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Abstract In their recent work (Eiroa and Aguirre in Eur
Phys J C 76:132, 2016), Eiroa and Aguirre introduced thin-
shell wormholes in F (R) = R + αR2-gravity coupled with
the Maxwell electromagnetic field. Here in this note we shall
address an interesting feature of their results which has been
missed. It will be shown that thin-shell wormhole can not
be formed in the black hole spacetime solution of this the-
ory but instead there are rooms for making stable thin-shell
wormholes in non-black hole bulk spacetime as was noted
in Eiroa and Aguirre (2016). This study is not a comment on
very correct results of Eiroa and Aguirre (2016) but instead
it is a complementary result to their paper.

1 Introduction

Thin-shell wormhole in modified theory of gravity, namely
F(R)-gravity, seems to be more restrictive than its former
version in R-gravity due to the modified junction conditions
introduced in [2]. In [1], Eiroa and Aguirre constructed thin-
shell wormholes in F (R) = R + αR2-gravity coupled with
the Maxwell’s electrodynamic field in the framework of con-
stant curvature i.e., R = R0 = const. spherically symmet-
ric bulk spacetime. Apparently their stability analysis results
in stable thin-shell wormhole against a radial perturbation.
Due to the modified junction conditions, one should con-
sider additional constraint on the radius of the throat which
is assumed to be larger than the radius of the event horizon. In
other words, unlike R-gravity where the standard Israel junc-
tion conditions [3–5] are applicable and there is no restriction
on choosing the radius of the throat except it has to be larger
than the possible event horizon, in F (R) -gravity it has to
satisfy Eq. (12) as well. This is because of the continuity of
the trace of the extrinsic curvature in F (R)-gravity [2] i.e.,
[Ki

i ] = 0. We shall show that upon this condition thin-shell
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wormhole does not exist in the black hole spacetime solution
of R + αR2-Maxwell theory of gravity.

2 Thin-shell wormhole in F(R) = R + αR2-Maxwell
gravity

As it is chosen in [1] the action of the bulk spacetime with
constant curvature is given by

S = 1

2κ

∫
d4x

√−g
(
F (R) − FμνF

μν
)

(1)

in which

F (R) = R + αR2 (2)

and

F = 1

2
Fμνdx

μ ∧ dxν (3)

is the Maxwell’s electromagnetic field. With constant extrin-
sic curvature R = R0 the solution for the F (R)-Maxwell’s
field equations in spherically symmetric spacetime is found
to be [6,7]

ds2 = gμνdx
μdxν = −A(r)dt2 + dr2

A(r)
+ r2d�2 (4)

where

A(r) = 1 − 2M

r
+ Q2

F ′ (R0) r2 − R0r2

12
. (5)

Applying the standard method of cut and paste one constructs
thin-shell wormhole whose throat is located at r = a (τ ) in
which τ is the proper time on the throat. Hence, the extrinsic
curvature tensor on the sides of the throat are found to be
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Ki±
j = ±diag

(
A′(a) + 2ä

2
√
A(a) + ȧ2

,
1

a

√
A(a) + ȧ2,

1

a

√
A(a) + ȧ2

)

(6)

in which a prime and a dot stand for the derivative with respect
to r and τ respectively. As it was introduced in [2] and prop-
erly applied in [1] the following junction conditions have to
be satisfied. First the metric tensor, the Ricci scalar and the
trace of the extrinsic curvature should be continuous across
the shell i.e., [hi j ] = 0, [R] = 0 and [K ] = 0 respectively.
Second, due to the identical constant curvature bulks in both
sides of the thin-shell, the jump of the extrinsic curvature
tensor gives the surface energy-momentum tensor as

κS j
i = −F ′ (R0)

[
K j
i

]
(7)

where

S j
i = diag (−σ, p, p) (8)

in which σ is the energy density and p is the angular pressure.
[K ] = 0 implies

A′(a) + 2ä

2
√
A(a) + ȧ2

+ 2

a

√
A(a) + ȧ2 = 0 (9)

and (7) yields to

σ = F ′ (2ä + A′)
κ
√
A + ȧ2

, (10)

and

p = −2F ′

κa

√
A + ȧ2. (11)

