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Abstract In this paper, the strong form factors and cou-
pling constants of DsDK ∗ and DsD∗K ∗ vertices are inves-
tigated within the three-point QCD sum rules method with
and without the SU f (3) symmetry. In this calculation, the
contributions of the quark–quark, quark–gluon, and gluon–
gluon condensate corrections are considered. As an exam-
ple of specific application of these coupling constants, the
branching ratio of the hadronic decay B+ → K ∗0π+ is
analyzed based on the one-particle-exchange which is one
of the phenomenological models. In this model, B decays
into a DsD∗ intermediate state, and then these two particles
exchange a D(D∗) producing the final K ∗ and π mesons. In
order to compute the effect of these interactions, the DsDK ∗
and DsD∗K ∗ form factors are needed.

1 Introduction

In high energy physics, investigation of meson interactions
depends on information about the proper functional form
of strong form factors. Among all vertices, the charmed
meson ones, which play an important role in understanding
the final-state re-scattering effects in the hadronic B decays,
are much more significant. They are related to the basic
parameters β and λ in the heavy quark effective Lagrangian
[1]. Therefore, researchers have concentrated on computing
the strong form factors and coupling constants connected
to these vertices. Until now, the vertices involving charmed
mesons such as D∗D∗ρ [2], D∗Dπ [3,4], DDρ [5], D∗Dρ

[6], DDJ/ψ [7], D∗DJ/ψ [8], D∗DsK , D∗
s DK , D∗

0 DsK ,
D∗
s0DK [9], D∗D∗P , D∗DV , DDV [10], D∗D∗π [11],

DsD∗K , D∗
s DK [12], DDω [13], DsDsV , D∗

s D
∗
s V [14,15],

and D1D∗π, D1D0π, D1D1π [16] have been studied within
the framework of the QCD sum rules.

a e-mail: mehdijanbazi@yahoo.com
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The effective Lagrangians for the interaction DsDK ∗ and
DsD∗K ∗ vertices are as follows: [17]:

LDs DK ∗ = igDs DK ∗ K ∗α
(D̄s∂αD − ∂α D̄s D),

LDs D∗K ∗ = −gDs D∗K ∗εαβρσ ∂αD
∗
β(∂ρK

∗
σ D̄s

+Ds∂ρ K̄
∗
σ ), (1)

where gDs DK ∗ and gDs D∗K ∗ are the strong form factors. From
these Lagrangians, the elements related to the DsDK ∗ and
DsD∗K ∗ vertices can be derived in terms of the strong form
factors as:

〈D(p)K ∗(q, εK )|Ds(p
′)〉

= −gDs DK ∗(q2) × (pμ + p′μ)εK
μ(q),

〈D∗(p, εD )K ∗(q, εK )|Ds(p
′)〉

= igDs D∗K ∗(q2) × εαβμν p′
αqβ εD

μ(p)εK
ν (q), (2)

where q = p − p′.
In this work, we decide to calculate the strong form fac-

tors and coupling constants associated with the DsDK ∗ and
DsD∗K ∗ vertices in the frame work of the three-point QCD
sum rules (3PSR). As an example of specific application of
these coupling constants can be pointed out to branching ratio
calculations of hadronic B decays. In this paper, we would
like to consider the branching ratio of the B+ → K ∗0π+
decay according to the coupling constants of the DsDK ∗
and DsD∗K ∗ vertices.

The plan of the present paper is as follows: In Sect. 2,
the strong form factor calculation of the DsDK ∗ vertex
is derived in the framework of the 3PSR; computing the
quark–quark, quark–gluon and gluon–gluon condensate con-
tributions in the Borel transform scheme. Using necessary
changes in the expression obtained for the gDs DK ∗ , the strong
form factor gDs D∗K ∗ is presented. In Sect. 3, we analyze the
strong form factors as well as the coupling constants with
and without the SU f (3) symmetry. For a better analysis, a
comparison is made between our results and the predictions
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of other methods. Finally, we consider the branching ratio of
the B+ → K ∗0π+ decay using the coupling constants of the
DsDK ∗ and DsD∗K ∗ vertices.

2 Strong form factors of Ds DK∗ and DsD∗K∗ vertices

To compute the strong form factors of the DsDK ∗ and
DsD∗K ∗ vertices via the 3PSR, we start with the follow-
ing correlation functions as

�K ∗
μ (p, p′) = i2

∫
d4xd4y

×eip
′xe−i(p′−p)y

〈
0

∣∣∣T
{
j Ds (x) j K

∗
μ

†
(y) j D

†
(0)

}∣∣∣ 0
〉
,

�K ∗
μν (p, p′) = i2

∫
d4xd4y

×eip
′xe−i(p′−p)y

〈
0

∣∣∣T
{
j Ds (x) j K

∗
μ

†
(y) j D

∗
ν

†
(0)

}∣∣∣ 0
〉
,

(3)

where K ∗ is supposed as an off-shell meson. For off-shell
charmed mesons, the correlation functions are:

�D
μ (p, p′) = i2

∫
d4xd4y

×eip
′xe−i(p′−p)y

〈
0

∣∣∣T
{
j Ds (x) j D

†
(y) j K

∗
μ

†
(0)

}∣∣∣ 0
〉
,

�D∗
μν (p, p′) = i2

∫
d4xd4y

×eip
′xe−i(p′−p)y

〈
0

∣∣∣T
{
j Ds (x) j D

∗
ν

†
(y) j K

∗
μ

†
(0)

}∣∣∣ 0
〉
,

(4)

where j Ds = c̄γ5s, j D = c̄γ5u, j D
∗
μ = c̄γμu, and

j K
∗

μ = ūγμs are interpolating currents with the same quan-
tum numbers of Ds, D, D∗, and K ∗ mesons, respectively.
Also, T is time ordering product, p and p′ are the four
momentum of the initial and final mesons, respectively, as
depicted in Fig. 1.

