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Abstract We have derived a non-linear charged black hole
solution, in the AdS spacetime, which behaves asymptoti-
cally like the RN-AdS black hole but at the short distances
like a dS geometry. Thus, the black hole is regular. The ther-
modynamic quantities of the black hole are derived. Also,
we analyzed in details the phase transitions of the black hole
by observing the discontinuity of the heat capacity at con-
stant pressure and the cusp type double points in the Gibbs
free energy-temperature graph. Furthermore, the thermody-
namic phases and their stability are investigated relying on
the off-sell Gibbs free energy. Finally, we calculated the crit-
ical exponents characterizing the behavior of the relevant
thermodynamic quantities near the critical point.

1 Introduction

Black holes, formed from the gravitational collapse of mat-
ters, are of the most important objects in General Relativity
(GR) as well as relating directly to quantum gravity. One
of the interesting subjects in studying the black holes is their
thermodynamics [1–5]. Since the Hawking–Page phase tran-
sition was proposed [6], the thermodynamic phase transitions
of the black holes have been studied extensively in the litera-
ture. It was found that there occurs a phase transition between
small-large black charged holes [7–9]. Recently, the cosmo-
logical constant � was considered as the thermodynamic
pressure P , and its conjugate variable is the thermodynamic
volume V [10–14]. As argued in Ref. [13], the total energy
E thus should include the vacuum energy, ρV = −PV , with
ρ to be an energy density. It means that

E = M + ρV = M − PV, (1)

and thus M is most naturally the enthalpy, rather than the
internal energy of the black hole [11]. Accordingly, the ther-
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modynamic behavior of the black hole is restudied in the
extended phase space and has gained more and more atten-
tion. In 2012, Kubizňák and Mann examined P − V criti-
cality of the charged AdS black hole in the extended phase
space [15]. Their results showed that the charged AdS black
hole has the Van der Waals-like phase transition which is
analogous to the liquid–gas phase transition of the ordinary
thermodynamic systems. Later, P − V criticality was stud-
ied in various black holes [16–24]. In particular, based on
the Smarr formula and the first law of the thermodynam-
ics, P − V criticality is demonstrated to be universal [25].
Furthermore, to study the black holes in the extended phase
space led to other new phenomena. Multiply reentrant phase
transition and triple points were found in the charged black
holes [26–28]. The black holes play an analogous role as a
Carnot-cycle heat engine which is defined by a closed path
in the P − V plane [29–37]. The Joule-Thomson expansion
for the charged AdS and Kerr-AdS black holes is considered
in Refs. [38,39].

Studying the phase transitions of the black holes in the
AdS spacetime is motivated by the gauge/gravity correspon-
dence [40,41], where the black hole can be identified with
an approximately thermal state in the dual strongly cou-
pled field theory [42,43]. In particular, the black holes have
been related with the holographic superconductivity [44,45].
Since, thermodynamics and the phase transitions of black
holes in the AdS spacetime have received many recent stud-
ies [7–9,11,13–20,22–25,27,29,30,32,46–56].

In GR, the black holes have a singularity at the origin sur-
rounded by the event horizon [57]. It is widely believed that
the black hole singularity would be removed by a complete
theory of quantum gravity. However, up to now there has no
a complete understanding of quantum gravity. Thus, many
efforts have been dedicated to determine how to avoid the
black hole singularity at the semi-classical level. The black
hole without singularity at the origin was first proposed by
Bardeen [58]. Interestingly, this black hole was reobtained by
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Ayón-Beato and García as a gravitational collapse of some
magnetic monopole in the non-linear electrodynamics [59].
Indeed, the non-linear electrodynamics was first proposed,
by Born and Infeld, as modifying the standard Maxwell the-
ory with the main motivation of eliminating the problem
of infinite energy of the electron [60]. Although the non-
linear electrodynamics did not solve this problem and thus
was less popular, in recent years it has received considerable
attention because it leads to the regular black holes [61–74].
The thermodynamics and critical phenomena of some non-
linear charged black holes in AdS spacetime were studied in
[24,55,75–81].

In this paper, we would like to generalize a black hole
solution carrying the electric charge derived in Ref. [61],
which has been widely discussed in the literature, in the AdS
spacetime. Then, we study the global properties, the thermo-
dynamics and the phase transitions of this black hole solution.

This paper is organized as follows. In Sect. 2, we derive a
non-linear charged black hole solution from solving the equa-
tions of the motion for the system of Einstein gravity coupled
to a non-linear electromagnetic field in the AdS spacetime,
and then we study the interesting properties of this solution.
In Sect. 3, we calculate the thermodynamic quantities and
analyze the phase transitions of the black hole. Finally, we
devote to conclusions in the last section, Sect. 4.

In this work, we use units in GN = h̄ = c = kB = 1 and
the signature of the metric (−,+,+,+).

