting Eq. (3) into (20), the

Bloch vector with respect to the proper time τ can be
expressed as

ω1 = sin θ cos(�τ + φ)e− 1
2 Aτ ,

ω2 = sin θ sin(�τ + φ)e− 1
2 Aτ ,

ω3 = cos θe−Aτ + B

A
(1 − e−Aτ ) , (23)

where A = γ+ + γ− and B = γ+ − γ−.
Let us note that A, and B are related to the field correla-

tion function that depends on the property of spacetime. As
a consequence of the interaction between the detector and
field, the information of κ-deformation of spacetime could
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be encoded into the quantum state of the detector. By per-
forming the measurements on the detector, we can infer the
κ-deformation parameter through the relevant outcomes.

3 The detector of uniform motion

To analyze how the relativistic motion of the detector affects
the estimation of the deformation parameter κ , we consider a
relativistic motion detector whose spacetime coordinates are
given by

t (τ ) = γ τ , x(τ ) = x0 + vγ τ , y(τ ) = y0,

z(τ ) = z0 , (24)

where τ denotes the proper time of the detector, v is the
velocity of the detector and γ = 1/

√
1 − v2 is the usual

Lorentz factor. According to the κ-deformed massless scalar
field correlation function and (24), γ+ and γ− should be

γ+ = 0 , γ− = μ2ω0

2π

[

1 − ω2
0

24κ2 − ω2
0

3κ2

v2

(1 − v2)2

]

.

(25)

As a result, we have

A = γ+ + γ− = μ2ω0

2π

[

1 − ω2
0

24κ2 − ω2
0

3κ2

v2

(1 − v2)2

]

,

B = γ+ − γ− = −μ2ω0

2π

[

1 − ω2
0

24κ2 − ω2
0

3κ2

v2

(1 − v2)2

]

.

(26)

For simplicity, in this section we will work with dimension-
less quantities by rescaling time τ and deformation parameter
κ

τ̃ ≡ γ0τ , κ̃ ≡ κ

ω0
, (27)

where γ0 = μ2ω0
2π

is the spontaneous emission rate of the
detector.

In generally, an estimation scheme can be performed in
three steps: (i) the preparation of a probe state, (ii) its interac-
tion with the dynamic system in which the estimated param-
eters are involved, (iii) measure the probe after the evolu-
tion [77]. In our system, the state of two-level atom which
is coupled to the κ-deformed massless scalar field acts as a
probe state. For different positive operator-valued measure
(POVM) �x , the different values of Fisher information can
be obtained in terms of the classical probabilities p(x | λ).
The aim of this paper is finding the highest precision for the
estimation, which means that we should carry out the opti-
mization over measurement processes, i.e., maximizing the
FI over all possible quantum measurements on the quantum
system to obtain the QFI. According to the Eq. (4), we can
evaluate the QFI of the deformation parameters as follows

Fig. 1 QFI in the estimation of the deformation parameter as a function
of the effective time τ with fixed values of θ . The effective deformation
parameter is fixed as κ = 1000 and the velocity of detector is given
by v = 0. The different initial state parameter θ = 0, 0.5π, 0.9π ,
respectively

H(κ̃) =
M[1 + 8 v2

(1−v2)2 ]2[(1 − cos θ)M − 2]τ̃ 2 cos θ
2

288(M − 1)κ̃6 ,

(28)

where M = Exp[[1 + 8 v2

(1−v2)2 − 24κ̃2
]
τ̃ /24κ̃2]. It is inter-

esting to note that the QFI is independent of quantum phase
φ, and only depends on the parameter θ , v, τ̃ . In the follow-
ing, we want to find out the optimal initial detector prepa-
ration and whether the relativistic motion of the detector
can enhance the precision in the estimation of deformation
parameter. Hereafter, for the sake of simplicity we term τ̃

and κ̃ as τ and κ respectively.
The static case. The corresponding behavior of the QFI is

shown in Figs. 1 and 2, which is the function of the effective
time τ (initial state parameter θ ) with different initial state
parameter θ (effective time τ ) and the velocity of the detector
v = 0, i.e., the Lorentz factor γ = 1. It is shown that for
θ = 0 the QFI is larger than the other cases all the time. In
addition, from Fig. 1 we see that the QFI always obtain the
maximum value when the detector evolves for a limited time
under the same conditions. Thus, we arrive at the conclusion
that the initial exited state of the detector is the optimal state,
i.e., θ = 0, and the maximum sensitivity in the predictions
for the deformation parameter κ can be obtained when the
detector evolves for a limited time.