To calculate the strong form factor of the DsDK ∗ vertex
in the framework of the 3PSR, the correlation functions in
Eqs. (3) and (4) are calculated in two different ways. First,
they are calculated in the space-like region in terms of quark–
gluon language like quark–quark, gluon–gluon condensate,
etc. using the Wilson operator product expansion (OPE). It
is called the QCD or theoretical side of the QCD sum rules.

D(p)

K*(q)

Ds(p’) Ds(p’)K*(p)

D(q)

u

c

s u c

s

(a) (b)

Fig. 1 Perturbative diagrams for off-shell K ∗ (a) and off-shell D
meson (b)

Second, in the hadronic representation, they are calculated
in the time-like region in terms of hadronic parameters such
as the form factors, decay constants and masses. It is named
the phenomenological or physical side.

In order to calculate the phenomenological part of the cor-
relation functions in Eqs. (3) and (4), three complete sets of
intermediate states with the same quantum number should
be inserted in these equations. Performing the Fourier trans-
formation, for the phenomenological parts, we have:

�K ∗
μ = −〈0| j Ds |Ds(p′)〉〈Ds(p′)|K ∗(q, εK )D(p)〉〈K ∗(q, εK )| j K ∗

μ

†|0〉〈D(p)| j D†|0〉
(p2 − m2

D)(p′2 − m2
Ds

)(q2 − m2
K ∗)

+ higher and continuum states,

�D
μ = −〈0| j Ds |Ds(p′)〉〈Ds(p′)|D(q)K ∗(p, εK )〉〈D(q)| j D†|0〉〈K ∗(p, εK )| j K ∗

μ

†|0〉
(p2 − m2

K ∗)(p′2 − m2
Ds

)(q2 − m2
D)

+ higher and continuum states. (5)

The matrix elements 〈0| j K ∗
μ |K ∗(q, εK )〉, and 〈0| j D(s) |D(s)

(p)〉 are defined as:

〈0| j K ∗
μ |K ∗(q, εK )〉 = mK ∗ fK ∗ε∗K

μ (q),

〈0| j D(s) |D(s)(p)〉 =
m2

D(s)
fD(s)

mc + mu(s)
, (6)

where mK ∗ , mD(s) , fK ∗ , and fD(s) are the masses and decay
constants of mesons K ∗ and D(s), respectively. εμ is the
polarization vector of the vector meson K ∗.

We should choose one of the Lorentz structures appear-
ing in Eq. (2) and compute �K ∗

μ and �D
μ in terms of the

strong form factors. As can be seen in Eq. (2), the form fac-
tor gDs DK ∗ is the same for two the Lorentz structures pμ

and p′
μ, and thus can be extracted from sum rules for each

of them. But we must choose the Lorentz structure which
has fewer ambiguities in the 3PSR approach, which means,
less influence of the condensates of higher dimension, and a
better stability as a function of the Borel mass parameter [3].
With these conditions, we choose the pμ structure. However,
our calculations show that the results for the p′

μ structure is
exactly the same as this for pμ. Therefore in this case, we
could work with any of the structures appearing in Eq. (2).

Inserting Eqs. (2) and (6) in Eq. (5) and after some calcu-
lations, we obtain �K ∗

μ and �D
μ in terms of the strong form

factors gK
∗

Ds DK ∗ and gDDs DK ∗ as:
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�K ∗
μ = −gK

∗
Ds DK ∗ (q2)

× mK ∗m2
Dm

2
Ds

fK ∗ fD fDs

mc(mc + ms)(p2 − m2
D)(p′2 − m2

Ds
)(q2 − m2

K ∗ )
pμ

+higher and continuum states,

�D
μ = −gDDs DK ∗ (q2)

× m2
Ds
m2

D fK ∗ fD fDs (q
2 − m2

D − m2
K ∗ )

2 mc(mc + ms)mK ∗ (p2 − m2
K ∗ )(p′2 − m2

Ds
)(q2 − m2

D)
pμ

+higher and continuum states . (7)

In the theoretical side, the three-point correlation function
contains the perturbative and non-perturbative parts as

�K ∗(D)
μ = (�K ∗(D)

per + �K ∗(D)
nonper ) pμ + other structures. (8)

According to the 3PSR method, we can estimate the per-
turbative part of the correlation function, using the double
dispersion relation, as

�K ∗(D)
per = − 1

4π2

∫
ds

∫
ds′ ρK ∗(D)

(s − p2)(s′ − p′2)
+subtraction terms , (9)

where ρK ∗(D) is spectral density. The spectral density is cal-
culated in terms of the usual Feynman integrals by the help of
the Cutkosky rules, where the quark propagators are replaced
by Dirac-delta functions, i.e., 1

p2−m2 → (−2π i)δ(p2 −m2).
The diagrams corresponding to the perturbative part (bare
loop) are depicted in Fig. 1. Using Fig. 1 and after some
straightforward calculations, we have:

• For the off-shell K ∗ (Fig. 1a):

ρK ∗
Ds DK ∗ = 6I0[2mcms − 2m2

c

+�′ + C ′
1(2mcms − 2m2

c + u)].
• For the off-shell D (Fig. 1b):

ρD
Ds DK ∗ = 6I0[2mcms − 2m2

s + �

+C1(2mcms − 2m2
s + 2� + u)].

