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Abstract The effect of massive scalar perturbations on
neutral black string in de Rham–Gabadadze–Tolley (dRGT)
massive gravity is investigated through the study of the quasi-
normal modes (QNMs). Due to the similarity between the
equation of motion of the field in the black-string and black-
hole background, similar numerical and analytical tech-
niques can be used to explore the behaviour of the QNMs.
We use the asymptotic iteration method (AIM) and the WKB
method to numerically calculate the QNMs of scalar pertur-
bation in the black string background with positive cosmo-
logical constant. High-momentum behaviour of such QNMs
can be analytically approximated by the first-order WKB
method with excellent accuracy. For near-extremal black
string with event horizon very close to the cosmological
horizon, the Pöschl–Teller technique gives accurate analytic
formula for the QNMs. When massive-gravity-parameter γ

increases, we found that the scalar modes oscillate with
higher frequencies and decay faster. The QNMs of black
string in spacetime with negative cosmological constant are
explored in all range of possible γ using the spectral method.
We found the movement of the holographic sound poles to
collide and form diffusive poles as γ changes from positive
to negative values. We observe no evidence of instability of
neutral black string in both positive and negative cosmolog-
ical constant cases.

1 Introduction

A possibility of whether graviton can be massive has been
a question for a long time in physics community since the
birth of the theory of propagating massless graviton known as
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b e-mail: piyabut@gmail.com
c e-mail: l_tannukij@hotmail.com

the Einstein’s general relativity. There were many attempts
to generalize the Einstein’s theory to describe propagating
massive graviton. In 1939, Fierz and Pauli first successfully
constructed a linear theory of massive gravity [1] by adding
a suitable mass term parameterized by graviton mass to the
linearized version of general relativity. Though adding the
mass term seems to break the general covariance, it can be
recovered via the use of the so-called Stückelberg trick (see
[2] for a review on how to apply the trick to the massive grav-
ity model). However, thanks to the nonvanishing mass, the
linear theories of massive gravity suffer from the so-called
van Dam–Veltman–Zakharov discontinuity [3,4] which cor-
responds to the fact that predictions from the massive gravity
in the massless limit do not agree with the predictions from
the general relativity. Even though a hope for fixing such
discontinuity problems lies in a nonlinear regime of massive
gravity [5], generic nonlinear generalization from the Fierz–
Pauli linear massive gravity usually possesses the so-called
Boulware-Deser ghost mode in the theory [6]. Fortunately,
a special class of nonlinear theory of massive gravity has
been successfully found by de Rham, Gabadadze, and Tol-
ley, dubbed as dRGT massive gravity theory [7,8]. The dRGT
massive gravity has proved itself useful in cosmology since
its cosmological solution incorporates the graviton mass as
an effective cosmological constant [9,10], hence the accel-
erating expansion of the universe can be explained in this
context.

Four dimensional static spherically symmetric black holes
in dRGT massive gravity with and without U (1) charge are
constructed explicitly in [11]. The effective cosmological
constant emerges naturally as a result of graviton mass term.
Therefore, these black holes can be considered as generalized
Schwarzschild/Reissner–Nordström black holes with posi-
tive and negative cosmological constant. The temperature,
entropy and thermodynamic stability of these dRGT black
holes are also explored [11]. Stability of the Schwarzschild-
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de Sitter black hole in dRGT massive gravity is studied in
Ref. [12]. Stability of black holes in bi-gravity extension of
the dRGT model is studied for certain specific conditions in
Refs. [13,14]. Beyond spherical symmetry, a cylindrically
symmetric solution with an event horizon is possible even
in standard general relativity. The cylindrical black hole (or
black string) is proposed by Lemos with the presence of nega-
tive cosmological constant [15]. In higher dimensions, black
branes and strings can exist and their stability can be explored
using the QNMs [16]. As a generalization of Lemos’s black
string, static solution with cylindrical symmetry is found in
dRGT massive gravity [17]. Unlike the black string in gen-
eral relativity, there exists dRGT black string solution even
with a positive cosmological constant effectively contributed
by the graviton mass.

On the other hand, linear stability of black hole closely
relates to a study of field perturbation exterior to the black
hole’s horizon. The evolution of field perturbation is dic-
tated by gravitational interaction between black hole and the
test-field itself. The existence of event horizon requires that
the field mode near the black hole must satisfy with ingo-
ing wave condition. Thus, the perturbation modes are not
normal modes but rather quasinormal modes (QNMs). The
quasinormal spectrum will be complex frequencies that can
be uniquely determined by the black hole’s mass, charge and
angular momentum. For instance, the QNMs of neutral and
charged black holes in dRGT massive gravity are computed
[18]. In our previous work, we investigate a rich structure
of dRGT massive gravity by calculating the effect of mas-
sive charged scalar perturbation on charged dRGT black hole
[19]. While stable modes are discovered in some parameter
space, we also find that some dRGT black holes suffer from
superradiant instability [19]. Interestingly, the QNMs can be
categorized into three families, (a) the near event horizon
mode, (b) the near cosmic horizon mode, (c) all-region mode
[19]. Similar behaviours are found for the QNMs of black
string in the dRGT background, the near-horizon modes of
the event horizon and cosmic horizon for positive cosmologi-
cal constant case are purely diffusive (or negative imaginary)
but we will present more detailed analysis elsewhere. In this
article, we will focus on the all-region QNMs of the black
string. We refer interested readers to Refs. [20–22] for very
nice reviews on black hole QNMs.

Black hole, black brane and black string in asymptoti-
cally anti de-Sitter (AdS) space with negative cosmological
constant are also interesting from the holographic duality
viewpoint. They are dual to the thermal field theory on the
boundary whose temperature is identified with the Hawking
temperature of the spacetime. Existence of horizon implies
finite temperature of the dual field theory and simultane-
ously implies that any fluctuations in such background would
inevitably produce disssipations into the horizon. Such dis-
sipations are encoded in the QNMs of the fluctuations of the

spacetime. Due to the holographic duality, these QNMs are
exactly the poles of the retarded thermal Green function of
the dual field theory. They represent the relaxation time of
the perturbed thermal field system in the dual picture to reach
the thermal equilibrium again. Massive graviton in the bulk
induces the breaking of diffeomorphism-invariance on the
boundary and originates the momentum dissipation in the
dual hydrodynamics [23,24].