Moreover, the ultimate bound on the precision of the esti-
mator is determined by the QFI, but it is hard to obtain the
optimal measurement to achieve the ultimate bound because
the QFI is independent on any measurement. However, we
can obtain it by maximizing the FI over all possible quantum
measurements on the quantum system. Therefore, to find out
which the measurement is optimal to estimate the deforma-
tion parameter κ , our task is to calculate the FI for the popula-
tion measurement and compare it with the QFI to determine
whether the population measurement is optimal according to
the condition that POVM with a FI equal to the QFI. Thus,
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Fig. 2 QFI in the estimation of the deformation parameter as a function
of the initial state parameter θ with fixed effective time τ . The effective
deformation parameter is fixed as κ = 1000 and the velocity of detector
is given by v = 0. The different effective time τ = 1, 6, 8, respectively

according to Eq. (23), we can calculate the FI for the popu-
lation measurement as follow

F(κ) = (∂κρ11)
2

ρ11
+ (∂κρ22)

2

ρ22

=
e

τ [1+8(1−v2)−2]
24κ2 [1 + 8 v2

(1−v2)2 ]2τ 2(1 + cos θ)

114κ6[2eτ(1+ 1
3κ2(1−v2)

) − e
τ [1+8(1−v2)−2]

24κ2 (1 + cos θ)]
,

(29)

where ρ11 and ρ22 are the diagonal elements of the quantum
state of the detector respectively. Note that for θ = 0, the FI is
larger than the other cases, which means that the initial exited
state of the detector is the optimal probe state. Therefore, the
corresponding FI can be evaluated as

F(κ) = (∂κλ+)2

λ+
+ (∂κλ−)2

λ−
, (30)

where

λ+ = 1

2

[

1 + e−Aτ + A

B
(1 − e−Aτ )

]

,

λ− = 1

2

[

1 − e−Aτ − A

B
(1 − e−Aτ )

]

, (31)

are two eigenvalues of the evolution state of the probe in
Eq. (23). It is interesting to note that this choice gives F(κ)

(FI) equal to H(κ) (QFI) in Eq. (28). From Fig. 1, we find
that both the FI and QFI obtain the maximum value, when
the static detector (v = 0) evolves for a limited time and is
prepared in the exited state initially. Because the FI of any
measurement process is upper bounded by the QFI, it means
that the quantum estimation process is the optimization over
measurement processes now. We easily find that the maxi-
mized FI is equal to the maximized QFI, which means that the
estimation of parameter κ via the population measurement is
optimal and the above is the ultimate bound to precision of
estimation of the deformation parameter κ .

Fig. 3 QFI in the estimation of the deformation parameter as a function
of the effective time τ with v = 0.9992, 0.9994, respectively. By
preparing the detector initially in the exited state θ = 0 and the effective
deformation parameter κ = 1000

The motion case. Let us consider that the detector is in uni-
form motion with constant velocity v and assume that the
effective deformation parameter has the value κ = 1000. It
is similar to the case of the static detector, we also can find
out the optimal measurement to achieve the ultimate bound
on the precision of the estimator for the case of the uniform
motion detector. With the help of the Eq. (28), we obtain
that for any time the maximal QFI is always obtained by tak-
ing θ = 0, i.e., by preparing the detector in the exited state.
It means that the optimal initial state of the detector is the
exited state. Similarly, we find that for a limited time both the
FI and QFI take the same maximum value when the detec-
tor in its exited state. Therefore, it is natural to achieve the
ultimate bound to the precision by performing a population
measurement on the uniform motion detector.

To analyze the relativistic motion of the detector how to
effect the precision in the estimation of deformation param-
eter κ , we plot the QFI for different fixed velocity v of the
detector as a function of the effective time τ in Fig. 3. We
find that the higher the velocity, the bigger the QFI is, i.e.,
it is easier to achieve a given precision in the estimation of
deformation parameter and the order of magnitude of the QFI
is as high as 10−7. As a result, we argue that the relativistic
motion can effectively improve the QFI, which can exceed
the QFI for the static detector case by the orders of magni-
tude 1014. Therefore, we emphasize that the precision in the
estimation of the deformation parameter κ can be effectively
improved by the relativity motion of the detector.

4 The detector of uniform circular motion

In this section, we want to explore the case for the detector
follows a uniform circular path with centripetal acceleration

a = γ 2v2

R , whose coordinates are described as
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Fig. 4 QFI in the estimation of the deformation parameter as a function
of the effective time τ with fixed values of θ . The effective deformation
parameter is fixed as κ = 1000, the velocity of detector is given by
v = 0.9994 and the effective centripetal acceleration a = 0.2. The
different initial state parameter θ = 0, 0.5π, 0.9π , respectively

t (τ ) = γ τ , x(τ ) = R cos
γ vτ

R
,

y(τ ) = R sin
γ vτ

R
, z(τ ) = z0 , (32)

where R denotes the radius of the orbit. Applying the tra-
jectory of the uniform circular detector to the κ-deformed
massless scalar field correlation function, we easily obtain the
γ+ and γ− under the ultra-relativistic limit γ � 1 [78,79].
Therefore, we can calculate A and B for the uniform circular
motion case straightly.