The explicit expressions of the coefficients in the spectral
densities are given in Appendix A.

Now, the non-perturbative part contributions to the corre-
lation function are discussed. In QCD, the correlation func-
tion can be evaluated by OPE in the deep Euclidean region.
Using the expansion of it in terms of a series of local operators
with increasing dimension, we get:

�μ = C (0)
μ I + C (3)

μ 〈0|�̄�|0〉
+C (4)

μ 〈0|Ga
ρνG

ρν
a |0〉 + C (5)

μ 〈0|�̄σρνT
aGρν

a �|0〉
+C (6)

μ 〈0|�̄���̄�′�|0〉 + · · · , (10)

where C (i)
μ are the Wilson coefficients, I is the unit operator,

�̄ is the local fermion field operator and Gρν is the gluon
strength tensor. The Wilson coefficient C (0)

μ is the contribu-

tion of the perturbative part of QCD ( i.e., �
K ∗(D)
per ), and the

u

s

uu

ss sss

ccc

Fig. 2 Non-perturbative diagrams for the off-shell D meson

other coefficients are contributions of the non-perturbative
part (�K ∗(D)

nonper ). It is important to note that in above equa-

tion, C (5)
μ 〈0|�̄σρνT aGρν

a �|0〉 ≡ m2
0C

(5)
μ 〈0|�̄�|0〉 [18].

Therefore, we can collect the coefficients C (3)
μ and C (5)

μ as

(C (3)
μ + m2

0 C (5)
μ )〈0|�̄�|0〉, where m2

0 = 0.8 ± 0.2 GeV2

[18].
In Eq. (10), the Wilson coefficients C (3)

μ , C (4)
μ and C (5)

μ

of dimensions 3, 4 and 5 are related to contributions of
the quark–quark, gluon–gluon and quark–gluon condensate,
respectively. Also, C (6)

μ is connected to contribution of the
four-quark condensate of dimension six. For the calculation
of the condensate terms, we consider these points:

(a) Our calculations show that the contributions of the four-
quark condensate are less than a few percent, therefore
the condensate terms of dimensions 3, 4 and 5 are more
important than the other terms in OPE.

(b) In the 3PSR, when the light quark is a spectator, the
gluon–gluon condensate contributions can be easily
ignored [18].

(c) The quark condensate contribution of the light quark
which is a non spectator, is zero after applying the double
Borel transformation with respect to the both variables
p2 and p′2, because only one variable appears in the
denominator.

(d) In the 3PSR, when the heavy quark is a spectator, the
quark–quark condensate contributions are suppressed by
inverse of the heavy quark mass, and can be safely omit-
ted [18].

Therefore, to compute the contribution of the non-
perturbative part of the correlation function for the off-shell
D meson, three diagrams of dimensions 3 and 5, shown in
Fig. 2, are considered. In this case, the quark–quark and
quark–gluon diagrams are more important than the other
terms in the OPE since the light quark s is a spectator.

For a better analysis, we compare the contributions of the
quark–quark plus quark–gluon condensates with the gluon–
gluon condensate for the off-shell D meson, by applying
the Borel transformation, in the interval 5 GeV2 ≤ Q2 ≤
16 GeV2 (Q4 = −q2) in Fig. 3. As can be seen, the gluon–
gluon condensate contributions can be easily ignored.

When K ∗ is an off-shell meson, the gluon–gluon diagrams
of dimension 4 are more important than the quark–quark
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Fig. 3 The quark–quark (QQ) plus quark–gluon (QG) condensate con-
tributions (solid line) and also gluon–gluon (GG) condensate (dash-dot
line) on Q2 for the off-shell D meson

c

su

u s

ccc

cc

ss

uu ss

uu

Fig. 4 Non-perturbative diagrams for the off-shell K ∗ meson

and quark–gluon condensates since the heavy quark c is a
spectator. Figure 4 shows these diagrams related to the gluon–
gluon condensate.

After some straightforward but lengthy calculations and
applying the double Borel transformations [19], the results
for the gluon–gluon condensate contributions (Fig. 4), and
quark–quark as well as quark–gluon contributions (Fig. 2)
are obtained as

�K ∗
nonper = −i

CK ∗
Ds DK ∗

12

〈αs

π
G2

〉
, �D

nonper = CD
Ds DK ∗

12
〈ss̄〉,

(11)

where the explicit expressions for CK ∗
Ds DK ∗ and CD

Ds DK ∗ are
given in Appendix B. It should be noted that in order to obtain
the gluon–gluon condensate contributions, we followed the
same procedure as stated in Ref. [19].

