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Abstract We calculate the two-body strong decays of the
orbitally excited scalar mesons D∗

0(2400) and D∗
J (3000) by

using the relativistic Bethe–Salpeter (BS) method. D∗
J (3000)

was observed recently by the LHCb Collaboration, the quan-
tum number of which has not been determined yet. In this
paper, we assume that it is the 0+(2P) state and obtain the
transition amplitude by using the PCAC relation, low-energy
theorem and effective Lagrangian method. For the 1P state,
the total widths of D∗

0(2400)0 and D∗
0(2400)+ are 226 and

246 MeV, respectively. With the assumption of 0+(2P) state,
the widths of D∗

J (3000)0 and D∗
J (3000)+ are both about 131

MeV, which is close to the present experimental data. There-
fore, D∗

J (3000) is a strong candidate for the 23P0 state.

1 Introduction

In recent years, many new charmed mesons have been discov-
ered experimentally, including lots of orbitally high excited
states. For example, in 2004, the FOCUS Collaboration [1]
and the Belle Collaboration [2] observed the D∗

0 , which is
the 1P scalar and has been studied widely and carefully
[3–5]. In 2013, the LHCb collaboration announced sev-
eral new charmed structures, including the DJ (3000) and
D∗

J (3000) [6]. The DJ (3000) was observed in the D∗π mass
spectrum. Its mass and width are 2971.8 ± 8.7 MeV and
188.1 ± 44.8 MeV, respectively. Spin analysis indicates that
DJ (3000) has an unnatural parity, and the assignments of
2P(1+), 3S(0−) and 1F(3+) etc. have been discussed [7–
10]. Our previous study favored the broad 2P(1+) assign-
ments [11].

The D∗
J (3000) is observed in the Dπ mass spectrum,

whose mass and width are

a e-mail: thwang@hit.edu.cn

MD∗
J (3000) = 3008.1 ± 4.0 MeV,

�D∗
J (3000) = 110.5 ± 11.5 MeV. (1)

The parity of this particle is still uncertain in present experi-
ments. From its decay mode of Dπ , many authors treat it as
a natural parity particle. Considering that its mass is around
3000 MeV, the assignments of 23P0, 13F4, 33S1, 13F2 and
23P2 are possible [12]. Different models give the theoreti-
cal predictions of their masses and we summarized them in
Table 1. The OZI-allowed strong decays with these possible
assignments also have been studied by several models, and
the results are summarized in Table 2.

Since the parity is conserved in strong decays, the D∗π
channel is forbidden for the 3P0 states. In Table 2, all assign-
ments except 23P0 have both Dπ and D∗π decay modes and
most calculations give the similar decay widths of these two
channels. However, DJ (3000) was only found in D∗π spec-
trum, while D∗

J (3000) only in Dπ spectrum [6] in LHCb
experiment. The theoretical results that D∗

J (3000) has simi-
lar decay widths of Dπ and D∗π modes are not consistent
with present experimental data. Thus, the assignment of 23P0

for D∗
J (3000) is more reasonable and some recent researches

also favor this assignment [17].
We also note that the theoretical predictions for the total

widths of D∗
J (3000) as the 23P0 state are larger than the

experimental data. It can be explained that the estimated
decay width by calculating the OZI-allowed strong decays
is sensitive to its mass and there are divergences of the mass
values between the preliminary detection of the D∗

J (3000)

with the present theoretical predictions. In our previous work,
we have found that the excited states have large relativis-
tic corrections, so non-relativistic or semi-relativistic models
may give large uncertainties. This conclusion can be obtained
from the results in Table 2: all the assignments of D∗

J (3000)

are highly excited states and The corresponding results vary
from different methods. For example, the total width for the
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Table 1 Several natural parity candidates of D∗
J (3000)0 (MeV)

J P n2S+1 JL Godfrey 1985 [13] Pierro 2001 [14] Ebert 2009 [15] Sun 2013 [7] Godfrey 2016 [10]

0+ 13P0 2400 2377 2466 2398 2399

23P0 – 2949 2919 2932 2931

1− 33S1 – 3226 3096 3111 3110

2+ 23P2 – 3035 3012 2957 2957

3− 13D3 2830 2799 2863 2833 2833

23D3 – – 3335 3226 3226

4+ 13F4 3110 3091 3187 3113 3113

Table 2 Decay widths of
D∗

J (3000)0 with different
assignments (MeV)

n2S+1L J Mode Sun [7] Yu [9] Lü [8] Song [16] Godfrey [10]

