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Abstract The quasinormal modes of charged and uncharged
massive scalar fields and also of charged Dirac fields against
the background of a charged spherical black hole endowed
with a scalar hair have been investigated. Special empha-
sis has been given to the case where negative scalar charge
dominates over the electric charge of the black hole which
mimics an Einstein-Rosen bridge. Except for the complete
monotonic behaviour of the damping (imaginary part of the
quasinormal frequency) against the charge of the black hole
as opposed to the existence of a peak for the pure Reissner-
Nordström case, the qualitative behaviour does not apprecia-
bly change due to the presence of scalar hair.

1 Introduction

After the dream of detecting gravity waves came true, and
that too from a merger of two black holes [1], the importance
of a thorough investigation of the quasinormal modes in con-
nection with the black hole perturbations cannot perhaps be
exaggerated. These investigations started a long way back,
through the work of Regge and Wheeler [2] and Vishvesh-
wara [3,4]. The response of a black hole to a perturbation
of an external field or the perturbation of the metric is man-
ifested in the form of a damped wave emitted by the black
hole, characterized by a complex frequency, called the quasi-
normal frequency. The real part of the frequency corresponds
to the actual frequency of the wave motion while the imag-
inary part takes care of the damping factor. For excellent
reviews, we refer to the works of Nollert [5], Kokkotas and
Schmidt [6] and Konoplya and Zhidenko [7].

Quasinormal modes (QNM) for a Schwarzchild black hole
has been studied by Vishveshwara [4] and also by Davis,
Ruffini, Press and Price [8]. QNMs for a Reissner–Nordström
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black hole was first investigated by Gunter [9]. Investigations
regarding QNMs for various kind of black holes are already
there in the literature. Dreyer discussed the QNMs, area spec-
trum and entropy of a black hole and also fixed the value of
the Immirizi parameter which arises in Loop quantum grav-
ity [10]. Cardoso and Lemos discussed the QNMs of a BTZ
black hole [11] and also Schwarzchild-AdS black holes [12].
The latter had been discussed by Horowitz and Hubeny [13]
also. QNMs for a near extremal black hole has been invest-
gated by Starinets [14] and by Cardoso and Lemos [15].
QNMs for a Gauss-Bonnet black hole has been discussed
by Chakrabarti [16].

The purpose of the present work is to investigate the
QNMs of a black hole endowed with a scalar hair. We
pick up the example which has been very recently given
by Astorino [17]. The black hole has both electric charge
and scalar charge. The scalar field part is basically the same
one as that given by Bekenstein [18,19], but in a much more
useful form. The metric is qualitatively same as the Reissner–
Nordström (RN) metric. The “scalar charge” comes only as
an additive correction to the electric charge, so nothing new
comes out of it as such to start with. But the scalar charge
comes with a power unity in the metric as opposed to the
quadratic appearence of the electric charge. Thus one can
set the scalar charge s < −e2 so as to get the 1

r2 term
with a negative coefficient. This is a very simple realiza-
tion of a “mutated Reissner–Nordtsröm” metric leading to
the Einstein-Rosen bridge [20] or a so called wormhole.
The present work deals with such a metric, with primarily
negative values of s. The perturbation of massless and mas-
sive uncharged/charged scalar particles and massless charged
Dirac particles and the QNMs generated by the perturbations
in the vicinity of a mutated Reissner–Nordström black hole
are discussed in the present work. The continued fraction
method (see Refs. [21–23]) has been adopted. The funda-
mental mode is the dominating one in the signal and only
that mode is dealt with.
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In almost all the cases both the frequency and the damp-
ing rate decrease with the magnitude of the negative scalar
charge. For massive scalar field, the damping rate falls off
sharply compared to the massless case whereas the real fre-
quency falls off at a much slower rate. For charged fields, the
oscillation frequency and the damping rate is more for higher
values of the field charge.

The paper is organized in the following way. We start with
a brief description of the background spacetime in Sect. 2. In
Sect. 3, we briefly describe the continued fraction technique
and discuss the QNMs for both uncharged and charged scalar
fields close to a mutated RN black hole. Section 4 includes a
discussion on the the QNMs of massless charged Dirac field
around an RN black hole endowed with a scalar hair. The
fifth and final section contains a summary and discussion on
the results obtained. As it is already mentioned, the work is
done using the continued fraction method. It has also been
worked out using 3rd order WKB method (see Refs. [24,25]),
but not mentioned in the text. To facilitate a comparison, we
include a table showing the results of the two methods for
one example as an “Appendix”.