2 Non-linear charged black hole solution in AdS
spacetime

Einstein gravity coupled to a non-linear electromagnetic field
in the AdS spacetime is described by the action

S =
∫

d4x
√−g

[
1

16π

(
R + 6

l2

)
− 1

4π
L(F)

]
, (2)

where R is the scalar curvature, l is the curvature radius of the
AdS spacetime, and L(F) is the non-linear electrodynamic
term which is a function of the invariant FμνFμν/4 ≡ F
with Fμν = ∂μAν −∂ν Aμ to be the field strength of the non-
linear electromagnetic field. In this paper, we would like to
generalize a regular charged black hole solution in Ref. [61]
by including a negative cosmological constant. Hence, the
non-linear electrodynamic is explicitly defined as [61]

L(F) = − X2

2Q2

1 − 8X − 3X2

(1 − X)4 − 3M

Q2|Q|
X5/2(3 − 2X)

(1 − X)7/2 ,

X =
√

−2Q2F, (3)

where M and Q are mass and charge of the system.
In order to have a regular black hole solution, either Ein-

stein gravity or matter source should be modified in a suitable

way. The modification of Einstein gravity has been studied
extensively in the literature. But, so far this has not yet led to
complete solutions. Thus, an alternative approach is to con-
sider the modification of the matter which is here the modifi-
cation of the electromagnetic field. Because the electromag-
netic field is well described by the Maxwell electrodynamics,
the electromagnetic field should be modified at the short dis-
tances corresponding to the strong electromagnetic field. But,
in the limit of the large distances corresponding to the weak
electromagnetic field, it is approximately the usual electro-
magnetic field described by the Maxwell electrodynamics.
We can easily see that, with the form of the non-linear elec-
trodynamics given by Eq. (3), we should have L(F) ∼= F in
the weak field limit (F � 1) and thus the non-linear electro-
dynamics is approximately the Maxwell electrodynamic. In
this sense, the form of the non-linear electrodynamics given
by Eq. (3) is one of the suitable forms for the modification of
the electromagnetic field at the short distances corresponding
to the strong electromagnetic field.

The equations of motion derived from the above action
are

Gν
μ − 3

l2
δν
μ = 2

[
∂L(F)

∂F
FμρF

νρ − δν
μL(F)

]
, (4)

∇μ

(
∂L(F)

∂F
Fνμ

)
= 0. (5)

Note that, the field strength Fμν also satisfies the Bianchi
identities, ∇μ ∗ Fνμ = 0. Instead of solving the equations
of motion in terms of the functions (gμν,L, F), one can
use another functions (gμν,H, P) obtained by means of a
Legendre transformation [83]

H(P) = 2
∂L(F)

∂F
F − L(F), P ≡ 1

4
Pμν P

μν =
(

∂L(F)

∂F

)2
F.

(6)

It can be shown that

∂L
∂F

=
(

∂H
∂P

)−1

, L = 2
∂H
∂P

P −H,
∂L(F)

∂F
Fμν = Pμν.

(7)

where

H(P) = P
1 − 3

√
−2Q2P(

1 +
√

−2Q2P
)3 − 3M

Q2|Q|

( √
−2Q2P

1 +
√

−2Q2P

) 5
2

.

(8)

Using these relations, one can write the equations of motion
in terms of the functions (gμν,H, P) as

Gν
μ − 3

l2
δν
μ = 2

[
∂H
∂P

Pμρ P
νρ − δν

μ

(
2
∂H
∂P

P − H
)]

, (9)
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∇μP
νμ = 0. (10)

Now we find a static and spherical symmetric black hole
solution of the mass M and the electric-charge Q with the
following ansatz

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2,

f (r) =
(

1 − 2m(r)

r

)
,

Pμν = (
δtμδrν − δtνδ

r
μ

)
φ(r). (11)

(For simplicity, with out loss of generality, in what follows we
consider Q > 0.) Note that, the electric-charge Q is defined
as

Q = 1

4π

∫
S∞

2

∗∂L(F)

∂F
F = 1

4π

∫
S∞

2

∗P, (12)

whereF = 1
2 Fμνdxμ∧dxν and P = 1

2 Pμνdxμ∧dxν which
are two-forms. Eqs. (10) and (12), with ansatz (11), lead to

φ(r) = Q

r2 −→ P = − Q2

2r4 . (13)

Then, with this result, Eq. (9) leads to

dm(r)

dr
+ 3r2

2l2
= Q2r2

(
(r2 − 3Q2)

2(r2 + Q2)3 + 3M

(r2 + Q2)5/2

)
.

(14)

Integrating this equation with the integral constant

(
m(r) + r3

2l2

)
r→∞

= M, (15)

we get

m(r) = Mr3

(r2 + Q2)3/2 − Q2r3

2(r2 + Q2)2 − r3

2l2
. (16)

Substituting m(r) into f (r), we finally get

f (r) = 1 − 2M

r

(
1 + Q2

r2

)− 3
2

+ Q2

r2

(
1 + Q2

r2

)−2

+ r2

l2
.