33S1 Dπ 0.91 5.45 14.0 13.5 3.21

D∗π 3.5 4.85 19.4 25.7 5.6

Total 18.0 87.2 158.0 103.0 80.4

23P0 Dπ 49 35.9 83.5 72.5 25.4

D∗π – – – – –

Total 194 224.5 639.3 298.4 190

23P2 Dπ 1.8 5.0 1.92 1.46 5.0

D∗π 8.1 × 10−3 17.8 11.89 0.12 17.1

Total 47.0 174.5 110.5 68.9 114

13F2 Dπ 16 18.8 28.6 26.1 23.1

D∗π 13 15.7 21.0 18.8 18.5

Total 136 116.4 342.9 222.0 243

13F4 Dπ 1.2 21.3 9.96 4.97 15.8

D∗π 1.8 14.1 9.41 5.31 15.2

Total 39 102.3 103.9 94.5 129

33S1 case ranges from 18 to 158 MeV, which shows large
divergences between different methods.

Thus, we treat D∗
J (3000) as the second excited state of

P-wave scalar meson (23P0), and calculate its OZI-allowed
two-body strong decays, trying to find out if it is consistent
with the LHCb results. We use the improved Bethe–Salpeter
(BS) method [18,19] which contains the relativistic correc-
tions [20–22]. In all possible channels, there is a light meson
in the final state. We use the reduction formula, Partially
Conserved Axial-vector Current (PCAC) relation, and low-
energy theorem to deal with the case when the light final
meson is a pseudo-scalar. This approach cannot be applied
to the channels containing a light vector meson. So, we also
adopt the effective Lagrangian method [23].

The rest content of this paper is organized as follows. In
Sect. 2, we derive the form of transition amplitudes with
BS method and show the details of the effective Lagrangian
method. In Sect. 3, we give the numerical results of OZI-
alowed two-body strong decays of D∗

0(2400) and D∗
J (3000),

and compare them with other researches. Summary and con-
clusion are presented in Sect. 4.

D∗
0 0+

Pi,Mi

c

ū

d

Pf2,Mf2

π− 0−

Pf1,Mf1

D+ 0−

Fig. 1 Feynman diagram for the decay channel D∗
0 (2400)0 → D+π−

2 Two-body strong decay

We take the channel D∗
0(2400)0 → D+π− as an example

to illustrate the calculation details. The Feynman diagram of
this process is shown in Fig. 1.
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Pi,Mi

D∗
0 0+

ū d

Pf2,Mf2

π− 0−

Pf1,Mf1

D+ 0−

c

Fig. 2 Feynman diagram for D∗
0 (2400)0 → D+π− (with the low-

energy approximation)

By using the reduction formula, the transition matrix ele-
ment can be written as

T = 〈
D+(Pf 1)π

−(Pf 2)
∣∣D∗

0(Pi )
〉

=
∫

d4xeiPf 2·x (
M2

f 2 − P2
f 2

)
〈D+(Pf 1) |φπ(x)| D∗

0(Pi )〉,
(2)

where, φπ is the light pseudo-scalar meson field. By using
the PCAC relation, the field can be expressed as [24]

φπ(x) = 1

M2
f 2 fπ

∂μ(uγμγ5d), (3)

where M f 2 is the mass of π , and fπ is its decay constant.
Inserting Eq. (3) into Eq. (2), the transition matrix can be

written as

T = M2
f 2 − P2

f 2

M2
f 2 fπ

∫
d4xei P f 2·x 〈D+(Pf 1)

∣∣∂μ(uγμγ5d)
∣∣ D∗

0 (Pi )〉

= −iPμ
f 2(M

2
f 2 − P2

f 2)

M f 2 fπ

∫
d4xei P f 2·x 〈D+(Pf 1)

∣∣uγμγ5d
∣∣ D∗

0 (Pi )〉.
(4)

According to the low energy theorem [24], the momentum
of the light meson is much smaller than its mass and can be
ignored. Then the Feynman diagram turns to Fig. 2 and the
amplitude can be written as

T ≈ − i
Pμ
f 2

fπ

∫
d4xeiPf 2·x 〈D+(Pf 1)

∣∣uγμγ5d
∣∣ D∗

0 (Pi )〉

= − i
Pμ
f 2

fπ
(2π)4δ4(Pi − Pf 1 − Pf 2)〈D+(Pf 1)

∣∣uγμγ5d
∣∣ D∗

0 (Pi )〉.
(5)

Besides using the PCAC rule and low energy theorem, we
also use the effective Lagrangian method to get the transi-

tion amplitude of this process and the results of these two
approaches are consistent. The Lagrangian is introduced by
[11,23,25],

LqqP = g√
2 fh

q̄iγ
ξγ 5q j∂ξφi j , (6)

where

φi j = √
2

⎡

⎢
⎣

1√
2
π0 + 1√

6
η π+ K+

π− 1√
2
π0 + 1√

6
η K 0

K− K 0 − 2√
6
η

⎤

⎥
⎦ (7)

is the chiral field of the pseudoscalar meson. The quark-
meson coulping constant g is taken to be unity and fh is
the decay constant.