2 Background spacetime

Starting from the action of general relativity coupled to a
Maxwell field Fμν and conformally coupled to a scalar field
ψ ,

I = 1

16πG

∫
d4x

√−g

[
R − FμνF

μν

−8πG

(
�μψ �μ ψ + R

6
ψ2
)]

(1)

Astorino [17] arrived at the Reissner–Nordström black hole
of mass M and charge e endowed with a scalar hair s,

ds2 = − f (r) dt2 + f (r)−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
,

(2)

where

f (r) =
(

1 − 2M

r
+ e2 + s

r2

)
and (3)

ψ = ±
√

6

8πG

√
s

s + e2 . (4)

The net stress-energy tensor looks like

Tμ
ν = e2 + s

r4 diag (−1,−1, 1, 1) . (5)

It is interesting to note that the scalar field ψ has a constant
value. Still it gives a non-trivial contribution to the metric

because of its nonminimal coupling with geometry in the
form R

6 ψ2 in the action (1). The scalar hair s is a primary
hair since the scalar field ψ survives even in the absence of
the electromagnetic field. It is easy to note from relation (5)
that the trace of the energy momentum tensor due to the
scalar field alone is also zero. Thus the existence of this hair
is completely consistent with the theorem given in Ref. [26].
In the range 0 > s > −e2, the scalar field has an imaginary
value. In such a case, the kinetic part in the action should
have been written as ∇μψ∗∇μψ . However, it hardly matters
in the present case as the kinetic part becomes trivial as ψ is a
constant. As discussed earlier, one of the principal motivation
of the work is to look at the QNMs for a mutated Reissner–
Nordström black hole which requires s < −e2, the question
of a complex scalar field will not arise.

The present black hole given by the solutions (2) and (3),
henceforth referred to as the Reissner–Nordström-scalar hair
(shRN) black hole, is also characterised by an inner Cauchy
horizon (r−) and an outer event horizon (r+). The horizons
of the shRN black hole are located at

r+ = M +
√
M2 − e2 − s, (6)

r− = M −
√
M2 − e2 − s. (7)

The maximum value of the scalar (or electric) charge is deter-
mined by the extremality condition,

√
M2 − e2 − s = 0. (8)

For s = −e2 the shRN spacetime reduces to a Schwarzschild
black hole with the event horizon at r+ = 2M . The mutated
RN spacetime is also characterised by a single event horizon
as r− is negative and of no physical significance.

3 Massive scalar field around a charged black hole with
scalar hair

In this section we discuss the dynamics of a massive charged
scalar field in the background of an shRN black hole and
study the fundamental (n = 0) mode of the quasinormal
spectrum of the field around the black hole.

3.1 Field dynamics

The dynamics of a massive charged test scalar field Φ of mass
μ and electric charge q in the background (2) is governed by
the Klein–Gordon equation,

[(∇ν − iq Aν
)
(∇ν − iq Aν) − μ2

]
Φ = 0 (9)
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where Aν = −δ0
νe/r is the electromagnetic vector potential

of the black hole. We can decompose the field Φ as

Φlm (t, r, θ, φ) = e−iωt Slm (θ) Rlm (r) eimφ, (10)

where ω is the conserved frequency, l is the spherical har-
monic index and m (−l ≤ m ≤ l) is the azimuthal har-
monic index. Hereafter we will drop the subscripts l and m
for brevity.

With the decomposition (10) one can separate the Klein–
Gordon equation (9) into a radial and an angular equation
with the separation constant Kl = l (l + 1). The radial
Klein–Gordon equation is given by

d

dr

(
Δ
dR

dr

)
+ U

Δ
R = 0, (11)

where Δ = r2 f (r) and

U =
(
ωr2 − eqr

)2 − Δ
[
μ2r2 + l (l + 1)

]
. (12)

If we define a new radial function ζ = r R and adopt the
tortoise coordinate r∗ (defined by, dr∗ = dr/ f (r) ), map-
ping the semi infinite region

[
r+,∞) into (−∞,∞), then

the radial Klein–Gordon equation (11) becomes

d2ζ

dr2∗
+ W (ω, r) ζ = 0, (13)

where

W (ω, r) =
(
ω − eq

r

)2

− f (r)

(
−2
(
e2 + s

)
r4 + 2M

r3 + (l + 1)l

r2 + μ2

)
.

(14)

In the asymptotic limit Eq. (13) can be solved analytically
with the quasinormal mode (QNM) boundary conditions of
purely ingoing waves at the horizon (r∗ → −∞) and purely
outgoing waves at spatial infinity (r∗ → ∞),

ζ ≈
⎧⎨
⎩
e
−i
(
ω− eq

r+
)
r∗ as r∗ → −∞

r−ieq∗ eiΩr∗ as r∗ → ∞,
(15)

where Ω = √ω2 − μ2.
Equation (13) together with the boundary conditions (15)

becomes an eigenvalue problem with complex eigenvalues
ω representing the quasinormal frequencies.