(17)

The electrostatic potential At (r) of the black hole is obtained
as

At (r) = −
∫

Ftrdr + 3M

2Q
= −

∫
∂H
∂P

Ptrdr + 3M

2Q
,

= Q

r

(
1 + Q2

r2

)−3

− 3M

2Q

(
1 + Q2

r2

)− 5
2

+ 3M

2Q
,

(18)

satisfying At (r → ∞) = 0.
Let us look at the large and short distance behaviors of

the metric defined by (17). At the large distances (Q/r � 1)
corresponding to the weak non-linear electrostatic field, it
leads to

f (r) � 1 − 2M

r
+ Q2

r2 + r2

l2
, At (r) � Q

r
. (19)

It means that the non-linear charged AdS black hole behaves
asymptotically like the RN-AdS black hole and thus is a non-
linear generalization of the RN-AdS black hole. Whereas, at
the short distances (Q/r � 1) corresponding to the strong
non-linear electrostatic field, it leads to

f (r) � 1 −
(

2M − Q

Q3 − 1

l2

)
r2, (20)

at which 2Ml2−Q(Q2+l2) > 0 is always positive as shown
in later. This clearly suggests that at the short distances the
metric corresponding to (17) behaves like a deSitter (dS)
geometry with an effective cosmological constant

�eff = 3

(
2M − Q

Q3 − 1

l2

)
, (21)

rather than like a black hole. As a result, the singularity at the
origin should be replaced by a core of the dS geometry which
produces a negative pressure and thus prevents a singular end-
state of the gravitationally collapsed matter. It can check that
the curvature scalars, R, RμνRμν , and RμνρλRμνρλ are finite
everywhere and thus the black hole is regular.

The equation of the horizon is given by, f (rH ) = 0, where
rH represents the horizon radius. Its solution structure corre-
sponding to the cases of non-extremal black hole, extremal
black hole and no black hole is given in Fig. 1. We can express
the black hole mass M in terms of rH as

1 2 3 4 5
rH0

2

4

6

8

10
f rH

Fig. 1 The function f (rH ) is plotted in terms of the horizon radius rH ,
at Q = 1 and l2 = 12/5, for the different values of the mass M . The
green, red and blue curves correspond to M = 3 (non-extremal black
hole), M = 5

√
2/3 (extremal black hole), and M = 2 (no black hole)
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M = (r2
H + Q2)

3
2

2

(
1

l2
+ 1

r2
H

+ Q2

(r2
H + Q2)2

)
. (22)

Although this equation cannot be solved analytically, it can
analyze the relation of the black hole mass with respect to
the horizon radius. We can easily see

M(rH → 0) → ∞, M(rH → ∞) → ∞, M >
Q3

2l2
> 0.

(23)

This means that there actually exists a lower bound M0 for
the mass of the black hole for given l and Q. The black hole
of the mass M0 is regarded as the extremal black hole with
the extremal horizon radius r0. Here, the reduced extremal
horizon radius r0/Q ≡ r̄0 is a unique positive real solution
of the following equation

Q2

l2
= 2 + 3r̄2

0 + r̄4
0 − r̄6

0

3r̄4
0 (1 + r̄2

0 )2
, (24)

derived from the equation M ′(r0) = 0. And, with the help of
Eq. (24), one can express the reduced extremal mass M0/Q
as a function of the reduced extremal horizon radius r̄0

M0

Q
= r̄6

0 + 5r̄4
0 + 3r̄2

0 + 1

3r̄4
0

√
r̄2

0 + 1
. (25)

From Eqs. (24) and (25), one can determine an upper limit
for r0/Q

r0

Q

∣∣∣
max

= 1√
3

(
1 + 2−1/3[(83 − 3

√
231)1/3 + (83 + 3

√
231)1/3])1/2

≡ α ≈ 1.58479, (26)

and a lower limit for M0/Q

M0

Q

∣∣∣
min

≈ 1.57684, (27)

which associate with the limit of the vanishing cosmo-
logical constant. Thus, for given charge Q, there are no
extremal black holes, in the AdS spacetime, with the hori-
zon radius larger than αQ or the mass smaller than the value
≈ 1.57684Q. This can be more clearly seen in Fig. 3 (right).
We can also see that the horizon radius of the extremal black
hole in AdS spacetime of the large curvature radius (the low
pressure) is larger than that of the extremal black hole in AdS
spacetime of the small curvature radius (the high pressure).
From Eq. (24), it is quite evident that, for any values of l and
Q, the equation M ′(r0) = 0 only has one unique positive
real solution. Since the black hole gets maximally two hori-
zons. Depending on the proper parameters of the black hole
(M, Q, l), the black hole could have one or two horizons.

0.5 1.0 1.5

r0
Q

10

20

30

40

50

eff Q2

Fig. 2 The reduced effective cosmological constant is plotted in terms
of the reduced horizon radius for the case of the extremal black hole

The event horizon radius r+ is taken as the largest positive
root of f (r).

From Eqs. (24) and (25), one can plot the effective cos-
mological constant �eff in terms of the horizon radius for
the extremal black hole, given in Fig. 2. This figure clearly
shows

M0 >
Q

2

(
1 + Q2

l2

)
, (28)

for any extremal black hole. Because the mass of the non-
extremal black hole is larger than that of the extremal one, the
effective cosmological constant �eff also is always positive
for the non-extremal case. Thus, the short distance behavior
of the black hole solution is actually the dS geometry.