For cylindrically symmetric set-up, toroidal, cylindrical
and planar black holes in general relativity are stable against
small perturbation in all channels, scalar, vector and tensor
[25]. However, the stability of black string in the dRGT mas-
sive gravity has never been addressed. Therefore in this paper,
we attempt to investigate this problem systematically. In
Sect. 2, the basic set-up for constructing neutral black string
in dRGT massive gravity is introduced. Then, we explore the
effects of linear term (γ ) on the horizon structure of black
strings in both positive and negative cosmological constant
scenario. In Sect. 3, we examine massive scalar perturbation
on the dRGT black string background. The Klein–Gordon
equation on curve spacetime and boundary conditions are
discussed. It is possible to obtain semi-analytical formula for
the quasinormal frequency in a small-universe near-extremal
limit, this is explored in Sect. 4. The QNMs of dRGT black
string with positive cosmological constant are calculated and
discussed in Sect. 5. High-momentum behaviour of QNMs
with positive cosmological constant is numerically studied in
Sect. 5.1 and analytically approximated using the first-order
WKB method in Sect. 5.2. In Sect. 6, we present the QNMs
of dRGT black string with negative cosmological constant.
Finally we summarize our results in Sect. 7.

2 Formalism

We shall consider neutral black string in dRGT massive grav-
ity couples with massive scalar field. This is described by the
action [8] (with c = 8πG = 1),

S = 1

2

∫
d4x

√−g
[
R + m2

gU(g, φa)

−gμν∇μ�∇ν� − m2
s�

2
]
, (1)

where mg and ms can be considered as the graviton mass
and the scalar field mass. The ghost-free massive graviton
self-interacting potential is defined by,

U(g, φa) = U2 + α3U3 + α4U4 (2)

where,

α3 = α − 1

3
, (3)
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α4 = β

4
+ 1 − α

12
. (4)

U2 = [K]2 − [K2], (5)

U3 = [K]3 − 3[K][K2] + 2[K3], (6)

U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4].
(7)

α and β are free parameters. Kμ
ν = δ

μ
ν −√

gμσ fab∂σ φa∂νφb.
[K] = Kμ

μ and [Kn] = (Kn)
μ
μ. We will work in unitary

gauge for which the four Stückelberg fields take the form
φa = xμδaμ. The fiducial metric fab is chosen to be,

fab = diag(0, 0, α2
gh

2
0, h

2
0), (8)

for the coordinates (t, r, z, ϕ) where αg and h0 are arbitrary
constants.

2.1 Field equations

1. Einstein’s equations

Rμν − 1

2
Rgμν = −m2

g Xμν + T�
μν (9)

where the full expression for Xμν can be found in [11,17].
The energy-momentum tensor is given by,

T�
μν = ∇μ�∇ν� − 1

2
gμν

(
gσρ∇σ �∇ρ� + m2

s�
2
)

(10)

2. Scalar-field equation

∇a∇a� − m2
s� = 0. (11)

2.2 Static solutions

The Einstein field equation (9) admits cylindrically symmet-
ric solution or “dRGT black string” in the absence of scalar
field, i.e., T�

μν = 0. The dRGT black string solution is defined
as [17],

ds2 = − f (r)dt2 + f −1dr2 + r2α2
gdz

2 + r2dϕ2, (12)

where,

f (r) = α2
mr

2 − 4M

αgr
+ γ r + ε, (13)

α2
m = m2

g(1 + α + β) ≡ −�

3
, (14)

γ = −α2
mh0(1 + 2α + 3β)

1 + α + β
, (15)

ε = α2
mh

2
0(α + 3β)

1 + α + β
. (16)

M is mass per unit length in z direction of black string. One
can clearly see that the graviton mass mg naturally generates
the effect of cosmological constant. With these definitions,
� < 0 case associates with α2

m > 0 while � > 0 is obtained
by letting α2

m < 0. This is the unique character of black
string in dRGT massive gravity. Since there is no de-Sitter
(dS) analogue of black string in standard four dimensional
general relativity [15]. The presence of linear term γ and
constant term ε makes black string with positive � possible.
As will be shown later, these two branches of black string
solutions have different horizon and asymptotic structures.
Therefore, to determine their QNMs, we need to consider
each branch of solution separately. Note that, in the limit,
γ = 0, ε = 0, αg = αm , this metric (12) reduces to four
dimensional black string solution in general relativity found
by Lemos [15].

We shall now investigate the root structure of dRGT black
string with negative α2

m . Generally speaking, the metric func-
tion (13) has three zeros. With a proper parameter choice, it is
possible that all three roots will be real number. More specif-
ically, for α2

m < 0 there are two positive real roots and one
negative real root. These two positive roots will be treated as
black string’s event horizon rh and cosmological horizon rc,
where rh < rc. As an example, the roots structure of met-
ric (13) is displayed in Fig. 1. In this plot, the black string
mass M , cosmological constant α2

m , αg and ε are fixed to be
M = 1, α2

m = − 0.01, αg = 1, ε = 0 respectively. Each
curve represents different values of γ . These black strings
shown in this figure have two positive roots. The inner root
is black string’s event horizon and the outer root is cosmic
horizon. As γ increases, the cosmic horizon increases, but the
event horizon slightly decreases. In our previous work [19],
we showed that the charged dRGT black hole has different
properties ranging from naked singularity to a black hole and
extremal black hole. However, this is not the case for neutral
black string with positive �. Without the charge term, the
metric (13) cannot develop a naked singularity or extremal
scenario (for charged black string [17], naked singularity can
exist just like in the black hole case). Note that throughout
this work, ε will be fixed to zero [19]. However, this setting
prevents us from having black string solution with negative
and vanishing γ .

An example of black string solution with α2
m > 0 (� < 0)

can be found in Fig. 2. In this plot, we set the black string
mass, cosmological constant and other constant to be M =
1, α2

m = 4, αg = 1, ε = 0 and consider the effect of γ on the
spacetime. As can be seen from the plot, the horizon structure
dramatically changes from the positive � case. There is only
one positive real root, i.e., black string’s event horizon, for
vanishing ε [26]. Unlike the positive � case, the black string
exists with all possible value of γ (negative, zero and posi-
tive). We can see that the black string becomes large when γ

is more negative. It is clear from the metric (13) that, the black
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Fig. 1 The behaviour of metric function f (r) plotted against radial
coordinate r for varying γ with α2

m = − 0.01, M = 1, αg = 1, ε = 0
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Fig. 2 The behaviour of metric function f (r) plotted against radial
coordinate r with differing γ . For demonstration, we fix α2

m = 4, M =
1, αg = 1, ε = 0

string will always have at least one horizon. This is because
the positive α2

m term will be dominant at large r . Without
charges, one should not expect naked singularity scenario in
this case as well.