3.2 Continued fraction technique

In 1985, Leaver [21–23] inspired by a seminal work of
Jaffé [27] on the calculation of the electronic spectra of
hydrogen molecular ion, proposed a very accurate method
for finding out the QNM frequencies of black holes.

To implement Leaver’s method we start with Eq. (11) and
observe that it has two regular singularities at r+ and r− and
an irregular singularity as r → ∞ .

We can write a solution to Eq. (11) with the desired
behaviour at the boundaries as

R = eiΩr (r − r−)ρ
∞∑
n=0

anu
n+δ, (16)

where u = r−r+
r−r− , ρ = i

(
iΩ+M

(
Ω2+ω2

)−eqω
)

Ω
and δ =

− ir2+
(
ω− eq

r+
)

r+−r− . Substituting the ansatz (16) into Eq. (11) we
arrive at the following three term recurrence relations, satis-
fied by the coefficient an

α0a1 + β0a0 = 0, (17)

αnan+1 + βnan + γnan−1 = 0, (18)

where αn , βn and γn are given by,
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αn = − (n + 1)2 r− + (n + 1)r+ (−2ieq − n + 2ir+ω − 1)

r+ − r−
, (19)

βn = 1

2Ω(r− − r+)

[
r+
{

2
(
−2e2q2 (Ω + ω) + ie(2n + 1)q (2Ω + ω) +

(
l (l + 1) + 2n2 + 2n + 1

)
Ω
)

+ r+
(

4ω (Ω + ω) (3eq − 2in − i) + 3iμ2(2ieq + 2n + 1)
)

+2r2+
(
μ2 (Ω + 3ω) − 4ω2 (Ω + ω)

)}

− 2r−
{
ir+
(
−2(2n + 1)ω2 + μ2(ieq + 4n + 2)

)
+ ie(2n + 1)qω +

(
l (l + 1) + 2n2 + 2n + 1

)
Ω

+μ2r2+ (Ω + ω)
}

+ iμ2(2n + 1)r2−
]
, (20)

γn =
[
i
{
eqω − 1

2

(
Ω2 + ω2

)
(r− + r+)

}
Ω

+ ieq + n − iω(r− + r+)

]

×
[
n − i

{−2 (r+ − r−)
(
eqω − 1

2 (r− + r+)
(
Ω2 + ω2

))+ Ω (r− + r+) (ω (r− + r+) − 2eq) + ωΩ (r− − r+)2}
2Ω (r+ − r−)

]
.

(21)

The convergence of the series (16) requires the recursion
coefficients to satisfy an infinite continued fraction relation

0 = β0 − α0γ1

β1−
α1γ2

β2− · · · αnγn+1

βn+1− · · · (22)

The solution to this infinite continued fraction equation gives
the QNM frequencies. The continued fraction relation (22)
can be inverted any number of times. Numerically, the nth

QNM frequency is defined to be the most stable root of the
nth inversion of the continued fraction relation,

βn − αn−1γn

βn−1−
αn−2γn−1

βn−2− · · · α0γ1

β0

= αnγn+1

βn+1−
αn+1γn+2

βn+2− · · · , (n = 1, 2, 3, 4 . . .) . (23)

In practice the infinite continued fractions in Eqs. (22, 23) are
truncated at some large truncation index, N . Nollert [28] has
shown that the “error” due to truncation can be minimised
and the convergence of the method can be improved by a
wise choice of the “remaining” part of the infinite continued
fraction , RN = − aN+1

aN
, which in turn satisfies the recurrence

equation,

RN = γN+1

βN+1 − αN+1RN+1
. (24)

Assuming that RN can be expanded in a power series of
N−1/2,

RN =
∞∑
k=0

Ck N−k/2, (25)

we obtain the first three coefficients Ck as,

C0 = −1, C1 =
√

2i (r− − r+)
(
ω2 − μ2

)1/2 and

C2 = − i
(
eqω−μ2M

)
√

ω2−μ2
+ 2ir+

√
ω2 − μ2 + 3

4 .

3.3 Numerical results

We first study the fundamental QNMs due to uncharged mas-
sive scalar field then we add electric charge to the perturbing
field and study the effect of the scalar hair on the QNMs.
For the sake of numerical simplicity we scale the mass of the
black hole to unity.