We end this section by commenting the effect of the non-
linear electrodynamics on the charged black hole in AdS
spacetime. It is first useful to mention that, for the RN-AdS
black hole, the relation between the reduced extremal horizon
radius r̄0 and Q/ l is given by

Q2

l2
= 1 − r̄2

0

3r̄4
0

, (29)

and the reduced extremal mass M0/Q as a function of the
reduced extremal horizon radius r̄0 is given by

M0

Q
= r̄2

0 + 2

3r̄0
. (30)

It is shown in Fig. 3 that the non-linear electrodynamics
makes the size of the extremal charged black hole larger,
with fixed Q/ l. If the extremal horizon radius is fixed, the
extremal non-linear charged black hole is (so much) more
heavy than the extremal RN-AdS black hole. This is also
true with respect to the non-extremal case, as seen in Fig.
4. It means that, with the event horizon radius r+ fixed, the
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non-linear charged black hole is (so much) more heavy than
the RN-AdS black hole. On the other hand, with the mass M
fixed, the non-linear charged black hole is (so much) smaller
the RN-AdS black hole. (However, the inner horizon of the
non-linear charged black hole is larger compared to that of
the RN-AdS black hole.) This is quite clear because in order
to form the non-linear charged black hole the gravitational
force must be stronger, in particular for the small size black
hole, to win the non-linear electrostatic repulsion. And, thus
it requires that the black hole has to possess much more mass
for the event horizon radius r+ fixed or the smaller size for
the mass M fixed.

3 The thermodynamics and phase transitions

In this section, we will calculate the thermodynamic quan-
tities and analyze the phase transitions for the black hole
derived in the previous section.

3.1 Thermodynamic quantities

In the extended phase space, the thermodynamic pressure P
is given as

P = − �

8π
= 3

8πl2
, (31)

and the first law of the black hole thermodynamics should be

dM = TdS + �dQ + VdP. (32)

Here, the entropy S, the charge Q and the thermodynamic
pressure P are a complete set of the extensive thermodynamic
variables for the mass or elthalpy function M(S, Q, P). And,
the temperature T , the chemical potential � and the thermo-
dynamic volume V (which are the intensive thermodynamic
variables conjugating to the entropy S, the charge Q and the
thermodynamic pressure P , respectively) are defined as

Q2

l2
5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r0
Q0

2

4

6

8

10

Q2

2l
r0

Q
0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r0
Q0

5

10

15

20

25

30

M0

Q

Fig. 3 Left: We plot the reduced cosmological constant Q2/ l2 in terms
of the reduced extremal horizon radius r0/Q. Right: We plot the reduced
mass M/Q of the extremal black hole in terms of the reduced extremal

horizon radius. The red and blue curves refer to the non-linear charged
black hole of this work and the RN-AdS black hole, respectively

r

Q
7

M

Q
4

0 2 4 6 8 10

rH
Q0
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20
r

Q
15

M

Q
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0 5 10 15 20

rH
Q0

10
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40

M
Q

M
Q

Fig. 4 The reduced mass M/Q of the non-extremal black hole is plotted in terms of the reduced horizon radius rH /Q, at l/Q = 5 (left) and
l/Q = 15 (right). The red and blue curves refer to the non-linear charged black hole of this work and the RN-AdS black hole, respectively
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2 4 6 8 10 12 14

r

Q

0.01

0.02

0.03

0.04

0.05
T Q

Fig. 5 We plot the reduced temperature of the black hole against the
reduced horizon radius under the different values of the pressure. The
orange, green, dashed black, blue, red, and black curves correspond to
l/Q = 9, 10, ≈ 11.5637 (lc/Q), 15, 20, ∞

T =
(

∂M

∂S

)
Q,P

, � =
(

∂M

∂Q

)
S,P

, V =
(

∂M

∂P

)
S,Q

.

(33)

By requiring the absence of the potential conical singu-
larity of the Euclidean trick, one can identify the black hole
temperature

T = f ′(r+)

4π
= 1

4πr+

(
3r4+

l2(r2+ + Q2)
+ r6+

(r2+ + Q2)3

− Q2r2+
(r2+ + Q2)2

− 2Q4

(r2+ + Q2)2

)
, (34)

which is approximately the temperature of the RN-AdS black
hole in the limit of the large distances (r+/Q � 1). Because
the extremal horizon radius r0 satisfies Eq. (24), the black
hole temperature vanishes at r0. Also, the black hole tem-
perature approaches infinite when r+ −→ ∞. Against this
scenario, the temperature of the black hole without the AdS
background (the limit of the vanishing cosmological con-
stant), approaches zero when r+ −→ ∞. The isobaric tem-
perature curve is plotted, under the different values of the
pressure, in Fig. 5. From this figure, we can see the exis-
tence of a critical pressure Pc (derived in later), above which
(P > Pc) the isobaric temperature curve is an increas-
ingly monotonic function of the horizon radius r+. For
0 < P < Pc, the isobaric temperature curve has one local
maximum temperature and one local minimum temperature.
When the pressure approaches Pc, the local maximum and
minimum of the isobaric temperature curve merge into one
inflexion. In the limit P → 0, the local minimum tempera-
ture should disappear.