3 Scalar perturbations on dRGT black string

Now we shall consider a massive scalar field as a test field on
dRGT black string background (12). This can be described
by the Klein–Gordon equation (11). We make the following
ansatz for the scalar field �,

� = φ(r)

r
e−iωt+ikz+iλϕ, (17)

where ω, k, λ are the frequency, the wave number and angu-
lar quantum number of the scalar perturbation. Unlike spher-
ically symmetric set-up where we normally obtain (decou-
pled) radial and angular part of the Klein–Gordon equation,
in this case, however, we solely get a second order ordinary
differential equation,

f

r
φ′′ + f ′

r
φ′ +

(
ω2

r f
− m2

s

r
− f ′

r2 − λ2

r3 − k2

α2
gr

3

)
φ = 0,

(18)

where f ′ = d f/dr . This Eq. (18) can be recast into the
Schrödinger-like equation,

d2φ

dr2∗
+

[
ω2 − V (r)

]
φ = 0, (19)

where the effective potential is given by,

V (r) = f

(
m2

s + λ2

r2 + k2

α2
gr

2 + f ′

r

)
. (20)

We have introduced the tortoise coordinate r∗,

dr∗
dr

= 1

f
, (21)

with −∞ < r∗ < 0, where r∗ → −∞ near the event horizon
and r∗ → 0 at infinity if α2

m > 0. For α2
m < 0, r∗ → −∞,∞

as r approaches black string’s event horizon rh and cosmo-
logical horizon rc, respectively. Note that, in the massless
limit ms → 0, Eq. (19) resembles those found in [25]. In
Fig. 3, we display the effective potentials for positive and
negative α2

m . In both cases, the effective potentials increase
with γ . For α2

m < 0, the potential vanishes at the event hori-
zon and cosmic horizon. In contrast, the potential increases
with r∗ and diverges as r∗ → 0 when α2

m > 0.
The main task of this paper is to solve the radial equa-

tion (19) with appropriate boundary conditions. If α2
m < 0,

effective potential vanishes at both ends (see Fig. 3), i.e., the
event and cosmic horizon. At these points, two independent
solutions are φ ∼ e±iωr∗ . With the presence of horizons, only
ingoing modes are allowed at the event horizon φrh ∼ e−iωr∗

and outgoing modes at the cosmic horizon φrc ∼ eiωr∗ . For
α2
m > 0 case, the condition at the event horizon is still the

same. However, since the effective potential diverges as r
approaches infinity, we require the wave function to van-
ish at infinity. To satisfy these quasinormal boundary con-
ditions, the associated quasinormal frequencies ω will be
discrete complex numbers. With the sign convention used in
this work, scalar perturbations will be stable if Im(ω) < 0
(decaying) and unstable if Im(ω) > 0 (growing).

Since each branches of solution has different boundary
condition, we shall apply two distinct numerical methods
for calculating the QNMs. For positive � branch, we imple-
ment the so-called asymptotic iteration method (AIM). This
method was firstly used to solve an eigenvalue problem [27].
An improve version of AIM was developed and applied to
compute the QNMs of asymptotically flat Schwarzschild and
Schwarzshild de-Sitter black holes [28]. Recently, the QNMs
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Fig. 3 The effective potential plotted against tortoise coordinate r∗ for M = 1, αg = 1, ε = 0 with varying γ . (Left) α2
m = −0.25, λ = k = ms = 0

(right) α2
m = 0.003, λ = 1, k = 0,ms = 0.03

of black holes in dRGT massive gravity [18,19] and Lif-
shitz gravity [31] are calculated using improved AIM tech-
nique. When � is negative, the spectral method (see Ref. [32]
and references therein) is used to numerically calculate the
QNMs. This method is recently used for computing the
QNMs of charged dRGT black hole in asymptotically AdS
space [19].

4 Near extremal dRGT black string: α2
m < 0

One can obtain an analytic formula for the quasinormal fre-
quency, if the effective potential in Eq. (19) can be writ-
ten in some well-known form. This method was suggested
by Ferrari and Mashhoon in 1984 [33]. It turns out that our
potential can be put into those exact forms by considering the
near extremal limit. By near extreme, we mean the spacetime
which the event horizon rh is very close to the cosmic horizon

rc, i.e.,
rc − rh

rc

 1 [34]. Therefore in this section, we shall

compute the QNMs of dRGT black strings with α2
m < 0 in

the near extremal limit.
In general, the metric function (13) has three distinct roots

at rh , rc and r0. They can be written in the following form

f (r) = α2
m

r
(r − r0)(r − rh)(r − rc). (22)

We define surface gravity associated to the event horizon

κh ≡ 1

2

d f

dr

∣∣∣∣
r=rh

,

= α2
m(rh − r0)(rh − rc)

2rh
. (23)

Three zeroes of f can be expressed in term of α2
m, γ, ε and

M as follow

r0 + rh + rc = − γ

α2
m

, (24)

r2
h + rhrc + r2

c + (rh + rc)
γ

α2
m

= − ε

α2
m

, (25)

rhrc (rh + rc) + γ

α2
m
rhrc = − 4M

αgα2
m

. (26)

In the near extremal limit, we shall consider the following
approximation

r0 ∼ −
[

2rh + γ

α2
m

]
, (27)

α2
m ∼ −

[
2γ

3rh
+ ε

3r2
h

]
, (28)

M ∼ αgrh
6

[
ε + γ rh

2

]
, (29)

κh ∼ − (rh − rc)

2r2
h

[
γ rh + ε

]
. (30)

Since r varies between rh and rc, thus r − r0 ∼ rh − r0.
Therefore we can write down the metric function in the near
extremal limit as

f ∼ α2
m

rh
(rh − r0)(r − rh)(r − rc),

∼ − (r − rh)(r − rc)

r2
h

[
γ rh + ε

]
. (31)

With the definition of the tortoise coordinate (21), this allows
us to express the radial coordinate r as a function of r∗. Now
it reads,
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r = rce2κhr∗ + rh
1 + e2κhr∗ . (32)

Thus the metric function (31) can be expressed in the tortoise
coordinate as

f ∼ (rhκh)2

(γ rh + ε) cosh2(κhr∗)
. (33)

By the virtue of these approximations, the Klein-Gordon
equation (19) in the near extremal limit becomes

d2φ

dr2∗
+

[
ω2 − V0

cosh2(κhr∗)

]
φ = 0, (34)

where

V0 = κ2
h

(γ rh + ε)

[
m2

s r
2
h + λ2 + k2

α2
g

]
. (35)

This potential is the well-known Pöschl–Teller potential [37].
The bound states of this type of potential were studied exten-
sively in [37]. The Pöschl–Teller technique was used to inves-
tigate the QNMs of near extremal Schwarzschild-dS [34,38],
d dimensional Reissner-Nordström-dS black hole [39] and
black hole in massive gravity [40].

When one applies the boundary conditions of QNMs to
(34), the associated quasinormal frequency ωn is given by
[33,34]

ωn = κh

[√
V0

κ2
h

− 1

4
−

(
n + 1

2

)
i

]
, n = 0, 1, 2 . . . (36)

It is clear that the quasinormal frequency is quantized by an
integer n. The most fundamental mode is characterized by
n = 0, i.e., the most slowly decaying modes. As an example,
the first three lowest modes of the quasinormal frequencies
are shown in Table 1. In this table, we fix the mass and other
parameters to be M = 1, αg = 1, ε = 0, λ = 0, k = 0.
At each mode n, the ωn is compared between the massless
and massive scalar case. From the formula, it should not be
surprised that the quasinormal frequencies are purely imag-
inary for the massless scalar case. It is clear from Table 1
that increasing mode number n affects only imaginary part
of the frequencies. Comparing to the black hole case studied
in Refs. [35,36], the behaviour of black string QNMs is quite
different. As the scalar mass increases, the imaginary part of
the ω is not decreasing to the quasi-resonant modes as found
in the black holes.