3.3.1 Uncharged massive scalar field

For an uncharged scalar field (q = 0) in the shRN back-
ground we assume, without any loss of generality, the con-
stant electric charge of the black hole to be zero,(e = 0).
The function W appearing in Eq. (13) can now be written as
W (ω, r) = ω2 − V (r) with

V (r) = f (r)

(
−2s

r4 + 2M

r3 + (l + 1)l

r2 + μ2
)

. (26)

The potential of the of the shRN black hole for different
values of the scalar charge, field mass and multipole index
are shown in Fig. 1.
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Fig. 1 a Shows the variation of V (r) with r for l = 1 and μ = 0.1 for
different values of s as indicated. b and c Shows the variation of V (r)
with r for s = −0.5, μ = 0.1 and for s = −0.5, l = 1, respectively.

Each curve in b corresponds to a particular value of l and each curve in
c corresponds to a particular value of μ as indicated
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Fig. 2 a and b, respectively, show the real and imaginary parts of the
fundamental (scalar) QN frequency as a function of s for l = 1 with
each curve corresponding to a particular value of μ as indicated. c and d,
respectively, show the real and imaginary parts of fundamental (scalar)

QN frequency as a function of μ for l = 1 with each curve corre-
sponding to a particular value of s as indicated. The curve with s = 0.1
corresponds to an RN black hole with e 
 0.316, while the curve with
s = 0 corresponds to a Schwarzschild black hole

In Fig. 2a, b, we show the behaviour of the real and imag-
inary parts of the fundamental QN frequency with the scalar
charge for a particular multipole index (l = 1) and differ-
ent field masses. We observe that for s < 0, the magni-

tude of both the real and imaginary parts of the QN fre-
quency decrease with the absolute value of the scalar charge.
This implies that the real oscillation frequency as well as
the damping rate decrease with increasing magnitude of the
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Fig. 3 a Shows the variation of the imaginary part of the fundamental
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indicated. b Shows the imaginary part of the fundamental (scalar) QN
frequency as a function of l with s = −0.5 for different values of μ as
indicated
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Fig. 4 a and b Show the quality factor as a function of s with l = 1 for different values of μ and with μ = 0.1 for different values of l, respectively

negative scalar charge. For s > 0, the spacetime (2) effec-
tively behaves as an RN black hole of unit mass and electric
charge, e = √

s, showing a distinct peak in the magnitude
of the imaginary part of the fundamental quasinormal fre-
quency (see Refs. [29,30]). We also observe that for a par-
ticular value of the scalar charge, the real part of the QN
frequency increases with the field mass whereas the magni-
tude of the imaginary part decreases. This behaviour is man-
ifested more clearly in Fig. 2c, d, where we observe that for
sufficiently large field masses, the imaginary part of the QN
frequency becomes vanishingly small. This results in long
lived, purely real modes in the quasinormal spectrum, called
quasi-resonance modes [31]. We also note that as the scalar
charge changes from positive to negative, quasi-resonance
occurs at lower field masses with smaller real frequencies.

Figure 3a shows a compact view of the behaviour of the
real and imaginary parts of the QN frequency with the scalar
charge for different values of the multipole number and field

mass. We note that, as the multipole number increases the
real part of the fundamental QN frequency increases and so
does the imaginary part, but only for higher field masses. This
behaviour of the imaginary part of the QN frequency can be
seen more clearly in Fig. 3b where we note that for lower
field masses, the damping rate decreases with the multipole
index whereas for higher field masses, it increases with the
multipole index. For large values of the multipole number,
the damping rate is almost insensitive to the field mass.

Following Ref. [32] we define the Quality Factor as
Q.F. ∼ | ωRe

ωIm
|. In Fig. 4a, we observe that for a given multi-

pole index and for large positive values of the scalar charge
the quality factor decreases sharply, however for smaller val-
ues of the scalar charge it decreases very gradually. For mass-
less field, the gradual decrease of the quality factor continues
to persist for negative values of the scalar charge as well.
However, beyond a certain value of the field mass μ, it tends
to increase for high negative values of s, the plot correspond-
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Fig. 5 a and b, respectively, show the real and imaginary parts of the
fundamental (scalar) QN frequency as a function of e for l = 1, μ = 0
and q = 0.2 with each curve corresponding to a particular value of s as
indicated. c and d, respectively, show the real and imaginary parts of the
fundamental (scalar) QN frequency as a function of e for l = 1, μ = 0
and s = − 0.5 with each curve corresponding to a particular value of

q as indicated. e and f, respectively, show the real and imaginary parts
of the fundamental (scalar) QN frequency as a function of s for l = 1,
μ = 0 and e = 0.5 wih each curve corresponding to a particular value
of eq as indicated. The vertical line denotes the value of s (= − 0.25)
below which the spacetime behaves as mutated RN

ing to μ = 0.2 in Fig. 4a reveals this feature. The quality
factor has higher values for higher multipole indices (see
Fig. 4b). The quality factor is a measure of the product of
the frequency and the ring down time of a black hole radi-
ation, and is an important tool to figure out the black hole
parameters [33].