The strong form factors are calculated by equating two
representations of the correlation function and applying the
Borel transformations [20] with respect to the p2(p2 → M2

1 )

and p′2(p′2 → M2
2 ) on the phenomenological as well as

the perturbative and non-perturbative parts of the correlation
function in order to suppress the contributions of the higher
states and continuum. The equations for the strong form fac-
tors are obtained as follows:

gK
∗

Ds DK ∗(q2) = �K ∗
Ds DK ∗

{
− 1

4π2

∫ sDs0

(mc+ms )2
ds′

∫ sD0

s1

×ds ρK ∗
Ds DK ∗(s, s′, q2)e

− s
M2

1 e
− s′

M2
2

−i
M2

1 M
2
2

12

〈αs

π
G2

〉
× CK ∗

Ds DK ∗

}
,

gDDs DK ∗(q2) = �D
Ds DK ∗

{
− 1

4π2

∫ sDs0

(mc+ms )2
ds′

∫ sK
∗

0

s2

×ds ρD
Ds DK ∗(s, s′, q2)e

− s
M2

1 e
− s′

M2
2

+M2
1 M

2
2

12
〈ss̄〉 × CD

Ds DK ∗

}
, (12)

where 〈αs
π
G2〉 = 0.012 GeV4 [21], 〈ss̄〉 = (0.8 ± 0.2)〈uū〉,

and 〈uū〉 = −(0.24 ± 0.01 GeV)3 [22]. In these relations,
sK

∗
0 and sD(Ds )

0 are the continuum thresholds in K ∗ and
D(Ds) mesons, respectively. Also, s1 and s2 are the lower
limits of the integrals over s as

s1 = m2
c(m

2
c − s′ + q2)

m2
c − s′ , s2 = m2

s (m
2
s − s′ + q2)

m2
s − s′ .

The phrases �K ∗
Ds DK ∗ and �D

Ds DK ∗ are defined as:

�K ∗
Ds DK ∗ = −mc(mc + ms)(q2 − m2

K ∗)

mK ∗m2
Dm

2
Ds

fK ∗ fD fDs

e

m2
D

M2
1 e

m2
Ds
M2

2 ,

�D
Ds DK ∗ = − 2 mc(mc + ms)mK ∗(q2 − m2

D)

m2
Dm

2
Ds

fK ∗ fD fDs (q
2 − m2

Ds
− m2

K ∗)

×e

m2
K∗
M2

1 e

m2
Ds
M2

2 . (13)

Following the previous steps, relations similar to Eq. (12)
can be obtained for the strong form factors of the DsD∗K ∗
vertex via the 3PSR. It should be noted that in this case,
calculations are done for the Lorentz structure εαβμν pα p′

β .
In order to have the correct relations for the strong form
factors of the DsD∗K ∗ vertex, the appropriate terms of �, the
spectral density ρ, and quark–gluon condensate coefficients
CK ∗
Ds D∗K ∗ and CD∗

Ds D∗K ∗ should be replaced in Eq. (12). The

explicit expressions for CK ∗
Ds D∗K ∗ and CD∗

Ds D∗K ∗ are given in
Appendix B. In addition, proper expressions for � related to
the strong form factors gK

∗
Ds D∗K ∗ and gD

∗
Ds D∗K ∗ are as follows:
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Table 1 The leptonic decay constants in MeV

fK ∗ [23] fD [10] fDs [24] fD∗ [25]

220 ± 5 223 ± 17 294 ± 27 340 ± 12

�K ∗
Ds D∗K ∗ = − (mc + ms)(q2 − m2

K ∗)

mK ∗mD∗m2
Ds

fK ∗ fD∗ fDs

e

m2
D∗
M2

1 e

m2
Ds
M2

2 ,

�D∗
Ds D∗K ∗ = − (mc + ms)(q2 − m2

D∗)

mK ∗mD∗m2
Ds

fK ∗ fD∗ fDs

e

m2
K∗
M2

1 e

m2
Ds
M2

2 . (14)

Also, the spectral densities are calculated as

ρK ∗
Ds D∗K ∗ = −12I0[C ′

1mc + C ′
2(mc − ms) + mc],

ρD∗
Ds D∗K ∗ = 12I0[C1ms + C2(ms − mc) + ms]. (15)

3 Numerical analysis

In this section, the strong form factors and coupling con-
stants for the DsDK ∗ and DsD∗K ∗ vertices as well as the
branching ratio of the B+ → K ∗0π+ decay are considered.
For this aim, the values of quark and meson masses are cho-
sen as: ms = 0.14 ± 0.01 GeV, mc = 1.26 ± 0.02 GeV,
mD∗ = 2.01 GeV, mK ∗ = 0.89 GeV, mDs = 1.97 GeV,
and mD = 1.87 GeV [23]. Moreover, the leptonic decay
constants are presented in Table 1.