Within Mandelstam formalism [26], we can write the
hadronic transition amplitude as the overlap integral over
the relativistic wave functions of the initial and final mesons
[27]

M = − i
Pμ
f 2

fπ
〈D+(Pf 1)

∣∣uγμγ5d
∣∣ D∗

0(Pi )〉

= − i
Pμ
f 2

fπ

∫
d3q

(2π)3 Tr

[
ϕ++
Pf 1

(q f 1⊥)
/Pi

Mi
ϕ++
Pi

(q⊥)γμγ5

]
,

(8)

where q and q f 1 are the relative momenta between quark
and anti-quark in initial and final meson, respectively. For
the initial meson D∗

0(cū), q = pc − mc
mu+mc

Pi = mu
mu+mc

Pi −
pu , where mu , mc are the quark masses and pu and pc are
the quark momenta. And for the final meson D+(cd̄), due
to the conservation law of momentum, its internal relative
momentum is related to that of the initial meson by q f 1 =
q − mc

mc+md
Pf 1. Then, only the BS wave functions in the

transition amplitude need to be figured out.
The BS equation of two-body bound state can read in

momentum space as [18,22]

S−1
1 χP (q)S−1

2 = i
∫

d4k

(2π)4 I (P; q, k)χP (k), (9)

where χP (q) is the four-dimensional BS wave function;
I (P; q, k) is the interaction kernel; S1 and S2 are the propa-
gators for the quark and anti-quark respectively.

We follow Salpeter [19] to take the instantaneous approx-
imation I (P; q, k) ≈ I (q⊥ − k⊥) The three-dimensional
salpeter wave function ψ(q⊥) is defined by

ψ(q⊥) = i
∫

dqP
2π

χP (q), χP (q)

= S1(p1)

∫
d3k

(2π)3 I (q⊥ − k⊥)ψP (k⊥)S2(p2) (10)
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In this work, we adopt the Cornell potential as the inter-
action kernel I (r) as follow form [20,22]

I (r) = Vs(r) + V0 + γ0 ⊗ γ 0Vv(r)

= λ

α
(1 − e−αr ) + V0 − 4

3

αs

r
e−αr , (11)

where λ is the string constant, αs(r) is the running strong
coupling constant and V0 is an adjustable parameter fixed
by the meson’s mass. In momentum space, the potential can
read as

I (
q) = −
(

λ

α
+ V0

)
(2π)3δ3(
q) + λ

π2

1

(
q2 + α2)2

− 2

3π2

αs(
q)

(
q2) + α2 , (12)

where the coupling constant αs(
q) is defined by:

αs(
q) = 12π

27

1

log

(
α + 
q2

�2
QCD

) . (13)

In the above process, we take the instantaneous approx-
imation in the interaction kernel, where we omit the retar-
dation effect. According to the results of paper [28–30], this
effect affects much on the light mesons, but has limited influ-
ence on the heavy-flavor mesons, because these mesons have
larger mass values. In addition, retardation effect mainly
affects the mass spectra prediction. When we calculate the
decay width, we adjust the V0 to match the experimental data,
which further reduces this effect. The results of our previous
work [22,31] are agree with experimental data very well, so
the instantaneous approximation is applicable for heavy-light
mesons.

Then, we express the relativistic wave function of a scalar
meson with instantaneous approximation (Pi · q = 0) as

ϕ0+(q⊥) = M

[
/q⊥
M

fa1(q⊥) + /P/q⊥
M2 fa2(q⊥) + fa3(q⊥)

+ /P

M
fa4(q⊥)

]
, (14)

where fai (i = 1, 2, 3, 4) are the functions of q2⊥ and their
value can be obtained by solving the full Salpeter equations.
It is notable that ϕ0+(q⊥) is a general form for J P = 0+
states and the items containingq are the high order relativistic
corrections.