3.3.2 Charged scalar field

The presence of the scalar hair changes the frequency and
damping rate of the QN spectrum of charged scalar fields as
well. In Fig. 5a, b, we observe that compared to the RN black
hole, for fixed non-zero values of e and q, the magnitude of
both the real and imaginary parts of the fundamental QN
frequency are higher for positive values of the scalar charge
and lower for negative values.

Konoplya [29] observed that for an RN black hole, the
imaginary part of the QN frequency, for any given value of
the field charge, approaches that for the uncharged field as the

extremal limit is approached. Apart from a similar observa-
tion in the presence of a scalar hair (see Fig. 5c, d) as well, we
note from Fig. 5f that such convergence of the imaginary part
of the fundamental QN frequency occurs for any given value
of the black hole electric charge, as the maximal value of
the scalar charge is approached. This maximal value is deter-
mined by the extremality condition (8). We further observe
that, for s > −e2, the magnitude of the imaginary part of the
fundamental QN frequency shows a distinct peak whereas
for s < −e2, it decreases monotonically with the magnitude
of s. The corresponding behaviour of the real part of the QN
frequency with the scalar charge is shown in Fig. 5e.

The symmetry of the QNMs with respect to the transfor-
mation (eq → −eq, ω → −ω∗) is depicted in Fig. 6. Fig-
ure 6a also highlights the existence of a critical value of |eq|
at which the real part of the QN frequency vanishes. How-
ever, such a behaviour of the QN frequency is not new and has
been previously observed for the RN black hole for charged
scalar and Dirac fields (see Refs. [34,35]). We note in par-
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Fig. 6 a and b, respectively, show the real and imaginary parts of the
fundamental (scalar) QN frequency as a function of eq for l = 1, μ = 0
and e = 0.5. Each curve in each panel corresponds to a particular value

of s as indicated. The dashed lines represent the symmetric curves due
to the simultaneous transformation eq → −eq and ω → −ω∗

ticular, that the critical value of |eq| is almost unaffected by
the presence of the scalar hair and does not change with the
black hole electric charge. For an RN black hole with unit
multipole index, the critical value is |eq| ≈ 1.3.

4 Charged Dirac field around a charged black hole with
scalar hair

The dynamics of a massless charged Dirac field propagating
in the shRN spacetime is given by the Dirac equation,

γ μDμΨ = 0, (27)

where Ψ is the Dirac four-spinor, γ μ are the coordinate
dependent Dirac four-matrices and Dμ is the spinor covariant
derivative, defined by,

Dμ = ∂μ − Γμ − iq Aμ. (28)

Here q is the charge of the Dirac field and Γμ are the spinor
connection matrices. Following Refs. [36,37] we decompose
the Dirac four-spinor as

Ψ = 1√
r
√

Δ

⎛
⎜⎜⎝

−Q(r)S1(θ)

−P(r)S2(θ)

P(r)S1(θ)

Q(r)S2(θ)

⎞
⎟⎟⎠ ei(mφ−ωt) (29)

and use the canonical orthonormal (symmetric) tetrad, pro-
posed by Carter [38], to yield two pairs of coupled first order
differential equations,

√
Δ

(
d

dr
− i K

Δ

)
P = λQ, (30)

√
Δ

(
d

dr
+ i K

Δ

)
Q = λP, (31)

and(
d

dθ
+ 1

2
cot θ − m csc θ

)
S1 = λS2, (32)

(
d

dθ
+ 1

2
cot θ + m csc θ

)
S2 = λS1, (33)

where K = ωr2 − eqr , − j ≤ m ≤ j and λ = j + 1/2
(with j = 1/2, 3/2 . . .) is the separation constant. The radial
Eqs. (30, 31) can then be combined to yield,

√
Δ

d

dr

(√
Δ
dP

dr

)

+
(
K 2 + i(r − M)K

Δ
− 2iωr + ieq − λ2

)
P = 0.