Using the expression (34) of the black hole temperature
and the first law, one can derive the entropy of the black hole

S =
∫

1

T

∂M

∂r+
dr+ = 2π

∫
(r2+ + Q2)3/2

r2+
dr+,

= πQ2

⎡
⎣

(
r+
Q

− 2Q

r+

) √
1 +

(
r+
Q

)2

+3 ln

⎛
⎝r+

Q
+

√
1 +

(
r+
Q

)2
⎞
⎠

⎤
⎦ . (35)

[Note that, ln(x+√
1 + x2) = arcsinh(x).] Clearly, the non-

linear electrodynamics breaks in general the area law (S =
πr2+). In the regime of the large horizon radius (r+/Q � 1),
corresponding to the weak non-linear electrostatic field, the
entropy of the black hole becomes

S � πQ2

(
r2+
Q2 + 3 ln 2

r+
Q

)
. (36)

Because x2 � 3 ln 2x for x � 1, the second term in the
expression (36) is approximately neglected for r+/Q � 1.
And, thus the well-known Bekenstein–Hawking entropy is
approximately recovered in the regime of the large horizon
radius.

Note that, Eq. (35) implies that r+ is understood as a func-
tion of the extensive thermodynamic variables S and Q. Since
this equation along with Eq. (22) allow to define the enthalpy
function

M(S, Q, P) = M
(
r+(S, Q), Q, P

)
. (37)

With the given enthalpy function, using the first law one can
derive the chemical potential � and thermodynamic volume
V as

� =
(

∂M

∂Q

)
S,P

=
(

∂M

∂Q

)
r+,P

+
(

∂M

∂r+

)
Q,P

(
∂r+
∂Q

)
S
,

(38)

V =
(

∂M

∂P

)
S,Q

= 4

3
π(r2+ + Q2)

3
2 , (39)

where

(
∂M

∂Q

)
r+,P

=
Q

[
3r2+(r2+ + Q2)2 + l2(3Q4 + 7Q2r2+ + 5r4+)

]

2l2r2+(r2+ + Q2)3/2
,

(40)

(
∂M

∂r+

)
Q,P

= 3r4+(r2+ + Q2)2 + l2(−2Q6 − 3Q4r2+ − Q2r4+ + r6+)

2l2r3+(r2+ + Q2)3/2
,

(41)
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(
∂r+
∂Q

)
S

=
3Qr+

[√
r2+ + Q2 − r+ ln(r+/Q + √

1 + (r+/Q)2)

]

(r2+ + Q2)3/2
.

(42)

It is easily checked that the thermodynamic quantities of
the non-linear charged AdS black hole satisfy the Smarr for-
mula

M = 2(T S − V P) + �Q, (43)

which shows their scaling behavior as

r+ → λr+, Q → λQ, S → λ2S, P → P

λ2 ,

M → λM, T → T

λ
, � → λ0�, V → λ3V . (44)

It is well known that the black hole is at least locally stable
if it has positive heat capacity. On the contrary, if the black
hole has negative heat capacity, it is unstable. This suggests
that the discontinuous change of the sign of the heat capacity
should lead to the phase transitions of the black hole. Thus, in
order to study the phase transitions of the black hole in later,
let first us calculate the heat capacity at constant pressure

CP =
(

∂M

∂T

)
P

= ∂M

∂r+

(
∂T

∂r+

)−1

,

=
2π

(
r2+ + Q2

)5/2
[
3r4+

(
r2+ + Q2

)2 − l2
(
2Q6 + 3Q4r2+ + Q2r4+ − r6+

)]

l2r+
(
2Q8 + 11Q6r2+ + 12Q4r4+ + 8Q2r6+ − r8+

) + 3r5+
(
r2+ + Q2

)2 (
r2+ + 3Q2

) . (45)

We can see that the heat capacityCP vanishes at the extremal
horizon radius. We plot the heat capacity CP under the dif-
ferent values of the pressure in Fig. 6. It is shown in this
figure that for the pressure above Pc the heat capacity CP is
always positive and a regular function of the horizon radius
r+. Below the pressure Pc, there are three regions divided
by two vertical asymptotes located at r1 and r2, where r1

and r2 are the radiuses corresponding to the local maximum
temperature Tmax and local minimum temperature Tmin. For
the regions, r+ < r1 and r+ > r2, the heat capacity CP is
positive and thus the black hole is thermodynamically sta-
ble in these regions. Whereas, for the region r1 < r+ < r2,
the heat capacity is negative and thus the black hole is ther-
modynamically unstable in this region. When the pressure
approaches the critical value Pc, two points r1 and r2 merge
into one where the heat capacity is divergent but continuous.
In the limit P → 0, the region r+ > r2 should disappear.