There are four auxiliary parameters containing the Borel
mass parameters M1 and M2, and continuum thresholds sK

∗
0 ,

sD(Ds )
0 and sD

∗
0 in Eq. (12). The strong form factors and cou-

pling constants are the physical quantities, and should be
independent of them. However the continuum thresholds are
not completely arbitrary; these are related to the energy of
the first exited state. The values of the continuum thresholds
are taken to be sK

∗
0 = (mK ∗ + δ)2, sD(Ds )

0 = (mD(Ds) + δ′)2

and sD
∗

0 = (mD∗ + δ′)2 . We use 0.40 GeV ≤ δ ≤ 0.60 GeV
and 0.30 GeV ≤ δ′ ≤ 0.70 GeV [2–4]. Our results should
be almost insensitive to the intervals of the Borel parameters.
On the other hand, the intervals of the Borel mass parame-
ters must suppress the higher states, continuum and contri-
butions of the highest-order operators. In other words, the
sum rule for the strong form factors must converge. We get
a very good stability for the form factors as a function of the
two independent Borel parameters in the regions 6 GeV2 <

M2
1 < 8 GeV2 and 6 GeV2 < M2

2 < 8 GeV2 when K ∗
is an off-shell meson, and also 6 GeV2 < M2

1 < 8 GeV2

and 8 GeV2 < M2
2 < 10 GeV2 when D (D∗) meson is an

off-shell. Figure 5 shows the dependence of the form factors
gK

∗
Ds DK ∗ and gDDs DK ∗ on the Borel mass parameters M2

1 and

M2
2 for three values of the continuum thresholds sK

∗
0 and sD0 .

As previously mentioned, these intervals of M2
1 and M2

2
must suppress the higher states, continuum and contributions

of the highest-order operators. For instance, Fig. 6 shows the
strong form factor gDDs DK ∗ with respect to Q2 for different
values of the Borel parameters. In addition, this figure dis-
plays perturbative contribution of the form factor gDDs DK ∗ .
As can be seen, the important contribution of the form factor
comes from the perturbative part, i.e., the contributions of
the quark–quark and quark–gluon condensates, as the most
important terms of the condensates in this case, are less than
the perturbative part. Therefore, the obtained regions for the
Borel parameters can suppress the higher order condensates.

It should be noted that, from now on, to calculate
the strong form factors gK

∗
Ds DK ∗ and gK

∗
Ds D∗K ∗ , we get

[M2
1 , M2

2 ] = [7, 7] GeV2, and for gDDs DK ∗ and gD
∗

Ds D∗K ∗ ,

we get [M2
1 , M2

2 ] = [7, 9] GeV2.
The numerical results for the strong form factors calcu-

lated via the 3PSR in Eq. (12) have a cut-off. Therefore, we
look for a parametrization of the form factors in such that
in the validity region of the 3PSR, this parametrization coin-
cides with the sum rules prediction. Our numerical calcula-
tions show that the sum rule predictions for the form factors
in Eq. (12) are well fitted to the following function:

g(Q2) = A e−Q2/B .

The values of the parameters A and B are given in Table 2
for various (δ, δ′).

The dependence of the strong form factors gDDs DK ∗(Q2),

gK
∗

Ds DK ∗(Q2), gD
∗

Ds D∗K ∗(Q2) and gK
∗

Ds D∗K ∗(Q2) in Q2 are
shown in Fig. 7. The boxes and circles in Fig. 7 show the
results of the numerical evaluation via the 3PSR for the form
factors gK

∗
Ds DK ∗(gK

∗
Ds D∗K ∗) and gDDs DK ∗(gD

∗
Ds D∗K ∗), respec-

tively. As can be seen, the form factors and their fit functions
coincide together, well.

The value of the strong form factors at Q2 = −m2
m , where

mm is the mass of the off-shell meson, is defined as cou-
pling constant. Coupling constant results of the two vertices,
DsDK ∗ and DsD∗K ∗, are presented in Table 3. It should be
mentioned that the coupling constant gDs DK ∗ is the dimen-
sionless quantity and the coupling constant gDs D∗K ∗ is in the
unit of GeV−1. The errors are estimated by variation of the
Borel parameters, variation of the continuum thresholds, the
leptonic decay constants and uncertainties in the values of
the other input parameters. It should be noted that the main
uncertainty comes from the continuum thresholds and the
decay constants.

Table 4 shows a comparison between our results with
the values predicted by the light-cone sum rules (LCSR)
method. The results of Ref. [26] have been rescaled accord-
ing to the strong form factor definitions in Eq. (2). It
should be reminded that the value of gDs DK ∗(gDs D∗K ∗) in
Table 4 is an average of the two coupling constant values
gK

∗
Ds DK ∗(gK

∗
Ds D∗K ∗) and gDDs DK ∗(gDDs D∗K ∗) in Table 3.
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Fig. 5 M2
1 and M2

2 dependence of gK
∗

Ds DK ∗ and gDDs DK ∗ for three values of the continuum thresholds

In order to investigate the strong coupling constant val-
ues via the SU f (3) symmetry, the mass of the s quark is
ignored in all calculations. In view of the SU f (3) symme-
try, the values of the parameters A and B for the gDs DK ∗
and gDs D∗K ∗ strong form factors are given in Table 5 with
(δ, δ′) = (0.50, 0.50) GeV. In addition, considering the
SU f (3) symmetry, we obtain the values of the coupling con-
stants of the vertices DsDK ∗ and DsD∗K ∗ as shown in Table
6. It is possible to compare the coupling constant values of
gDs DK ∗ and gDs D∗K ∗ with gDDρ and gD∗D∗ρ respectively, in
the SU f (3) symmetry consideration. Table 7 shows a com-
parison between our results with the values predicted by the
LCSR and 3PSR methods.