(34)

If we define a new radial function, ξ = Δ−1/4r P , then
Eq. (34) can be written in a Schrödinger like form in terms
of the tortoise coordinate as

d2ξ

dr2∗
+ W̃ (ω, r)ξ = 0, (35)

where

W̃ (ω, r) = Δ

r4

[(
K + i

2 (r − M)
)2

Δ
− 2iωr + ieq

− λ2 − 2M

r
+ 2(e2 + s)

r2

]
. (36)

123



Eur. Phys. J. C (2018) 78 :594 Page 9 of 12 594

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

-1.5 -1.0 -0.5 0.0 0.5

j=1/2

e=0.5

(a)

R
e(

ω
)

s

eq= 0.1
eq= 0.0
eq=-0.1

0.084
0.086
0.088
0.090
0.092
0.094
0.096
0.098
0.100
0.102
0.104

-1.5 -1.0 -0.5 0.0 0.5

j=1/2e=0.5 (b)

-Im
( ω

)
s

eq= 0.1
eq= 0.0
eq=-0.1

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

-1.5 -1.0 -0.5 0.0 0.5

j=1/2

e=0.5

(c)

Q
.F

.

s

eq= 0.1
eq= 0.0
eq=-0.1

Fig. 7 a–c, respectively, show the real and imaginary parts of the fun-
damental (Dirac) QN frequency and the quality factor as a function of
s for j = 1/2 and e = 0.5. Each curve in each panel corresponds to a

particular value of eq as indicated. The curve for eq = 0 represents the
perturbation by an uncharged Dirac field. The vertical line denotes the
value of s (=-0.25) below which the spacetime behaves as mutated RN

In the asymptotic limits of the tortoise coordinate Eq. (36) can
be solved analytically with the QNM boundary conditions
yielding

ξ ≈

⎧⎨
⎩
e

1
4

(r+−r−)

r2+
r∗−i

(
ω− eq

r+
)
r∗

as r∗ → −∞
r

1
2 −ieq
∗ eiωr∗ as r∗ → ∞.

(37)

Equation (34), similar to Eq. (11), also has two regular singu-
larities at r+ and r− and an irregular singularity as r → ∞.
So proceeding as before, we introduce an ansatz, consistent
with the boundary conditions (37),

P = eiωr (r − r−)ρ̃
∞∑
n=0

bnu
n+δ̃ , (38)

where u = r−r+
r−r− , ρ̃ = −ieq + iω (r+ + r−) and

δ̃ = 1
2 − ir2+

(
ω− eq

r+
)

r+−r− . Plugging (38) back into Eq. (34) we
again arrive at the three term recurrence relations,

α̃0b1 + β̃0b0 = 0, (39)

α̃nbn+1 + β̃nbn + γ̃nbn−1 = 0, (40)

where

α̃n = (n + 1)

[
1

2
(2n + 3) + 2ir+(eq − r+ω)

r+ − r−

]
, (41)

β̃n = − r+
r+ − r−

[
− 4e2q2 − 4ir+ω(3ieq + 2n + 1)

+6ienq + 3ieq + λ2 + 2n2 + 2n − 8r2+ω2 + 1

2

]

+ r−
[
2n(ieq + n + 1) + ieq + λ2 + 1

2

]
r+ − r−

− 2i(2n + 1)r−r+ω

r+ − r−
, (42)

γ̃n = −n + 2i(eq − ω(r− + r+))

2(r+ − r−)
[(2n − 1)r−

+ r+(−4ieq − 2n + 4ir+ω + 1)]. (43)

The convergence of the series (38) demands the recurrence
coefficients to satisfy an infinite continued fraction relation
similar to Eqs. (22, 23).
Applying Nollert’s improvement, we now get the first three
coefficients of the series (25) as,
C0 = −1,C1 = √

2iω (r− − r+) andC2 = 5
4 −ieq+2iωr+.

4.1 Numerical results

The behaviour of the real and imaginary parts of the fun-
damental QN frequency with the scalar charge is shown in
Fig. 7a, b. As before, we observe that for a fixed value of the
black hole electric charge, the magnitude of the imaginary
part of the QN frequency for a given value of the field charge
increases as the scalar charge changes from negative to posi-
tive and ultimately approaches the neutral one in the extremal
limit. Thus, in the extremal limit the damping rate is inde-
pendent of s. Here also we observe a peak in the magnitude
of the imaginary part of the fundamental QN frequency for
s > −e2 whereas for s < −e2, it decreases monotonically
with the magnitude of the scalar charge. The real QN fre-
quency on the other hand continues to grow with the scalar
charge. Away from the extremal value of the scalar charge
this causes the quality factor to grow steadily (see Fig. 7c),
however as the extremal value of the scalar charge is reached
the growth of the quality factor becomes quite rapid.