We evaluate the performance of the quantum measure-
ment in the estimation of the deformation parameter through
the calculation of the QFI for the uniform circular detec-
tor. Similarly, we will work with dimensionless quantities by
rescaling time τ , centripetal acceleration a and deformation
parameter κ

τ̃ ≡ γ0τ , ã ≡ a

ω0
, κ̃ ≡ κ

ω0
. (33)

With the help of Eqs. (4), (23) and (32), it is easy to obtain the
formula of the QFI and to find that the QFI only depends on
the parameters θ , v, τ̃ , and ã, but is independent of quantum
phase φ.

In the following, we also continue to replace τ , a and κ

with τ̃ , ã and κ̃ , respectively. We fix the velocity of detector
v = 0.9994 and the effective deformation parameter κ by
assuming κ = 1000. To clarify what value of θ could allow
better estimation, we plot the QFI as a function of the effec-
tive time τ (initial state parameter θ ) with different initial
state parameter θ (effective time τ ) in Figs. 4 and 5. Here,
we take the effective centripetal acceleration a = 0.2. Obvi-
ously, as we demonstrated in the uniform motion detector, the
maximal value of the QFI are obtained for the uniform circu-
lar detector in its exited state initially, i.e., θ = 0, and the QFI
always achieves the maximum when the detector evolves for
a limited time whatever the initial state is prepared in. There-
fore, we arrive a conclusion that the maximum sensitivity

Fig. 5 QFI in the estimation of the deformation parameter as a function
of the initial state parameter θ with fixed effective time τ . The effective
deformation parameter is fixed as κ = 1000, the velocity of detector
is given by v = 0.9994 and the effective centripetal acceleration is
a = 0.2. The different effective time τ = 1, 6, 8, respectively

Fig. 6 QFI in the estimation of the deformation parameter as a function
of the effective time τ with the effective centripetal acceleration a.
The initial state parameter is fixed as θ = 0, the effective deformation
parameter is given by κ = 1000, and the velocity of detector is v =
0.9994. The different effective centripetal acceleration a = 0, 0.2
,respectively

in the predictions for the deformation parameter κ can be
obtained by initially preparing the detector in its exited state,
which means that the exited state is the best probe state.

In Fig. 6, we plot the QFI of the probe state in the Eq. (23)
as functions of the effective time τ with different effective
centripetal acceleration a at fixed v = 0.9994 for θ = 0. We
find that the QFI always increase as the growth of the cen-
tripetal acceleration a, which indicates that the highest pre-
cision in the estimation of κ-deformation parameter can be
obtained for a larger centripetal acceleration. It is worthy not-
ing that the QFI of κ-deformation parameter in the uniform
circular case is always larger than that in the uniform motion
case from Fig. 6. Thus, we argue that relativistic motion will
enhance the quantum estimation of κ-deformation of space-
time, which means that a high centripetal acceleration of the
detector can provide us a better precision.

Furthermore, as the analysis for static case, we also calcu-
late the FI for the population measurement in the case of the
uniform circular detector and find that the maximal FI can
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be obtained by taking θ = 0. Moreover, the FI has the same
configurations with the QFI when we prepare the detector in
its exited state, i.e., θ = 0. And we can find that both the FI
and QFI not only achieve the maximum but also are equal
to each other when the detector evolves for a limited time. It
indicates that the estimation of deformation parameter κ via
the population measurement is optimal and we can get the
ultimate bound to precision of estimation. Due to the popula-
tion measurement is optimal and the population of estimation
measurement is allowed by the current technology [80–86],
the ultimate bound to precision of estimation of the defor-
mation parameter κ can be achieved by quantum mechanics
in the capability of current technology for the optimal popu-
lation measurement.

5 Conclusions

We have focused on explore the κ-deformation of spacetime
using a two-level detector coupled to the κ-deformed mass-
less scalar field, and with the quantum metrology technolo-
gies address the quantum bound to the estimability of the κ-
deformation by performing measurements on the two-level
detector. In particular, by preparing the proper probe state
and adjusting the interaction parameters, we can obtain the
optimal strategy for the estimation of deformation parameter
in the estimation process.

We found that the initial probe state preparation and the
motion of the detector have great effects on the precision in
the estimation of κ-deformed parameter. Both the cases of the
uniform motion detector and the uniform circular detector,
when the initial state is prepared in its exited state, the value of
QFI which corresponds to the ultimate limit of the precision
in the estimation of the deformation parameter κ is always
maximum. Under the conditions that when the detector is
prepared in the initial exited state and evolves for a limited
time, the maximum FI is equal to the maximum QFI, which
indicates that the optimal measurement for the estimation of
the deformation parameter κ corresponding to the population
measurement. To be specific, the ultimate bound to the pre-
cision in the estimation of the deformation parameter κ can
be allowed by performing a population measurement on the
detector and can be achieved under the current technology
imposed by quantum mechanics during the estimation pro-
cess. It is worthy noting that our results demonstrated that
the precision in the estimation of the parameter κ can be
influenced by the relativistic motion of the detector, which
effectively enhance the precision comparing with the static
detector case by many orders of magnitude.
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