An example of specific application of these coupling con-
stants is in branching ratio calculations of B meson decays. It
is reminded that re-scattering effects play an important role in
the hadronic B decays. It is not easy to take them into account
in a systematic way due to the non-perturbative nature of the
multi-particle dynamics. In practical calculations, the phe-

nomenological models can be used to overcome the difficulty
[26]. The one-particle-exchange is one of these phenomeno-
logical models. In this model, the soft re-scattering of the
intermediate states in two-body channels with one-particle
exchange makes the main contributions. The phenomeno-
logical Lagrangian contains many input parameters, which
describe the strong couplings among the charmed mesons in
the hadronic B decays.

For instance, we would like to consider the branching ratio
of the B+ → K ∗0π+ decay according to the method of
Refs. [27,28]. It should be noted that our main goal in this
investigation is to illustrate the use of the coupling constants
gDs DK ∗ and gDs D∗K ∗ in branching ratio calculations of B
decays. Therefore, we do not discuss the methods of calcu-
lation, which are presented here.

According to Refs. [27,28], the B → K ∗π decay ampli-
tude, AK ∗π contains the short-distance (SD) and the long-
distance (LD) contributions:

MK ∗π = MSD + MLD . (16)
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Fig. 6 The strong form factor gDDs DK ∗ on Q2 for different values of the Borel parameters

Table 2 Parameters appearing
in the fit functions for the
DsDK ∗ and DsD∗K ∗ vertices
for various (δ, δ′), where
(δ1, δ

′
1) = (0.40, 0.30),

(δ2, δ
′
2) = (0.50, 0.50) and

(δ3, δ
′
3) = (0.60, 0.70) GeV

Form factor A(δ1, δ
′
1) B(δ1, δ

′
1) A(δ2, δ

′
2) B(δ2, δ

′
2) A(δ3, δ

′
3) B(δ3, δ

′
3)

gK
∗

Ds DK ∗ (Q2) 1.58 2.00 1.97 2.86 2.41 4.15

gDDs DK ∗ (Q2) 2.29 29.07 2.81 37.62 3.11 27.12

gK
∗

Ds D∗K ∗ (Q2) 2.75 9.82 3.19 5.41 4.21 14.71

gD
∗

Ds D∗K ∗ (Q2) 3.31 52.77 3.73 43.05 4.23 32.05

Using the effective Hamiltonian for non-leptonic B decays
[29–33] in the factorization approximation, the value of the
SD amplitude is MSD = 1.52 × 10−8, which is evaluated
by the following formula [27]:

MSD(B+ → K ∗0
π+)

= GF
√

2FB→π
1 (m2

K ∗) fK ∗mK ∗V ∗
tbVts

×
[
a4 − a10

2

] (
ε∗ · pB

)
. (17)

Figure 8 shows diagrams, for the B → K ∗π decay with
Ds, D∗ intermediate states, used to calculate theMLD part of

the amplitude. As can be seen in Fig. 8, the B → K ∗π decay
may be occur in two steps. First, the B decays into a DsD∗
intermediate state (B → DsD∗), and then these two particles
exchange a D(D∗) producing the final K ∗ and π . In order
to compute the effect of these interactions in the final decay
rate, we need the DsDK ∗(DsD∗K ∗) and D∗Dπ(D∗D∗π)

form factors.
The MLD consists of two parts, real and imaginary:

MLD = RLD + i ILD. (18)

The computation of the imaginary part of the charming pen-
guin diagrams contributing to B → K ∗π decay gives

123



606 Page 8 of 12 Eur. Phys. J. C (2018) 78 :606

−10 −5 0 5 10 15 20

0

2

4

6

8

10

12

14

16

δ ’= 0.50GeV

δ = 0.50 GeV

Q 2(GeV2)

g D
sD

K
*(Q

2 )
QCDSR K* off−shell
Gaussian fit
QCDSR D  off−shell
Gaussian fit

−4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

δ ’= 0.50GeV

δ = 0.50 GeV

Q 2(GeV2)

g D
sD

* K
*(Q

2 )

QCDSR K* off−shell
Gaussian fit

QCDSR D* off−shell
Gaussian fit
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Table 3 The coupling constant of the vertices DsDK ∗ and DsD∗K ∗

Off-shell charmed Off-shell K ∗

gDs DK ∗ 3.09 ± 0.50 2.60 ± 0.42

gDs D∗K ∗ 4.10 ± 0.67 3.70 ± 0.61

Table 4 Values of the strong coupling constant using the 3PSR (ours)
and LCSR approaches

g Ours LCSR [26]

gDs DK ∗ 2.85 ± 0.46 3.22 ± 0.32

gDs D∗K ∗ 3.90 ± 0.64 4.04 ± 0.74

Table 5 Parameters appearing in the fit functions for the gDs DK ∗
and gDs D∗K ∗ form factors in SU f (3) symmetry with (δ, δ′) =
(0.50, 0.50) GeV

Form factor A B

gK
∗

Ds DK ∗ (Q2) 2.08 2.53

gDDs DK ∗ (Q2) 2.61 37.16

gK
∗

Ds D∗K ∗ (Q2) 2.60 5.04

gD
∗

Ds D∗K ∗ (Q2) 2.88 24.09

Table 6 The coupling constants of the vertices DsDK ∗ and DsD∗K ∗,
in SU f (3) symmetry

Off-shell charmed Off-shell K ∗

gDs DK ∗ 2.87 ± 0.47 2.84 ± 0.46

gDs D∗K ∗ 3.40 ± 0.55 3.04 ± 0.49

ILD = mD

32π2mB

√
ω∗2 − 1

∫
dn M(B → DsD

∗)