Introducing the equilibrium radius a = a0 [1], where ȧ =
ä = 0 one finds from (9) that a0 has to satisfy

a0A
′ (a0) + 4A (a0) = 0 (12)

which is the additional constraint on the radius of the thin-
shell wormhole and the main concern of this note. Also (10)
and (11) give

σ0 = F ′A′ (a0)

κ
√
A (a0)

, (13)

and

p0 = −2F ′

κa0

√
A (a0). (14)

Furthermore, the trace of Eq. (7) implies that the trace of
S j
i vanishes i.e., Sii = 0 which gives directly the equation

of state p = σ
2 for the perfect fluid presented on the shell.

The stability analysis of the thin-shell wormhole ends up to a
one-dimensional equation of motion for the throat given by

ȧ2 + V (a) = 0 (15)

in which

V (a) = A (a) − a4
0

a4 A (a0) (16)

such that upon taking the Eq. (12) into account V (a0) =
V ′ (a0) = 0 while

V ′′ (a0) = A′′ (a0) − 20

a2
0

A (a0) . (17)

Hence, at the radius of the equilibrium a = a0, satisfying
(12), if V ′′ (a0) > 0 the thin-shell wormhole is stable against
the radial perturbation. In Fig. 2 of [1] it is clearly shown that
the solid curve outside the shaded region for each individual
case is the stable region.

3 The new observation

Let’s recall that a = a0 is the equilibrium radius of the thin-
shell wormhole satisfying two critical conditions: (i) a0 >

rh, in which rh is the possible event horizon of the bulk
spacetime and (ii) a0 should satisfy Eq. (12). Now in this
section we show that any possible event horizon is larger
than a0 and therefore the stable thin-shell is not possible for
the black hole spacetime solution to the R + αR2-Maxwell
gravity. This however, does not contradict the results in [1]
because in Fig. 2 of [1] the bulk does not need to be a black
hole. We note that from Fig. 1 in [1], |Q| < Qc corresponds
to an inner and an event horizon for the bulk while |Q| >

Qc presents a naked singularity for the bulk spacetime. At
|Q| = Qc the two horizons coincide.

First let’s look at the cases mentioned in [1] more closely as
is shown in Fig. 1. In this figure the region where V ′′ (a0) > 0
is shown (as shaded region) in terms of the horizontal axes
x = a0

M and vertical axes y = |Q|
M

√
F ′ , together with other two

curves. The dot-dashed (blue) curve represents the points
on the plane of xy which satisfy Eq. (12) which implicitly
gives the radius of the throat (up to a coefficient 1

M ). Finally
the long dashed (brown) curve stands for the point of the
xy plane satisfying A (r) = 0 where the horizontal axes
x = rh

M and therefore this curves implicitly reveals the event
and Cauchy horizons of the spacetime. One observes that in
all cases for the region where the bulk spacetime is a black
hole the curve of a0 lies under the curve of rh showing that
a0 < rh . A portion of a0 curve remains inside the shaded
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Fig. 1 A plot of V ′′ (a0) > 0 versus x = a0
M and y = |Q|

M
√
F ′ which

is shown as the shaded area. Also a0
M (blue dot-dashed curve) and

rh
M (brown long-dashed curve) are plotted (horizontal axis x) versus

y = |Q|
M

√
F ′ satisfying a0A′ (a0) + 4A (a0) = 0 and A (rh) = 0 respec-

tively. The value of ξ = R0M2 are given on each individual plot. The
points I and J marked on the curves are the intersections of the curves
qa vs xa with qh vs xh and qv vs xa respectively. Definitions of these
quantities are given in Sect. 3

region where the spacetime is not black hole is the stable
thin-shell wormhole reported in [1].