We remark that, the formula (36) is reliable only when the
black string’s event horizon is very close to the cosmological

horizon,
rc − rh

rc

 1. In the appropriate limit [41], Eq. (36)

resembles those found in [34,38].

5 QNMs of dRGT black strings with positive �:
improved AIM

In this section, we compute the QNMs of black strings in
dRGT massive gravity with � > 0 by using improved
asymptotic iteration method [28]. To do this, we shall intro-
duce the radial coordinate transformation r = 1/x . The radial
wave equation (19) becomes,

φ′′ + A′

A
φ′ +

[
ω2

A2 − 1

A

(
λ2 + k2

α2
g

+ m2
s

x2 − x f ′
)]

φ = 0,

(37)

where,

A(x) = α2
m − 4Mx3

αg
+ γ x + εx2. (38)

Throughout this section, we shall denote derivative with
respect to radial coordinate x by ′. Next we define the fol-
lowing [18,28,42],

eiωr∗ = (x − x1)
iω

2κ1 (x − x2)
iω

2κ2 (x − x3)
iω

2κ3 , (39)

where xi is real root of f (r). The surface gravity associated

with each horizon is given by κi = 1

2

d f

dr

∣∣∣
r=ri

. In this section,

the black string event horizon and cosmological horizon are
defined by x1 and x2 whereas the negative real root is x3. To
deal with the singularity at the cosmic horizon, we make the
following substitution,

φ = eiωr∗u(x). (40)

The wave equation (37) now reads,

Au′′ + (
A′ − 2iω

)
u′ −

[
λ2 + k2

α2
g

+ 4Mx

αg
+ γ

x

+
(
2α2

m + m2
s

)
x2

]
u = 0. (41)

At the black string’s horizon, the divergent behaviour is
scaled out by using,

u(x) = (x − x1)
− iω

κ1 χ(x). (42)
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Table 1 The QNMs of dRGT black strings with α2
m < 0 in the near extremal limit from formula (36). For demonstration purpose, we set

M = 1, αg = 1, ε = 0, λ = 0, k = 0

{α2
m , γ } ω0 ω1 ω2

ms = 0 ms = 0.5 ms = 0 ms = 0.5 ms = 0 ms = 0.5

{− 0.09, 0.6025} 0 0.003165 − 0.001253i − 0.002507i 0.003165 − 0.003760i − 0.005014i 0.003165 − 0.006267i

{− 0.25, 1.1906} 0 0.004947 − 0.003852i − 0.007704i 0.004947 − 0.011556i − 0.015408i 0.004947 − 0.019260i

{− 0.49, 1.8646} 0 0.000518 − 0.000863i − 0.001727i 0.000518 − 0.002590i − 0.003454i 0.000518 − 0.004317i

0.000 0.001 0.002 0.003 0.004 0.005 0.006
0.025

0.020

0.015

0.010

0.005

0.000

Re

Im
(  

)

α2
m 0.49, 1.8646

α2
m 0.09, 0.6025

α2
m 0.25, 1.1906

n

AIM

ms 0.5

Fig. 4 The comparison between the QNMs in the near extremal limit
obtained via formula (36) and numerical method of AIM

The final equation becomes,

χ ′′(x) = λ0(x, ω)χ ′(x) + s0(x, ω)χ(x), (43)

λ0 = iαgω

M (x − x1) (x1 − x2) (x1 − x3)
−

(
A′ − 2iω

)
A

, (44)

s0 = 1

A

[
λ2 + k2

α2
g

+ 4Mx

αg
+ 2α2

m + m2
s + γ x

x2

+ αgω
2

M (x − x1) (x1 − x2) (x1 − x3)

]

+ iαgω f ′

2M f (x − x1) (x1 − x2) (x1 − x3)

+ αgω
(
2iM (x − 2x1) (x1 − x2) (x1 − x3) + αgωx

)
4M2x (x − x1)

2 (x1 − x2)
2 (x1 − x3)

2 .

(45)

Equation (43) together with the coefficients (44), (45)
form a core behind an improved AIM algorithm. We choose
to omit the details of the numerical method used in this paper.
For interested readers, we refer to Refs [18,28] for more
details on AIM.

5.1 Results

The QNMs of the dRGT black strings with α2
m < 0 (� > 0)

are calculated using Mathematica notebook modified from

the one provided in Ref [43]. As a preliminary check, the
results from Table 1 (massive scalar case) are reproduced
by using an improved AIM. The first three lowest modes
are then compared between the analytic expression (36) and
AIM. The results are in a good agreement as displayed in
Fig. 4. Note that we shall focus only on the modes with lowest
imaginary parts for most situations.

Now we turn our attention to a non-extremal case. In
Table 2, we compute the QNMs for massive scalar pertur-
bations for various values of γ . At each fixed γ , the value
of angular quantum number λ is varied from 0 − 2. We
observe that as γ increases, the real part and imaginary part of
the quasinormal frequencies also increase (in magnitude for
Im(ω)). An increasing in Re(ω) corresponds to a more oscil-
lation of the scalar wave which means it has more energy.
From Im(ω), it turns out that the mode with high energy
decays faster than the low energy mode. This is because as γ

gets larger gravity becomes more attractive. Stronger gravity
implies that the scalar wave tends to decay faster. We also see
that, Re(ω) increases as angular quantum number increases
while Im(ω) slightly decreases (in magnitude). In the fourth
column, the quasinormal frequencies from the third-order
WKB approximation (see appendix of Ref. [19] for details,
see also a more accurate sixth-order WKB method in Ref.
[29] and the semi-analytic method in Ref. [30]) are shown.
The results show a good agreement between the two methods
(AIM and WKB).

The effect of α2
m on the QNMs is investigated in Table 3.