Similar to the scalar case, we observe in Fig. 8 that the QN
frequency is symmetric with respect to the transformation
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Fig. 8 a and b, respectively, show the real and imaginary parts of the
fundamental (Dirac) QN frequency as a function of eq for j = 1/2 and
e = 0.5. Each curve in each panel corresponds to a particular value of

s as indicated. The dashed lines represent the symmetric curves due to
the simultaneous transformation eq → −eq and ω → −ω∗

(eq → −eq, ω → −ω∗) and note that the critical value of
electromagnetic interaction (|eq| = 0.7) at which the real
part of the QN frequency vanishes, is almost unaffected by
the presence of the scalar hair.

5 Summary and discussion

In the present work we discussed the QN spectrum of mass-
less and massive uncharged as well as charged scalar fields
and massless charged Dirac fields in the vicinity of a charged
spherically symmetric black hole with a scalar hair dubbed
as the “shRN” black hole. We mainly focussed on negative
values of the scalar charge with s < −e2, for which the met-
ric (2) represents a “mutated RN” spacetime mimicking the
Einstein-Rosen bridge.

Unlike the appearance of a distinct peak in the magnitude
of the imaginary part of the fundamental QN frequency of an
shRN black hole for scalar and Dirac fields with s > −e2,
the mutated RN spacetime (s < −e2) is characterised by
monotonically decreasing |Im(ω)| (see Figs. 2b, 5f, 7b). For
uncharged fields, the shRN black hole effectively behaves
as an RN black hole with effective electric charge, ee f f =√
e2 + s, provided s lies in M2 − e2 ≥ s > −e2.
For massive scalar field, the phenomenon of quasi-

resonance, characterised by vanishingly small |Im(ω)| is
observed. We also showed the behaviour of the quality fac-
tor with the scalar charge for both the scalar and Dirac fields.
As the extremal limit is approached either by increasing the
electric charge for a fixed s or vice-versa, we find that the
imaginary part of ω for neutral and charged scalar or Dirac
perturbations to be coincident.

In the presence of electric charge of the perturbing fields,
we observe the existence of a critical value of |eq|, above

which the real part of the QN frequency vanishes, for both the
scalar and Dirac fields. This value is completely unaffected
by the presence of scalar hair.

Following the method of Cho [39], we start with the
asymptotic form of the Dirac QN frequency and calculated
the area spectrum of the shRN black hole based on the pro-
posals of Kunstatter [40] and Maggiore [41]. We obtain the
area quantum as ΔA = 8π h̄. This being the same as that of
an RN black hole [42], we refrain from including a detailed
calculation of the same.

Very recently Saleh, Thomas and Kofane [43,44] dis-
cussed the QN spectrum of massless uncharged scalar
and Dirac fields in the vicinity of a “quantum-corrected”
Schwarzschild black hole [45] using 3rd order WKB approx-
imation. The metric used by them is effectively similar to that
of the mutated RN spacetime discussed in the present work.
The results obtained by us for the massless uncharged scalar
and Dirac fields in the shRN background (with s < −e2)
using the more accurate continued fraction method, is quali-
tatively similar to them. The present work is, however, much
more general as it includes charge for both the scalar and the
Dirac fields and mass for the scalar field.

The QN spectrum analysis was also carried out with the
3rd order WKB approximation which is generally believed
to be less accurate. We add a table in the “Appendix” compar-
ing the results for one example, namely that for an uncharged
massless scalar perturbation of the shRN black hole. The
WKB approximation is known to yield more and more accu-
rate results for higher and higher values of multipole (l). The
table contains the values given by the Leaver method and that
by the WKB approximation for the real and the imaginary
parts of the quasinormal mode frequencies for l = 1, 2, 3.
It is apparent from the table that the difference in the results
given by the two methods reduces for higher values of l.
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We point out that in the present work we have not observed
any QNM frequency with positive imaginary part, indicating
the stability of the shRN black hole under massive (and mass-
less) charged (and uncharged) scalar perturbations as well as
under massless charged (and uncharged) Dirac perturbations
for both s in [−e2, M2 − e2) and in the “mutated” regime,
s < −e2. This implies that the mutated RN spacetime is also
stable under all the above mentioned types of perturbation.

It has already been pointed out in Sect. 2 that the scalar

field in this case is a constant (ψ = ±
√

6
8πG

√
s

s+e2 ). From

Eq. (1), it is clear that the action can be transformed into
an Einstein–Maxwell system, with a different value for the
effective Newtonian constant of gravity Gef f = G

(1− 4πG
3 )ψ2 .

However, the spacetime is qualitatively different if s is neg-
ative, and |s| > e2. The resulting metric component is(

1 − 2M
r − e2

e f f

r2

)
as opposed to

(
1 − 2M

r + e2
e f f

r2

)
in the

standard RN spacetime. The distinctive features of this met-
ric has already been discussed at length.