×M(DsD
∗ → K ∗π), (19)

Table 7 Values of the coupling constant using the LCSR, and 3PSR

g Ours 3PSR [5–7] LCSR [26]

gDs DK ∗ 2.86 ± 0.46 3.42 ± 0.44 2.62 ± 0.66

gDs D∗K ∗ 3.22 ± 0.52 4.11 ± 0.44 3.56 ± 0.60

B
Ds

D*

D

K*

π

B
Ds

D*

D*

K*

π

(a) (b)

Fig. 8 Diagrams for the B → K ∗π decay with Ds , D∗ intermediate
states

where the integration is over the solid angle. Using the fol-
lowing kinematics:

pμ
B = mBvμ = (mB, 
0) , pμ

D∗ = mD∗v′μ,

q = pB − pD∗ , (20)

the amplitude for the decay B → DsD∗ is computed by
factorization as:

M(B(v) → Ds(q)D∗(ε, v′)) = −K (mB + mD∗) ε∗ · v ,

(21)

where K = √
2 GF

1+ω∗ V ∗
cbVcs a2

√
mBmD∗ fDs , and ω∗ =

m2
B+m2

D∗−m2
Ds

2mD∗mB
. Using the heavy quark effective lagrangian,

the calculation of the amplitude Ds D∗ → K ∗π leads to
[27]:
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M(Ds(q)D∗(ε, v′) → K ∗(pK , ε̂)π(pπ ))

= −2g F2(|pπ |)
fπ

gV√
2

√
mD∗

mDs

ελε̂
∗
σ

×
[

2β mD qσ pλ
π

(mDv′ − pπ )2 − m2
D

+ 4λmD∗ Gσλ(pπ , pK , v′)
(mD∗v′ − pπ )2 − m2

D∗

]
, (22)

where

Gσλ(pπ , pK , v′) = − (v′ · q)

(
gσλ(pK · pπ ) − pσ

π pλ
K

)

− (q · pπ )

(
v′σ pλ

K − gσλ(v′ · pK )

)

− qλ

(
pσ
π (pK · v′) − v′σ (pK · pπ )

)
.

(23)

Eq. (22) is calculated based on the three parameters F(|pπ |),
g and gV . F(|pπ |) is a form factor taking into account that
in the vertex DD∗π the pion is not soft and therefore the
coupling constant should be corrected. Its central value is
F(|pπ |) = 0.065 determined by a quark potential model
and discussed in Ref. [28]. The definition of g is related
to the coupling GD∗Dπ , which can be written in general as
GD∗Dπ = 2g mD

fπ
. The parameter g is predicted to have the

value g = 0.59 ± 0.07 ± 0.01 [35]. The definition of gV is
expressed in Ref. [34] and its value is gV � 5.8. The basic
parameters β and λ in the heavy quark effective Lagrangian
can be related to the strong coupling constants gDs DK ∗ and
gDs D∗K ∗ as [1,26]:

β =
√

2 gDs DK ∗

2 gV
, λ =

√
2 gDs D∗K ∗

2 gV
. (24)

Our numerical values for the gDs DK ∗ and gDs D∗K ∗ have been
presented in Table 4. Using Eqs. (21) and (22) in Eq. (19)
and straightforward calculations, our numerical value for the
imaginary part of the LD amplitude of two diagrams (a) and
(b) in Fig. 8 is I(a,b)

LD = −2.46 × 10−8.
A similar method of the imaginary part is used to calculate

the real part of the LD amplitude [27]. The result forR(a,b)
LD =

2.34 × 10−8, which is the same order of the imaginary part.
The branching ratio of the non-leptonic process B+ →

K ∗0π+ is given by

BR(B+ → K ∗0π+)

= τB

16πm3
B

|MK ∗π |2
√

λ(m2
B,m2

K ,m2
π ), (25)

where λ(m2
B,m2

K ,m2
π ) = m4

B + m4
K + m4

π − 2m2
Bm

2
K −

2m2
Bm

2
π − 2m2

Km
2
π . Our results for the branching ratio of

the B+ → K ∗0π+ decay are presented in Table 8. These
results are obtained for only the short distance amplitude

Table 8 Branching ratio values (units 10−5) of the B+ → K ∗0π+
mode

MSD MSD + MLD Exp [36,37]

BR(B+ → K ∗0π+) 0.21 ± 0.07 1.62 ± 0.41 1.21 ± 0.31

(MSD), and also for the total amplitude (MSD + MLD).
Furthermore, this table contains the experimental value for
the branching ratio of the B+ → K ∗0π+. Considering the
error in the experimental value, our estimation for the branch-
ing ratio value of the B+ → K ∗0π+ decay with the total
amplitude is in consistent agreement with the experimental
data.