Let’s remark that as α2
m becomes more negative the difference

between black string’s event horizon x1 and cosmic horizon
x2 is smaller. When α2

m is larger (in magnitude), the real
part of ω is smaller for each fixed λ. However, the behaviour
of the imaginary part of ω is not trivial as α2

m increases.
In our chosen parameters, Im(ω) increases as α2

m changes
from − 0.16 to − 0.25 and then decreases as α2

m gets larger.
For fixed λ = 2, however, Im(ω) gets lower with increasing
α2
m . We also find that at each value of α2

m , Re(ω) increases
with λ whereas Im(ω) decreases marginally as happens in
Table 2 (except when α2

m = − 0.16). We find a close agree-
ment between the results from AIM and the WKB approxi-
mation.
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Table 2 The QNMs for massive scalar perturbations of a neutral black string for M = 1, αg = 1, ε = 0, α2
m = −0.25,ms = 0.5, k = 0

The QNMs calculated from AIM (50 iterations) Third order WKB

γ ω (λ = 0) ω (λ = 1) ω (λ = 2) ω (λ = 2)

1.2 0.069001 − 0.053417i 0.088038 − 0.053369i 0.129259 − 0.053230i 0.129240 − 0.053434i

1.4 0.382962 − 0.284234i 0.466561 − 0.279395i 0.653469 − 0.273342i 0.655922 − 0.275305i

1.6 0.619823 − 0.424720i 0.726152 − 0.415527i 0.974767 − 0.403780i 0.979613 − 0.403648i

1.8 0.850808 − 0.535069i 0.969931 − 0.524651i 1.259101 − 0.510741i 1.262457 − 0.506438i

2.0 1.078052 − 0.626748i 1.206173 − 0.616840i 1.525824 − 0.603461i 1.524587 − 0.594328i

Table 3 The QNMs for massive scalar perturbations of a neutral black string for M = 1, αg = 1, ε = 0, γ = 1.9,ms = 0.5, k = 0

The QNMs calculated from AIM (50 iterations) Third order WKB

α2
m ω (λ = 0) ω (λ = 1) ω (λ = 2) ω (λ = 2)

− 0.16 1.360627 − 0.533564i 1.470631 − 0.540154i 1.766217 − 0.558983i 1.745391 − 0.544495i

− 0.25 0.964854 − 0.582753i 1.088791 − 0.572458i 1.394118 − 0.558558i 1.395506 − 0.551890i

− 0.36 0.543604 − 0.521306i 0.661337 − 0.485114i 0.935650 − 0.449515i 0.946266 − 0.449496i

− 0.49 0.076211 − 0.136994i 0.143397 − 0.133901i 0.251467 − 0.131540i 0.250929 − 0.132739i

Table 4 The QNMs for scalar perturbations of a neutral black string for M = 1, αg = 1, ε = 0, α2
m = −0.16, γ = 1.5, λ = 1

The QNMs calculated from AIM (50 iterations) Third order WKB

ms ω (k = 0) ω (k = 1) ω (k = 2) ω (k = 2)

0.00 − 0.080947i − 0.154397i − 0.339379i 1.180228 − 0.496008i

1.187530 − 0.502348i

0.25 − 0.299634i − 0.376619i 1.219792 − 0.484424i 1.215106 − 0.477351i

0.50 1.014665 − 0.409856i 1.101989 − 0.413391i 1.332695 − 0.421810i 1.327514 − 0.418380i

In Table 4, we consider how scalar mass affects the quasi-
normal frequencies in the presence of the massive gravity
effects. The values of scalar mass ms are varied from 0−0.5.
In this table, the angular quantum number λ is set to be unity
and we investigate the effect of wave number k on the QNMs
instead. One remarkable feature is that there exists the QNMs
with zero real part and negative imaginary part, i.e. these
modes are purely decaying. For massless scalar perturba-
tions, the purely imaginary frequencies ω are found for all
values of k considered here. At k = 2, a QNM with nonzero
real part appears. However, nonzero real parts are found more
abundantly when the scalar mass ms = 0.25 and 0.5. The
energy naturally goes up along with increasing k while the
modes with larger wave number tend to have a shorter life-
time. When comparing the results with WKB approximation,
we find a good match between the two methods. However,
only the QNMs with nonzero real parts can be obtained from
the WKB method. This is natural since WKB requires the
positive-energy solution to exist for certain region around the
minimum of the effective potential. For example in the mass-
less case, WKB can only find the non-diffusive QNMs for
k = 2. Interestingly, AIM also yields this value as the first

excited mode (n = 1), while the most fundamental mode
(obtained from AIM) (n = 0) is diffusive as shown in the
table.

In order to explore the effect of ms on the peculiar
behaviour of the QNMs found in Table 4, we plot Re(ω)

and Im(ω) with smaller increment on the scalar mass to elu-
cidate transit of the lowest mode from the purely imaginary
to the values with real parts. This is displayed in Fig. 5 and the
values are listed in Table 5. The frequencies plotted in this fig-
ure are modes with the lowest imaginary part (in magnitude)
for both the purely imaginary mode and the non-zero-real-
part mode. The transition of the lowest QNM from purely
imaginary mode to non-zero-real-part mode occurs between
ms = 0.3 − 0.35. A closer investigation reveals that the
transitions appear at ms = 0.33, 0.30, 0.21 for k = 0, 1, 2
respectively.

The transition is part of a bigger picture of the QNM pat-
tern which consists of two distinct branches found by our
numerical method. The first one is purely imaginary mode
where Im(ω) increases with the scalar field mass. The sec-
ond branch exists with non-zero real part. In this case, ms

affects the quasinormal frequency such that as the scalar mass
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Fig. 5 The plot of real and imaginary part of quasinormal frequencies
for M = 1, αg = 1, ε = 0, α2

m = − 0.16, γ = 1.5, λ = 1, k = 0 for
varying ms . A subplot is displayed to clarify the effect of ms on the
non-zero-real-part modes

increases Re(ω) also increases but Im(ω) decreases. For low
ms , the non-zero-real-part QNMs have larger |Im(ω)| than
the purely imaginary mode, and they exist as higher modes.
At transition ms , the imaginary parts of these modes become
less than the purely imaginary mode and yet both branches
always coexist within the QNM chart.

It is known that the perturbation by a massive field often
leads to purely real frequency or quasi-resonance modes
[35,36]. In dRGT model with positive � (negative α2

m), the
effective potential approaches zero in the asymptotic regions,
V → 0 as r∗ → ±∞ as we can see from Fig. 3. This is
generic since V ∼ f (r) ∼ 0 at both rh and rc. As a result, the
effect of the scalar mass vanishes in the asymptotic regions
and there is no quasi-resonance modes. Our numerical results
confirm non-existence of the quasi-resonance modes for pos-
itive � case.

One remarkable feature of the QNMs of neutral dRGT
black string is the behaviour of the quasinormal frequency at

high momentum, λ, k � 1. This is illustrated in Fig. 6. We set
M = 1, αg = 1, ε = 0, α2

m = −0.04, γ = 0.4,ms = 0.2
and vary λ, k from 0 to 200. It is apparent that the scalar wave
becomes more energetic as λ and/or k get larger. Moreover,
the energy of the wave changes rapidly at small wave number
k. From the plot of Im(ω), the higher λ, k the wave decays
slower. Similar to the real part, the effect of λ on the QNMs is
significant only at the low k. We expect the similar pattern if
λ and k are interchanged in the above figure. This is because
from the equation of motion (19), the roles of λ and k to the
QNMs are identical up to 1/α2

g factor.