Finally, we mention that the qualitative features for the
quasinormal modes for the charged or uncharged massive
scalar fields and also that for the charged Dirac field for a
mutated RN (shRN with s < −e2) background are qualita-
tively same as that for a usual RN black hole except for the
complete monotonic behaviour of the damping (imaginary
part of the QNM) in the case of the former as opposed to the
existence of a peak in the latter case, an RN black hole.
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Appendix

See Table 1.

Table 1 Fundamental QN frequencies of massless uncharged scalar
fields in the background of an shRN black hole of mass, M = 1 and
electric charge, e = 0 for different values of the multipole index and

scalar charge. For each value of s, the first line is obtained using the con-
tinued fraction method with 175 terms and the second line is obtained
using the 3rd order WKB approximation

l = 1 l = 2 l = 3

s Re(ω) Im(ω) Re(ω) Im(ω) Re(ω) Im(ω)

0.99 0.3762055912 − 0.0900896009 0.6237563062 − 0.0895373909 0.8720041949 − 0.0893846794

0.3742670229 − 0.0900696201 0.6232727045 − 0.0895182148 0.8718206816 − 0.0893779664

0.9 0.3637066222 − 0.0947427505 0.6009488609 − 0.0942904001 0.8393317935 − 0.0941634988

0.3618775351 − 0.0947062218 0.6004948731 − 0.0942713464 0.8391598515 − 0.0941570756

0.7 0.3408752613 − 0.0986496604 0.5624223918 − 0.0979828596 0.7852194051 − 0.0977944238

0.3393237655 − 0.0987271148 0.5620307364 − 0.0979828452 0.7850707716 − 0.0977934267

0.5 0.3235342925 − 0.0993515868 0.533818086 − 0.0985724807 0.7452888813 − 0.0983503413

0.3219858221 − 0.0995455106 0.5334311042 − 0.0985914448 0.7451428561 − 0.098354732

0.3 0.3096415907 − 0.0989749919 0.5110162987 − 0.0981311196 0.7135039562 − 0.0978893749

0.307999452 − 0.0992457629 0.5106143307 − 0.0981635738 0.7133535414 − 0.0978977124

0.1 0.2980681332 − 0.0981534347 0.4920504262 − 0.0972678241 0.6870780311 − 0.0970134153

0.2963068621 − 0.0984754655 0.491628113 − 0.097310014 0.6869212869 − 0.0970246966

0 0.2929361333 − 0.0976599889 0.4836438722 − 0.096758776 0.6753662325 − 0.0964996277

0.2911141164 − 0.0980013631 0.4832110304 − 0.0968048549 0.675206178 − 0.0965121143

−0.1 0.2881615316 − 0.0971353427 0.4758233999 − 0.0962210405 0.6644712038 − 0.0959579129

0.2862799244 − 0.0974930215 0.4753801758 − 0.0962705126 0.6643078766 − 0.0959714677

−0.3 0.2795122233 − 0.0960340955 0.4616560916 − 0.0950993038 0.6447339818 − 0.0948299372

0.2775174544 − 0.0964175448 0.4611930519 − 0.0951543929 0.6445644025 − 0.0948453003

−0.5 0.2718459161 − 0.0949062659 0.4490967969 − 0.0939565158 0.6272360885 − 0.0936825807

0.2697477256 − 0.0953089565 0.4486155668 − 0.0940160429 0.6270607761 − 0.093699416

0.2661727046 − 0.0947528304 0.442827786 − 0.0934480225 0.6190057789 − 0.093128333
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Table 1 continued

l = 1 l = 2 l = 3

s Re(ω) Im(ω) Re(ω) Im(ω) Re(ω) Im(ω)

−0.7 0.2649696261 − 0.0937815642 0.4378289057 − 0.0928207752 0.6115362336 − 0.0925434544

0.2627780753 − 0.0941990015 0.4373312051 − 0.092883877 0.6113557438 − 0.0925615095

−0.9 0.2587422561 − 0.0926759376 0.4276214399 − 0.0917069907 0.5973126872 − 0.0914271526

0.2564668676 − 0.0931049246 0.4271089136 − 0.0917730128 0.597127553 − 0.0914462318

−1 0.2558376364 − 0.0921331191 0.4228593181 − 0.0911609447 0.5906764879 − 0.0908801044

0.2535236413 − 0.0925669597 0.4223399545 − 0.0912282303 0.5904892182 − 0.0908996369

−1.1 0.2530574278 − 0.0915978709 0.4183004849 − 0.0906229436 0.5843232974 − 0.0903412442

0.2507068851 − 0.0920360624 0.4177746428 − 0.0906913813 0.5841340084 − 0.0903611949
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