To complete our note let’s find above observation analyt-
ically. The two equations i.e., A (rh) = 0, and a0A′ (a0) +
4A (a0) = 0 after change of variable as xa = a0

M , xh = rh
M

and q = |Q|
M

√
F ′ become

1 − ξ

12
x2
h − 2

xh
+ q2

x2
h

= 0 (18)

and

4 − ξ

2
x2
a − 6

xa
+ 2q2

x2
a

= 0, (19)

respectively, in which ξ = R0M2. Solving both equations
(18) and (19) for q, reveals

qh =
√
xh

(−12xh + 24 + ξ x3
h

)
12

(20)

and

qa =
√
xa

(−8xa + 12 + ξ x3
a

)
4

(21)

in which a sub h/a stands for the horizon/throat and refers
to the solutions of the Eq. (18)/(19). In Fig. 1 the brown
long-dashed and the blue dot-dashed curves are qh(= y)
versus xh(= x) and qa(= y) versus xa(= x), respectively,
for different values of ξ. Next we find the intersection point
between two curves. From Fig. 1 we see that there are two
points of intersections between two curves, one at the origin
which is trivially seen from (20) and (21) and the second point
is the maximum point of the curve qh versus xh i.e., point
I shown on the curve, which is not trivial. Here we show
that irrespective of the value of ξ the second intersection
point is actually the maximum of qh . To do so we find the
extremum/maximum of qh by finding its first derivative and
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equate it to zero i.e., dqh
dxh

= 0 which gives

1

3
ξ x̃3

h − 2x̃h + 2 = 0 (22)

in which x̃h is the horizontal location of the extremum point
of qh . Solving (22) for ξ and inserting it in (20) one finds the
extremum of qh = q̃h which is given by

q̃h =
√
x̃h (3 − x̃h)

2
. (23)

Next, we find the value of qa at xa = x̃h with the same value
of ξ as

qa (xa = x̃h) =
√
x̃h (3 − x̃h)

2
(24)

which is equal to q̃h . This is the end of the proof. Hence we
see that only at the location of the extremal black hole when
the event horizon and the Cauchy horizon coincide (point I )
the value of a0 can be equal to the radius of the horizon while
for any other black hole case rc < a0 < rh .

A similar calculation shows that, the boundary curve of the
region V ′′ (a0) > 0 which is given by V ′′ (a0) = 0 reduces
to

3ξ

2
− 20

x2
a

+ 36

x3
a

− 14q2

x4
a

= 0. (25)

The solution of (25) for q is found to be

qv =
√
xa

(
3ξ x3

a − 40xa + 72
)

28
(26)

in which a sub v refers to the solution of Eq. (25). In Fig. 1 qv

versus xa is shown with Green-Solid curve. This curve inter-
sects the curve of qa versus xa at the origin and its extremum
point J . The proof is similar to the case of point I which
we have worked out earlier. Hence one concludes that the
possible stable thin-shell wormhole is located on the curve
of qa versus xa between the two points I and J marked on
Fig. 1.

4 Conclusion

In this note the results of the recent work of Eiroa and Aguirre
on stability of thin-shell wormhole in F(R) = R + αR2-

Maxwell theory of gravity have been reconsidered. It was
shown that for the black hole bulk solution in this theory
there is no possible stable thin-shell wormhole. No need to
mention that, the non-black hole solution to the R + αR2-
Maxwell theory with constant curvature is naked singular and
the radius of the throat of the thin-shell wormhole is located
to the left of the local minimum of A (r) where A′ (r) = 0.

Also to keep the bulk spacetime a non-black hole solution
one must consider |Q| > Qc in which Qc is a minimum
value for the charge (see Fig. 1 in Ref. [1]). Restriction on
|Q| affects the physical properties of the constructed TSW,
for instance the amount of the exotic matter. Therefore this
study is not trivial. Once more we would like to add that
our results are in agreement with the original work of Eiroa
and Aguirre [1]. As our final remark we would like to look
at the condition (12) once more. In this equation A (a0) �=
0 and therefore A′ (a0) �= 0, in other words the point of
the throat and the point where derivative of A (r) is zero
do not coincide. In [8] it is shown that wormhole solutions
with this property are asymmetric wormhole. In our case
although the condition used in [8] is satisfied but our original
bulk metric is not a wormhole solution. Hence, the thin-shell
wormhole considered in this study remains symmetric thin-
shell wormhole.
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