5.2 WKB approximation for high-momentum modes

From the first-order WKB approximation, it is possible to
estimate the quasinormal frequencies in the large-momentum
limit. Note that the following calculations were also done in
the Schwarzschild case [33] and the Schwarzschild-dS case
[38]. The first-order WKB approximation yields the follow-
ing relation [44,45],

i Q(r1)√
2Q(2∗)(r1)

=
(
n + 1

2

)
, (46)

where Q(2∗) is the second derivative of Q with respect to the
tortoise coordinate r∗, r1 minimizes Q(r∗) (in terms of the
tortoise coordinate), and Q is defined as,

Q ≡ ω2 − f

(
m2

s + �2

r2 + f ′

r

)
, (47)

where �2 ≡ λ2 + k2

α2
g

. With ε = 0, in the large-momentum

limit Q is then given by,

Table 5 The quasi-normal
frequencies of the two lowest
modes for scalar perturbations
of a neutral black string for
M = 1, αg = 1, ε = 0, α2

m =
−0.16, γ = 1.5, λ = 1 with
varying ms

The QNMs calculated from AIM (50 iterations)

ms ω (k = 0) ω (k = 1)

0.00 − 0.080947i, 0.833614 − 0.546685i − 0.154397i, 0.931207 − 0.531069i

0.05 − 0.088556i, 0.834988 − 0.545944i − 0.162217i, 0.932553 − 0.530300i

0.10 − 0.111868i, 0.839060 − 0.543644i − 0.186141i, 0.936567 − 0.527935i

0.15 − 0.152447i, 0.845694 − 0.539523i − 0.227656i, 0.943206 − 0.523776i

0.20 − 0.213303i, 0.854735 − 0.533086i − 0.289567i, 0.952440 − 0.517461i

0.25 − 0.299634i, 0.866175 − 0.523436i − 0.376619i, 0.964399 − 0.508413i

0.30 − 0.420146i, 0.880569 − 0.509254i 0.979598 − 0.495876i,− 0.496644i

0.35 0.899789 − 0.489182i,− 0.589268i 0.999254 − 0.479209i,− 0.663064i

0.40 0.927301 − 0.463475i,− 0.833302i 1.025306 − 0.458613i,− 0.902628i

0.45 0.965850 − 0.435581i,− 1.225373i 1.059480 − 0.435813i,− 1.288794i

0.50 1.014665 − 0.409856i,− 2.074154i 1.101989 − 0.413391i,− 2.118735i
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Fig. 6 The behaviour of QNMs at large λ, k for M = 1, αg = 1, ε = 0, α2
m = −0.04, γ = 0.4,ms = 0.2. (Left) Plot of Re(ω) as a function of λ,

(right) plot of Im(ω) as a function of λ, a small window shows the behaviour of k = 0 curve for small λ

Q ≈ ω2 − f �2

r2 = ω2 − �2

r2

(
α2
mr

2 − 4M

αgr
+ γ r

)
. (48)

A local minimum of Q(r∗) can be found as a solution to the
following,

Q(1∗)(r1) = dQ

dr∗

∣∣∣∣
r1

= f
dQ

dr

∣∣∣∣
r1

,

= − f (r1)�
2

r4
1

(
12M

αg
− γ r2

1

)
,

The local minimum of Q(r∗) implies either,

f (r1) = 0 or
12M

αg
− γ r2

1 = 0.

Since we demand that r1 minimizes Q, then we should have
Q(2∗)(r1) > 0. Thus Q(2∗) is now calculated,

Q(2∗) = d2Q

(dr∗)2 = f
d

dr

(
f
dQ

dr

)
,

= − f �2
[
f ′

(
12M

αgr4 − γ

r2

)
+ f

(
−48M

αgr5
+ 2γ

r3

)]
.

Since the first choice f (r1) = 0 yields vanishing Q(2∗)(r1),
therefore we must choose the second choice which implies

r1 =
√

12M
αgγ

. Note that r1 is not defined when γ < 0. Thus

we obtain,

Q(r1) = ω2 − �2

(
α2
m + 8M

αgr3
1

)
,

Q(2∗)(r1) = 2 f 2
1 �2γ

r3
1

.

By requiring that r1 > rh , we can solve (46) for ω as,

ω = �

√
α2
m + 8M

αgr3
1

√
1 − 2i

√
γ r1

(
n + 1

2

)
�

,

=
√

α2
m + 8M

αgr3
1

(
� − i

√
γ r1

(
n + 1

2

))

+ O
(

1

�

)
for large �. (49)

It is interesting to note that the above approximation (49) has
an interesting interpretation in the context of an unstable cir-
cular orbit of a null geodesic around a massive object [46].
Since the local minimum of Q, which is r1, has been proven
to also be a radius of a circular null geodesic, then, accord-
ing to Ref. [46], the real part of the QNMs in (49) can be
interpreted as multiples of an angular frequency of the cor-
responding circular null geodesic while the imaginary part
indicates instability timescale of the orbit.

In the large-momentum limit, the imaginary part of the
lowest QNMs (n = 0) approaches the asymptotic value,

Im ω(� → ∞) = −1

2

(
α2
m

√
12Mγ

αg
+ 2

3
γ 2

)1/2

. (50)

Numerical results we found in Fig. 6 match the values
given by (49) for n = 0 with errors less than 0.1% for large
momentum.

6 QNMs of dRGT black strings with negative �:
spectral method

In this section, we will explore the QNMs of scalar per-
turbation in the black string spacetime in the dRGT model
with negative �. Geometrically, this is not an asymptotically
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global AdS space since we have cylinder instead of sphere.
The boundary topology is cylindrical but otherwise the holo-
graphic nature of the space remains the same as the AdS
space. We can understand the general aspects of the pertur-
bations by considering (19) in two limits, near-horizon and
far-away regions. For the near-horizon region, the equation
of motion becomes,

d2φ

dr2∗
= −ω2φ, (51)

so the solution is simply φ(r) ∼ e±iωr∗ . For QNMs calcula-
tion, we take the infalling wave φ ∼ e−iωr∗ , the perturbation
is leaking into the black string horizon. For the far-away
region since f (r) 
 α2

mr
2 = −�r2/3, Eq. (19) takes the

form,

d2φ

dr2∗
= −�

3
r2

(
m2

s − 2�

3

)
φ, (52)

and has the power-law solution φ ∼ rα where

α = 1

2

⎛
⎝−1 ±

√
9 − 12m2

s

�

⎞
⎠ . (53)

Note that m2
s is bounded by m2

s ≤ 3�/4. In order for
the field to vanish at infinity for the plus sign solution of
(53), m2

s ≥ 2�/3 is required otherwise it will become a
non-normalisable configuration from the viewpoint of holo-
graphic duality. Such non-vanishing mode can generate back-
reaction to the background and cause transition to other
geometry. However, the minus sign solution always exists
as normalisable mode without the lower bound on m2

s .
In order to numerically calculate the QNMs, we let φ =

e−iωr∗ S to linearise the equation of motion (19) with respect
to ω and change the coordinate by u ≡ rh/r so that the phys-
ical region is u ∈ [0, 1]. The resulting equation of motion
is,

u2 ∂

∂u

(
f (u)u2 ∂

∂u
S(u)