3.2 Phase transitions

Now we study the phase transitions of the black hole intro-
duced in the previous section. In what follows, the black hole

charge Q is kept fixed. Depending on the value of the pressure
or the temperature, there are first-order, second-order phase
transitions, or no phase transition. Critical point occurs as the
isobar in the T − r+ diagram (or the isotherm in the P − r+
diagram) has an inflexion, given by

(
∂T

∂r+

)
P

=
(

∂2T

∂r2+

)

P

= 0. (46)

Thus, we find equation for determining the reduced critical
horizon radius rc/Q ≡ r̄c

12 +63r̄2
c +131r̄4

c +104r̄6
c +66r̄8

c +17r̄10
c − r̄12

c = 0, (47)

which leads to a unique positive real solution r̄c ≈ 4.526.
From this, we can obtain the critical pressure and temperature

Pc = 1

8π

r̄8
c − 8r̄6

c − 12r̄4
c − 11r̄2

c − 2

r̄4
c (3 + r̄2

c )(1 + r̄2
c )2

1

Q2 ≈ 0.0009

Q2 , (48)

Tc = (r̄6
c − r̄4

c − 3r̄2
c − 2) + 8π Pc(1 + r̄2

c )2r̄4
c

4π r̄c(1 + r̄2
c )3

1

Q
≈ 0.0221

Q
.

(49)

By comparing with the RN-AdS black hole, at which r̄c =√
6, Pc = 1/96πQ2, Tc = √

6/18πQ, we see that the non-
linear electrodynamics makes the value of the reduced critical
horizon radius shifted toward the outside of the black hole,
whereas the phase transition happens at the lower critical
pressure. At this critical point, the heat capacity is divergent
but continuous and positive.

Above the critical pressure Pc, the heat capacity CP

is always regular and positive and thus there is no phase
transition happening. However, below critical pressure Pc
(0 < P < Pc), the black hole can undergo a first-order
phase transition between a small stable black hole of the
radius r+ < r1 and a large stable black hole of the radius
r+ > r2. This first-order phase transition is performed via
two second-order phase transitions happening at the extremal
points r1,2 because the heat capacity CP suffers disconti-
nuities at these points. The reduced values r1,2/Q of these
second-order phase transition points are two positive real
solutions of the following equation

l2

Q2

(
2 + 11x2 + 12x4 + 8x6 − x8

)
+ 3x4

(
x2 + 1

)2 (
x2 + 3

)
= 0,

(50)
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Fig. 6 Plots of the reduced heat capacity CP/Q2 in terms of the reduced horizon radius r+/Q under the different values of the pressure. They
correspond to l/Q = 10 (top left), l/Q ≈ 11.5637 (top right), l/Q = 15 (bottom left), and l/Q → ∞ (bottom right)

which cannot be solved analytically and thus we give the
numerical solutions in Table 1. The point r2 corresponds to
the second-order phase transition point between a large sta-
ble black hole and a medium unstable one, whereas the point
r1 corresponds to the second-order phase transition point
between a medium unstable black hole and a small stable one.
From Table 1, we can see that, when the pressure decreases,
the value of the radius r1 is shifted toward the inside of the
black hole, whereas the value of the radius r2 is shifted toward
the outside of the black hole. The temperatures at the second-
order phase transition points r1 and r2 both decrease as the
pressure decreases. In the limit P → 0, we have r2 → ∞ and
Tmin → 0. It means that the second-order phase transition
at the point r2 and thus the first-order one should disappear.
Whereas, the second-order phase transition point r1 and the
corresponding temperature Tmax approach the lower limits,
≈ 3.06643Q and ≈ 0.01643/Q, respectively.

In order to obtain more details on the thermodynamic
phase transitions, we should investigate the Gibbs free energy
G, which is a function of the pressure and temperature, given
by

G = M(r+) − T (r+)S(r+). (51)

Table 1 The numerical results of Eq. (50) and the second-order phase
transition temperatures for the different values of l/Q

l/Q r1/Q r2/Q Tmax × Q Tmin × Q

15 3.4426 7.7167 0.0196 0.0177

20 3.2436 10.9185 0.0181 0.0135

25 3.1726 13.9524 0.0175 0.0109

30 3.1378 16.9280 0.0172 0.0091

35 3.1179 19.8740 0.0170 0.0078

40 3.1054 22.8055 0.0168 0.0068

45 3.0970 25.7258 0.0167 0.0061

50 3.0910 28.6388 0.0166 0.0054

The Gibbs free energy as a function of the temperature T at
the different values of the pressure is depicted in Fig. 7. From
this figure, we can see that, for the pressure below the critical
pressure Pc (0 < P < Pc), the Gibbs free energy shows the
swallowtail structure, which implies two second-order phase
transitions and one first-order phase transition. Also, based
on the Gibbs free energy, we can point out the Hawking–
Page phase transition (for P > 0), at which the Gibbs free
energy vanishes [6], occurring between the thermal radiation
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Fig. 7 Plots of the reduced Gibbs free energy G/Q as a function of the
reduced temperature T × Q under the different values of the pressure.
The orange, green, dashed black, blue, red, and black curves correspond
to l/Q = 9, 10,≈ 11.5637, 15, 20,∞.