In summary, taking into account the contributions of the
quark–quark, quark–gluon and gluon–gluon condensate cor-
rections, the strong form factors gDs DK ∗ and gDs D∗K ∗ were
estimated within the 3PSR with and without the SU f (3) sym-
metry. A comparison was made between our results and the
predictions of other methods. Finally, the branching ratio of
the B+ → K ∗0π+ decay was estimated using the coupling
constants of the DsDK ∗ and DsD∗K ∗ vertices.
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Appendix A

In this appendix, the explicit expressions of the coefficients
in the spectral densities are given as:

I0(s, s
′, q2) = 1

4λ
1
2 (s, s′, q2)

,

λ(a, b, c) = a2 + b2 + c2 − 2ac − 2bc − 2ac,

� = s′ + m2
s − m2

c,

�′ = s′ + m2
c − m2

s ,

�′′ = s + m2
s ,

u = s + s′ − q2,

C1 = 1

λ(s, s′, q2)
[2s′�′′ − u�],

C2 = 1

λ(s, s′, q2)
[2s� − u�′′],

also C ′
1 = C1|mc↔ms

and C ′
2 = C2|mc↔ms

.
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Appendix B

In this appendix, the explicit expressions of the coefficients
of the quark and gluon condensate contributions of the strong
form factor in the Borel transform scheme is presented.
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c + 3 Î1(2, 2, 2)m4
c
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+6 Î0(4, 1, 1)m3
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−9 Î0(2, 1, 2)mcms + 3 Î1(1, 3, 1)mcms
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−3 Î [1,1]
0 (3, 2, 1) − 3 Î [0,1]
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+2 Î1(3, 2, 2)m5
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+4 Î2(2, 2, 2)m3
c + 2 Î [0,1]
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s + 6 Î2(3, 1, 2)mcm

2
s

+12 Î0(1, 1, 4)mcm
2
s − 4 Î2(3, 1, 2)m3

s

123



Eur. Phys. J. C (2018) 78 :606 Page 11 of 12 606

+2 Î [1,0]
2 (3, 2, 2)m3

s − 12 Î2(1, 1, 4)m3
s

−4 Î2(2, 1, 3)m3
s − 2 Î2(2, 2, 2)m3

s

+2 Î2(3, 1, 1)mc − 4 Î [1,0]
2 (3, 2, 1)mc

−4 Î [0,1]
1 (3, 1, 2)mc + 4 Î0(1, 2, 2)mc

−2 Î [1,0]
1 (3, 1, 2)mc + 4 Î2(1, 2, 2)mc

+8 Î0(2, 1, 2)mc + 8 Î2(2, 1, 2)mc

+2 Î0(3, 1, 1)mc + 4 Î1(1, 2, 2)mc

−6 Î [1,0]
1 (3, 2, 1)mc + 2 Î0(2, 2, 1)mc

−4 Î [0,1]
0 (3, 1, 2)mc − 4 Î [0,1]

2 (3, 1, 2)mc

+2 Î [1,1]
2 (3, 2, 2)mc + 2 Î [1,1]

1 (3, 2, 2)mc

+2 Î1(2, 2, 1)mc + 6 Î1(2, 1, 2)mc

+2 Î [1,1]
0 (3, 2, 2)mc − 6 Î [1,0]

0 (3, 2, 1)mc

−2 Î1(3, 1, 1)mc + 8 Î [1,0]
1 (2, 1, 3)ms

+4 Î [1,0]
2 (3, 2, 1)ms + 12 Î1(1, 1, 3)ms

−4 Î2(1, 2, 2)ms + 2 Î [0,1]
2 (2, 2, 2)ms

−2 Î2(2, 2, 1)ms + 4 Î [0,1]
2 (3, 1, 2)ms

−2 Î [1,1]
2 (3, 2, 2)ms + 4 Î1(2, 1, 2)ms

+4 Î2(1, 1, 3)ms + 4 Î0(2, 1, 2)ms

−10 Î2(2, 1, 2)ms + 2 Î [1,0]
2 (2, 2, 2)ms

+4 Î [0,1]
2 (2, 1, 3)ms + 20 Î0(1, 1, 3)ms,

where

Î [α,β]
μ (a, b, c) = [M2

1 ]α[M2
2 ]β dα

d(M2
1 )α

dβ

d(M2
2 )β

×[M2
1 ]α[M2

2 ]β Îμ(a, b, c),

Îk(a, b, c) = i
(−1)a+b+c+1

16π2 �(a)�(b)�(c)
(M2

1 )1−a−b+k

×(M2
2 )4−a−c−k U0(a + b

+c − 5, 1 − c − b),

Îm(a, b, c) = i
(−1)a+b+c+1

16π2 �(a)�(b)�(c)
(M2

1 )−a−b−1+m

×(M2
2 )7−a−c−m U0(a + b

+c − 5, 1 − c − b),

Î6(a, b, c) = i
(−1)a+b+c+1

32π2 �(a)�(b)�(c)
(M2

1 )3−a−b

×(M2
2 )3−a−c U0(a + b

+c − 6, 2 − c − b),

În(a, b, c) = i
(−1)a+b+c

32π2 �(a)�(b)�(c)
(M2

1 )−4−a−b+n

×(M2
2 )11−a−c−n U0(a + b

+c − 7, 2 − c − b),

where k = 1, 2, m = 3, 4, 5 and n = 7, 8. We can define the
function U0(a, b) as:

U0(a, b) =
∫ ∞

0
dy(y + M2

1 + M2
2 )a yb

× exp

[
− B−1

y
− B0 − B1y

]
,

where

B−1 = 1

M2
2 M

2
1

(m2
s (M

2
1 + M2

2 )2 − M2
2 M

2
1 Q

2),

B0 = 1

M2
1 M

2
2

(m2
s + m2

c)(M
2
1 + M2

2 ),

B1 = m2
c

M2
1 M

2
2

.
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