)
+ 2iw u2 ∂

∂u
S(u)

−
[
m2 +

(
λ2 + k2

α2
g

)
u2 − f ′(u)u3

]
S(u) = 0, (54)

where w ≡ ωrh,m ≡ msrh are dimensionless parameters.
We shall now calculate the QNMs by using the spectral

method (see Ref. [32] and references therein). This is the
method of expanding the solution of the quasinormal mode
equation with series of orthonormal functions. Each basis
function is regular both at the horizon and the infinity so
that the solution satisfies the regular boundary conditions,
i.e. only normalizable modes are considered. First expand
the solution for positive integer N

Table 6 The QNMs w = ωrh (rh = 10.6266) of dRGT black string
with M = 1, αg = 1, ε = 0,� = −0.01, γ = 0, k = 0,m = 0.2, λ =
0, 1, 2

λ = 0 λ = 1 λ = 2

± 0.704347 − 1.0179i ± 1.01039 − 0.943509i ± 1.54679 − 0.860185i

S(u) =
N∑

n=0

bnTn(2u − 1), (55)

where Tn is the Chebyshev polynomials of the first kind.
The larger value of N gives the more accurate approxima-
tion of S(u). Substituting the expansion into the equation of
motion (54), we obtain the linear equation of coefficients bn .
By dividing the domain of interest (2u − 1) ∈ [−1, 1] into
a finite number of grid points and solve the system of lin-
ear equations of coefficients bn , the quasinormal frequencies
will be determined. In the numerical calculation, we use the
Gauss-Lobatto grid points

uk = 1

2

(
1 + cos

(
kπ

N

))
, (56)

where k = 0, 1, . . . , N and solve the generalized eigenvalue
problem to obtain the quasinormal frequencies w for a given
N . An excellent example Mathematica code of the spectral
method for the calculation of the QNMs is given by Yaffe in
Ref. [47].

6.1 Results

For γ = 0 as shown in Table 6 for each different angular
momentum λ = 0, 1, 2 state at zero k momentum, the low-
est lying modes tend to live even longer as the momentum
λ increases while the energy also naturally increases. It is
apparent from the equation of motion (19) that the effect of
λ and k to the QNMs are similar upto the factor of α2

g so we
expect the similar dependence on k. Another notable feature
is the convergence of the lowest QNMs for high momentum
λ, k � 1 to a simple power-law asymptotic relation

Im w = e−β(Re w)−0.204, (57)

where e.g. β = 0.08, 0.06, 0.0156 for m = 0, 0.2, 0.4
respectively. This result is consistent with what found in
Ref. [48] (with d = 3 modulo topology of the boundary,
the exponent 0.204 
 (d − 2)/(d + 2) = 1/5) using the
WKB method. Figure 7 shows this asymptotic relation for
the lowest modes. The high momentum limits in both λ and
k thus give the same asymptotic behaviour governed by (57).
Naturally for the infinite momentum behaviour, it has a uni-
versal power-law for any mass ms . The only effect of ms
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Fig. 7 The QNMs w = ωrh (rh = 10.6266) of dRGT black string with
M = 1, αg = 1, ε = 0,� = −0.01, γ = 0,m = 0.2 and (λ, k) =
(0, 0), (1, 0), (2, 0), (3, 0), (5, 0), (7, 0), (20, 1), (20, 100), (20, 200)

(presented by colored dots from the vertical axis out to both sides).
In addition to the lowest modes, the next-to-lowest modes appear for
sufficiently high momentum (λ, k) in a repeated pattern at exactly the
same values of Re w

Table 7 The normal-mode frequencies w = ωrh (rh = 3.122) of
dRGT black string with M = 1, αg = 1, ε = 0,� = −0.01, γ =
0.4,m = 0. The momentum parameter � is defined as �2 ≡ λ2 + k2/α2

g

� = 10 4.45018, 5.55024, 6.48684

� = 20 6.81494, 8.21162, 9.44172, 10.5587, 11.5859,
12.5322, 13.3932,

� = 50 13.231, 15.1091, 16.7607, 18.2688, 19.6739,
20.9996,

22.2608,23.4676, 24.6272, 25.7447, 26.8238,
27.8671,

28.8767, 29.8534, 30.7977, 31.709, 32.586, 33.4256,
34.2216, 34.9596

shows up at low momentum as different values of β. These
high-momentum modes have Im(w) 
 Re(w) and thus can
be thought of as quasi-particles with long lifetime in the dual
gauge theory.

For positive γ , the large-momentum behaviour is different
in a remarkable way. Around � = 10 (defined in Sect. 5.2),
some QNMs start to become normal modes with Im(w) ∼ 0,
as � grows more QNMs turn to normal modes as shown in
Table 7. An interpretation is that the scalar perturbations with
high momentum live far away from the horizon in a circular
orbit, shielded by the effective potential wall and do not feel
the presence of the black string horizon.

Interestingly, similar to the black hole in dRGT massive
gravity studied in Ref. [19] when the horizon size is com-
parable to the characteristic “AdS” radius R� ≡ √

1/|�|,
the converging QNMs become scarce as shown in Table 6
and Fig. 7. On the other hand for black string with small
rh < R�, the tower of QNMs appears with excellent conver-
gence. Figure 8 shows towers of the QNMs of black string
for R� = 10. The real and imaginary parts appear to be

Fig. 8 The QNMs w = ωrh (rh ∈ (0.25, 5.8)) of dRGT black string
with M = 1, αg = 1, ε = 0,� = −0.01, λ = k = 0,m = 0 and
γ = 0.1, 0.2, 0.4, 0.7, 1, 2, 3, 5, 10, 20, 60 (presented by colored dots
from the vertical axis out to both sides) for N = 300

almost on the straight line (closer examination shows that it
is not exactly a straight line) for each positive value of the
massive gravity parameter γ . The larger γ the more energetic
the QNMs become while the lifetime given by the inverse of
Im(w) gets larger at first then smaller for very large γ . As
explained in Ref. [49], the γ r term in the spacetime metric
represents the constant radial force −γ r̂ originated from the
self-interaction of the massive graviton. For positive (neg-
ative) γ , the massive gravity force is attractive (repulsive).
Naturally for positive γ , the attractive gravity is stronger so
we expect the QNMs to be more energetic, i.e., having larger
Re(w) values.

In contrast to the γ ≥ 0 case, the lowest QNMs for neg-
ative γ contain two converging diffusive modes (i.e. modes
with zero Re(w) and negative Im(w)) as shown in Table 8.
Negative γ implies antigravity force from massive-graviton
self-interaction, the larger the magnitude, the stronger the
repulsive force. Stronger antigravity leads to larger imagi-
nary parts of the diffusive QNMs and thus shorter lifetime.
In constrast to the QNMs of black string in conventional grav-
ity (see e.g., Ref. [25]), the magnitude of the lowest diffusive
QNMs of black string with negative γ in massive gravity
increases non-linearly with the horizon (rh) and Hawking
temperature (T ) even though rh still increases linearly with
T , i.e., rh ∼ T ∼ γ ∼ m2

g . The approximate power-law
relation is given by Im(w) ∼ −|γ |1.89 for the parameters in
Table 8.