Within BS method, the four wave functions fai are not
independent, they have the following relations [32]

fa3 = q2⊥(ω1 + ω2)

M(m1ω2 + m2ω1)
fa1,

fa4 = q2⊥(ω1 − ω2)

M(m1ω2 + m2ω1)
fa2, (15)

where m1 = mc, m2 = mu , ω1 =
√
m2

1 − q2⊥, and ω2 =
√
m2

2 − q2⊥.
In our calculation, we only keep the positive energy parts

ϕ++
Pi

(qi⊥) of the relativistic wave functions because the neg-
ative energy part contributes too small [23]. The positive
energy part of the wave function can be written as

ϕ++
0+ (q⊥) = A1 + A2

/P

M
+ A3

/q⊥
M

+ A4
/P/q⊥
M2 , (16)

where

A1 = (ω1 + ω2)q2⊥
2(m1ω2 + m2ω1)

(
fa1 + m1 + m2

ω1 + ω2
fa2

)
,

A2 = (m1 − m2)q2⊥
2(m1ω2 + m2ω1)

(
fa1 + m1 + m2

ω1 + ω2
fa2

)
,

A3 = M

2

(
fa1 + m1 + m2

ω1 + ω2
fa2

)
,

A4 = M

2

(
ω1 + ω2

m1 + m2
fa1 + fa2

)
. (17)

To calculate the values of wave functions, we should deter-
mine the parameters’ values in the interaction kernel. We try
to fix V0 by the mass of the ground state. In this case, the
theoretical mass of D∗

J (3000) is much less than the present
experimental data. Thus, we adjust V0 to make its mass value
be equal to the experimental data, then get the wave func-
tions. In this work, besides the wave function for 0+ state,
we also need the wave functions of 0−, 1−, 1+, etc., which
are presented in the appendix.

After finishing the integral, we can get the amplitude of
0+ → 0−0− as follow

M(0+→0−0−) = −i
Pμ
f 2

fπ
(Pμn1 + Pf 1μn2), (18)

where n1 and n2 are the form factors. They are the overlap
integral over the wave functions of the initial and final states.

If the final light meson is η or η′, the η−η′ mixing should
be considered

(
η

η′
)

=
(

cos θP − sin θP
sin θP cos θP

) (
η8

η1

)
, (19)

where η1 = (uū+dd̄+ss̄)/
√

3 and η8 = (uū + dd̄ − 2ss̄)/√
6, we choose the mixing angle θP = −11.4◦ [33]. Then,

we get the transition amplitude with an extra coefficient after
considering the mixing

M(η) = −iPμ
f 2M

2
η

(
cos θP√
6 fη8 M

2
η8

− sin θP√
3 fη1 M

2
η1

)

〈D0(Pf 1)
∣∣uγμγ5u

∣∣ D∗
0(Pi )〉,
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M(η′) = −iPμ
f 2M

2
η′

(
sin θP√
6 fη8 M

2
η8

+ cos θP√
3 fη1 M

2
η1

)

〈D0(Pf 1)
∣∣uγμγ5u

∣∣ D∗
0(Pi )〉.

(20)

In the case when heavy-light 1+ state is involved, if we use
the S-L coupling, the 3P1 and 1P1 states cannot describe the
physical states. Within the heavy quark limit(mQ → ∞), its
spin decouples and the properties of the heavy-light 1+ state
are determined by those of the light quarks. So j- j coupling
should be used instead. The orbital angular momentum 
L
couples with the light quark spin 
sq , which is 
jl = 
L + 
sq .
Then 1+ state can be grouped into a doublet by the total
angular momentum of the light quark(| jl = 1/2〉 and | jl =
3/2〉). The relation between the two descriptions are [34,35]

( |J P = 1+, jl = 3/2〉
|J P = 1+, jl = 1/2〉

)
=

(
cos θ sin θ

− sin θ cos θ

) ( |1P1〉
|3P1〉

)
.

(21)

In our method, we solve the Salpeter equations for 3P1 and
1P1 states individually, and use these mixing relations to cal-
culate the contributions of two physical 1+ states. We list
some mixing states related to our work

(
D1(2420)

D1(2430)

)
=

(
cos θ sin θ

− sin θ cos θ

) (
D(11P1)

D(13P1)

)
, (22)

(
Ds1(2536)

Ds1(2460)

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Ds(11P1)

Ds(13P1)

)
. (23)

In our calculation, for these doublets, we choose the ideal
mixing angle θ = 35.3◦ in the heavy quark limit.