Table 2 The numerical results
of the critical horizon radius and
the critical temperature at the
Hawking–Page phase transition
for the different values of l/Q

l/Q rHP/Q THP × Q

9 8.3215 0.0332

10 9.3118 0.0301

11.5637 10.8787 0.0263

15 14.3535 0.0206

20 19.4221 0.0156

25 24.4820 0.0126

30 29.5310 0.0105

35 34.5713 0.0090

and the large black hole. The critical temperature THP and
the critical horizon radius rH P , corresponding to this phase
transition, are numerically given in Table 2.

We now discuss the thermodynamic phases of the black
hole and their stability. The black hole of the zero temperature
is of course extremal configuration which can be considered
as true ground state with the minimized enthalpy. The black
hole of the temperature T , satisfying 0 < T < Tmin, is small
stable near-extremal configuration. For the temperature of
the black hole satisfying Tmin < T < Tmax, there are triplet
configurations but in general with the different Gibbs free
energy: small stable near-extremal configuration, medium
unstable configuration, large stable configuration. The black
hole satisfying T > Tmax is large stable configuration. In
order to obtain more details, we should consider the off-shell
Gibbs free energy

Goff = M(r+) − T S(r+), (52)

with the temperature T to be a free parameter. The off-shell
Gibbs free energy Goff describes the evolution of the system
towards equilibrium configurations, which are the extremal
points of Goff, in the thermal bath of the temperature T . The
extremal points of Goff satisfy

∂Goff

∂r+
= 0 −→ T = ∂M

∂r+

(
∂S

∂r+

)−1

. (53)

It means that the extremal points of Goff correspond to the
black hole configurations of the temperature T . More specif-
ically, the global or local minimums of Goff may correspond
to the small stable near-extremal black hole or large stable
one with the temperature T . Whereas, the local maximum of
Goff corresponds to the medium unstable black hole which
would decay into a small stable near-extremal one or a large
stable one. The off-shell Gibbs free energy as a function of
r+ under the different values of the temperature is depicted
in Figs. 8 and 9. Based on the off-shell Gibbs free energy, we
can realize the following:

5 10 15 20 25 30 35

r

Q

2

2

4

6

8

G
Q
off

Fig. 8 Plots of the reduced off-shell Gibbs free energy Goff/Q as a
function of r+/Q under the different values of the temperature T of the
thermal bath, for l/Q = 25. The dashed black, blue, red, green, orange,
purple, pink, and black curves correspond to the reduced temperature
T ×Q = 0, 0.009, ≈ 0.0109 (Tmin ×Q), 0.0113, ≈ 0.0117 (Tdeg ×Q),
0.013, ≈ 0.0175 (Tmax × Q), 0.019. The extremal points of each curve
refer to the black hole configurations of the corresponding temperature.
For T = Tmax (or T = Tmin), the local minimum and maximum of Goff
merge into an inflexion point
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r

Q

25
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Q

Fig. 9 This is an extension of Fig. 8
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Table 3 The numerical results of the reduced degenerate tempera-
ture Tdeg/Q and the corresponding reduced event horizons rd1/Q and
rd2/Q, under the different values of the pressure

l/Q rd1/Q rd2/Q Tdeg × Q

15 2.5954 10.0392 0.01816

20 2.1870 15.5869 0.0143

25 2.0186 20.8483 0.0117

30 1.9246 26.0092 0.0099

35 1.8644 31.1204 0.0086

40 1.8224 36.2027 0.0076

45 1.7914 41.2664 0.0068

50 1.7675 46.3175 0.0061

1. For given pressure, there exists a degenerate temperature
Tdeg (Tmin < Tdeg < Tmax) such that the global minimum
ofGoff is degenerate. Thus, the small stable near-extremal
black hole and large stable one at the temperature T =
Tdeg have the same Gibbs free energy. It means that the
system is in a mixed state. The degenerate temperature
Tdeg is numerically given in the Table 3.

2. For Tmin < T < Tdeg, the small stable near-extremal
black hole corresponds to the global minimum of Goff,
whereas the large stable black hole corresponds to the
local minimum of Goff. Thus, the small stable near-
extremal black hole is more stable.

3. For Tdeg < T < Tmax, the small stable near-extremal
black hole corresponds to the local minimum of Goff,
whereas the large stable black hole corresponds to the
global minimum of Goff. Thus, the large stable black
hole is more stable.

4. The local minimum and maximum of Goff merge into
an inflexion point, as the temperature approaches T =
Tmax or T = Tmin, at which single/multiple configuration
transitions occur.