Holographically, quasinormal frequencies are the poles of
the retarded thermal Green function in the dual gauge the-
ory living on the boundary [50]. Larger negative imaginary
values of QNMs imply that the relaxation time to thermal
equilibrium of the perturbed gauge matter in the dual pic-
ture is shorter while the temperature is higher due to the
antigravity (since γ is negative) effect of massive graviton
self-interactions in the bulk. Scalar perturbation in the bulk
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Table 8 The diffusive QNMs
for negative
γ, M = 1,� = − 0.01, ε =
0, αg = 1,m = 0, λ = k = 0 at
N = 300. T is the
corresponding Hawking
temperature of the black string

γ = − 0.1 γ = − 0.2 γ = − 0.3 γ = − 0.4 γ = − 0.5

rh = 31.23 rh = 60.33 rh = 90.15 rh = 120.08 rh = 150.05

T = 0.0089 T = 0.0162 T = 0.0240 T = 0.0319 T = 0.0398

− 2.71789i − 9.23955i − 20.4101i − 36.1202i − 56.3462i

− 4.73127i − 16.383i − 36.2566i − 64.1922i − 100.154i

is dual to the perturbation of certain scalar operator O of the
gauge theory on the boundary. The generation of such opera-
tor could break scale invariance of the dual field theory. The
perturbed scalar operator will settle to the thermal equilib-
rium value in the timescale of the relaxation time given by
1/Im(ω) of the QNMs.

For holographic massive gravity models (see e.g., Refs.
[23,24,51–53]), the choice of fiducial metric such as (8)
breaks diffeomorphism invariance of the dual gauge the-
ory in the corresponding directions (z, ϕ in our case). The
diffeomorphism-breaking term is effectively the graviton
mass term in the gravity theory side. It generates the momen-
tum dissipation in the broken directions in the dual field the-
ory. In coherent regime with γ = 0, the sound poles of QNMs
are found as in Table 6 and Fig. 7. Turning on the massive
graviton paramater γ > 0 does not generate diffusive modes
of QNMs, the sound poles simply move away from the imag-
inary axis as shown in Fig. 8. On the other hand, for γ < 0,
the momentum dissipation appears as there are two purely-
imaginary modes found, see Table 8. In contrast to the pla-
nar geometry case [24], both diffusive poles move down the
imaginary axis as γ ∼ m2

g becomes more negative.

7 Conclusions

In this paper, we have studied the quasinormal modes of
massive scalar perturbations on neutral black string back-
ground in dRGT massive gravity. The unique characteristics
of dRGT black string are the cosmological constant and the
linear term γ in the metric (13) that are generated naturally
from the graviton mass via self-interactions. The �-like term
allows one to consider the black string metric separately in
either positive and negative � cases. This point makes the
black string in dRGT massive gravity different greatly from
the cylindrical black object in general relativity [15]. This is
because in standard general relativity there is no black string
in asymptotically de-Sitter spacetime. We have also exam-
ined the horizon structure in each cases. It is found that for
positive �, the black string possesses two horizons which
we define as event horizon and cosmological horizon. In the
negative � case, the black string only has one event horizon.
In a generic set-up where the ε term in the metric (13) is

nonzero, the number of horizon structure in negative � case
will be different from ours [17].

For the QNMs of a black string with positive �, we start
our investigation by considering the spacetime metric (12)
in the near extremal limit [34]. In this limit, the cosmologi-
cal horizon is taken to be very close to the event horizon. It
turns out that we can derive the quasinormal frequency ana-
lytically by using the Pöschl–Teller technique [37]. The fre-
quencies are labeled by the mode number n. As n increases,
the scalar perturbations decay faster. We find the purely imag-
inary modes when the scalar mass is turned off. In Sect. 5,
we perform a fully numerical computation for the QNMs
of black string. The numerical technique called improved
asymptotic iteration method is implemented [28]. Firstly, the
results from numerical AIM and analytical formula are com-
pared in the near extremal limit. We find a perfect agreement
between the two methods. The results show that the modes
with higher oscillation (higher Re(ω)) decay faster than the
modes with lower oscillation (lower Re(ω)). In addition, the
purely imaginary modes are discovered when the scalar field
is massless. However as the scalar mass increases (also the
wave number k), the quasinormal frequencies appear to be
non-diffusive (nonzero real part). We remark that the third-
order WKB approximation gives mostly the same results as
those obtained from the AIM. We numerically show that the
imaginary parts of ω approach asymptotically to a constant
at high momentum λ, k � 1. Finally, we find no evidence
of any instabilities for all dRGT black string with positive
� since all the perturbation modes investigated in this work
decay exponentially.

For negative � scenario, the black string that is large com-
paring to the AdS radius R� has few converging modes at low
momentum for γ = 0 (we can choose M to be small to get
small black string though). As the momentum of the scalar
field gets higher, either with k or λ, more converging modes
appear at exactly the same Re(w) with larger negative Im(w).
For large momentum limit, we numerically establish asymp-
totic relation between real and imaginary parts of the QNMs
consistent with the WKB method found in Ref. [48]. When
the massive graviton effect γ ∼ m2

g is turned on to positive
value, the QNMs becomes sequences of normal modes for
high momenta. The higher the momentum, the more num-
ber of normal modes appear as shown in Table 7. At zero
momentum for a fixed mass, positive γ makes black-string
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horizon smaller and there is a number of QNMs found. As
the effect of massive graviton gets stronger, the energy of the
QNMs grows larger, the lifetime becomes longer (i.e., Im(w)

becomes less negative) at first then starts to get shorter for
very large γ .

When � < 0, γ < 0, the massive graviton self-
interactions generate antigravity at long distances. With such
antigravity, the QNMs remarkably become diffusive with
Re(w) = 0. The relaxation time is shorter with stronger
antigravity. Holographically, the choice of fiducial metric (8)
breaks diffeomorphism invariance in the z, ϕ directions of the
perturbations resulting in momentum dissipation in the dual
field theory. We note the importance of sign of γ in the move-
ment of sound poles to collide and form diffusive poles, as γ

changes from positive to zero and to negative values. Long-
distance gravity changes from attractive to repulsive as the
dual hydrodynamics changes from coherent to momentum-
dissipative regime.

As a generalization of this work, one can investigate the
effect of linear charged scalar perturbation on charged dRGT
black string spacetime. With the existence of black string
and scalar charges, this could possibly introduce the effect of
superradiance [54] on this type of spacetime background.
Holographically, unstable charged scalar perturbations in
such charged-string (asymptotically AdS) background sig-
nals the superconducting phase transition of the dual field
system on the cylindrical boundary that resembles e.g., the
carbon nanotube.
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