We arrive at investigating P − V (or P − r+) criticality,
when the temperature is kept fixed, to derive the Van der
Waals-like phase transition of the black hole. From Eqs. (34)
and (39), one can easily derive the equation of state P =
P(T, V ) for the black hole as

P = r2+ + Q2

2r3+
T + 1

8π

2Q6 + 3Q4r2+ + Q2r4+ − r6+
r4+(r2+ + Q2)3

, (54)

where

r+ =
√(

3V

4π

)2/3

− Q2, (55)

which implies that r+ is a function of the thermodynamic
variables V and Q. Note that, compared to Van der Waals
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r

Q0.0000
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0.0020
P Q2

Fig. 10 The P −r+ diagram for various temperatures. The red, green,
dashed black, blue, and organ curves correspond to T × Q = 0.03,
0.025, ≈ 0.0221 (Tc × Q), 0.0183, 0.0165

equation, one should identify the specific volume v as

v = 2r3+
r2+ + Q2

. (56)

The critical point can be derived through the following con-
dition

∂P

∂r+
= ∂2P

∂r2+
= 0, (57)

which leads to the corresponding critical quantities rc, Tc,
Pc as being obtained at above. The Van der Waals-like phase
transition is more intuitively observed in Fig. 10 where the
isotherms in the P −r+ diagram are plotted under the differ-
ent values of the temperature. This result shows that P − V
criticality appears in even the non-linear charged AdS black
hole. And, thus P − V criticality is actually universal as
demonstrated in a general framework [25]. It can find a uni-
versal constant given by

Pcvc
Tc

≈ 0.3515, (58)

which is slightly smaller than the value 3/8 ≈ 0.3750 of the
Van der Waals fluid.

Note that, P−V criticality was also derived in some non-
linear charged AdS black hole [24]. However, there has some
essential difference compared to the present work. Like in the
case of the charged AdS black hole [15], the Maxwell’s equal
area law is valid in our case, meaning that

∮
VdP = 0. (59)

However, in Ref. [24] this law is no longer valid due to the
fact that the magnetic charge Qm and the parameter σ are
both treated as thermodynamic variables. As result, the true
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critical point of the Van der Waals-like phase transition does
not coincide with the inflection point of the isotherms.

We end this subsection by calculating the critical expo-
nents which characterize the behavior of the relevant ther-
modynamical quantities near the critical point or inflection
point. First, we calculate the critical exponent α character-
izing the behavior of the specific heat CV = T

(
∂S/∂T

)
V

when the volume is fixed. Form Eqs. (35) and (55), it is
clearly that the entropy S is independent of the temperature
T . This means that CV = 0 and thus we have α = 0. In
order to derive other critical exponents, β (characterizing
the behavior of the order parameter), γ (characterizing the
behavior of isothermal compressibility), and δ (characteriz-
ing the behavior of the critical isotherm corresponding to the
critical temperature Tc), we can expand near the critical point
as

r+ = rc(1 + ε), T = Tc(1 + t), P = pPc, (60)

where the dimensionless quantities satisfy |ε|, |t | � 1. Sub-
stituting these expansions into the expression of the pressure
(54), we get

p = 1 + At + Btε + Cε3 + O(tε2, tε3, ε4), (61)

where

A = r̄2
c + 1

r̄3
c

Tc
2QPc

, (62)

B = r̄2
c + 1

r̄3
c

3Tc
2QPc

, (63)

C = −10 + r̄2
c (49 + 95r̄2

c + 90r̄4
c + 37r̄6

c + 10r̄8
c − r̄10

c )

2π r̄4
c (r̄

2
c + 1)5Q2Pc

− r̄2
c + 10

2r̄3
c

Tc
QPc

. (64)

Clearly, the form of this equation is the same as that for the
Van der Waals system as well as the RN-AdS black hole [15].
Thus, three critical exponents, β, γ , and δ should be the same
those obtained for the RN-AdS black hole

β = 1

2
, γ = 1, δ = 3. (65)

4 Conclusion

In this paper, we derived a charged black hole solution from
Einstein gravity coupled to a non-linear electromagnetic field
in the AdS spacetime. At the large distances corresponding to
the weak non-linear electrostatic field, this black hole solu-
tion behaves like the RN-AdS black hole. However, in the
short distance regime corresponding to the strong non-linear
electrostatic field, this solution behaves like a dS geometry.

Furthermore, the relation of the black hole mass with respect
to the horizon radius is analyzed in details.

Also, we have studied the thermodynamics and thermal
phase transitions of the black hole. The thermodynamic quan-
tities of the black hole have been calculated: the Hawking
temperature, the entropy, the chemical potential, the heat
capacity at the constant pressure, the Gibbs free energy and
the equation of state. We pointed to the thermal phase tran-
sitions of the black hole, in the isobaric and isothermal pro-
cesses, relying on the discontinuous change of the heat capac-
ity and the swallowtail structure of the Gibbs free energy. In
order to characterize the behavior of the relevant thermody-
namical quantities near the critical point, we calculated the
critical exponents. Additionally, we analyzed the thermody-
namic phases of the black hole and their stability, based on
the off-shell Gibbs free energy.
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27. N. Altamirano, D. Kubizňák, R.B. Mann, Phys. Rev. D 88, 101502

(2013)
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