For the 3P1(1++) and 1P1(1+−) states, the corresponding
hadronic transition amplitudes are

M(0+→1++0−) = −i

fπ
ε1μP

μt1,

M(0+→1+−0−) = −i

fπ
ε1μP

μt2, (24)

where ε is the polarization vector of the 1+ state; t1 and t2
are the form factors. Then, the form factors of the physical
states are

tD1(2420),Ds1(2536) = t2 cos θ + t1 sin θ,

tD1(2430),Ds1(2460) = −t2 sin θ + t1 cos θ. (25)

The PCAC rule can only be applied to light pseudo-scalar
mesons and it is not valid for light vector meson. If ρ or
ω meson appears in the final states, we choose the effective
Lagrangian method to calculate the transition amplitude. The

Lagrangian of quark-meson coupling can be expressed as
[11,23,25]

LqqV = q̄i

(

aγμ + ib

2MPf 2

σμν P
ν
f 2

)

Vμ
i j q j , (26)

where Vμ
i j is the field of the light vector meson; qi and q̄ j are

its constitute quarks. And we choose the parameters a = −3
and b = 2 which represent the vector and tensor coupling
strength [23], respectively. Then we use Eq. (26) to derive the
light-vector meson’s vertex and get the transition amplitude

M = −i
∫

d3q

(2π)3 Tr

[
ϕ++
Pf 1

(q f 1⊥)
/Pi

Mi
ϕ++
Pi

(q⊥)(aγμ

+ ib

2M f 2
σμν P

ν
f 2)ε

μ
2

]
. (27)

After finishing the trace and integral, the transition ampli-
tudes can be expressed as

M(0+→1−1−) = ε1με
μ
2 t1 + ε1μP

με2νP
ν t2, (28)

where ε1μ and ε2ν are the polarization vectors of final heavy
vector meson and the light vector meson, respectively; t1, t2
and t3 are the form factors.

Then, the two-body decay width can be expressed as

� = 1

8π

| 
Pf 1|
M2

i

|M|2, (29)

where 
Pf 1 is the three-dimensional momentum of the final
charmed meson

| 
Pf 1| =
√√√√

(
M2

i + M2
f 1 − M2

f 2

2Mi

)2

− M2
f 1. (30)

3 Results and discussion

In this paper, the masses of constituent quarks that we
adopt are listed as follows: mu = 0.305 GeV, md =
0.311 GeV, ms = 0.50 GeV, and mc = 1.62 GeV [21].
Other parameters are α = 0.060 GeV, λ = 0.210 GeV2,
�QCD = 0.270 GeV, fπ = 0.1304 GeV, fK = 0.1562 GeV
[33], fη1 = 1.07 fπ , fη8 = 1.26 fπ , Mη1 = 0.923 GeV,
and Mη8 = 0.604 GeV [23]. The masses of other involved
mesons are shown in Table 3.

We first calculate the the decay widths of the 1P states. It
only have two OZI-allowed decay channels and the results
are presented in Table 4. In the case of D∗

0(2400)0, the decay
width of D+π− is almost twice as that of D0π0. Because
there is a factor 1/

√
2 in the constitute quarks of π0. Other

decays that involve ρ0 and ω0 have similar relation too.
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Table 3 Masses of involved
mesons (GeV) [33] mD∗

0 (2400)0 = 2.318 mD∗
0 (2400)+ = 2.351 mD∗

J (3000)(0,+) = 3.008 mD+
s

= 1.968

mD1(2420)0 = 2.421 mD1(2420)+ = 2.423 mD1(2430)(0,+) = 2.427 mD∗+
s

= 2.112

Table 4 D∗
0 (2400)0,+ strong

decay widths (MeV). Ref. [5]
adopts Chiral Quark Model,
Ref. [3] adopts the 3P0 Model
and Ref. [4] adopts the
Pseudoscalar Emission Model

Chanel Ours Ref. [5] Ref. [3] Ref. [4] Exp. [33]

D∗
0 (2400)0 → D+π− 151.5 266 283 277 267 ± 40

D0π0 74.8

D∗
0 (2400)+ → D+π0 81.6 � � � 230 ± 17

D0π+ 164.3

The total decay width of D∗
0(2400)+ is larger than that

of D∗
0(2400)0 in our calculation, which are 245.9 and 226.3

MeV, respectively. According to the present experimental
data, the charged D∗

0(2400)+ is heavier than the neutral
D∗

0(2400)0. The different phase spaces may result in this
discrepancy. We also notice that the estimated decay widths
are sensitive to the mass of the initial meson. Considering
the experimental mass values have errors (mD∗

0 (2400)0 =
2318 ± 29 MeV, mD∗

0 (2400)± = 2351 ± 7MeV [33]) and
these experimental masses value have divergence with dif-
ferent theoretical predictions [7,10,13–15], we give the two-
body decay width changing along with the initial meson mass
from 2300 to 2420 MeV, which is shown in Fig. 3a. The neu-
tral one’s total decay width changes from 214.0 to 287.2
MeV, and the charged one’s is from 212.7 to 289.0 MeV.
We believe that these OZI-allowed decays happen around
the mass threshold, which results in such sensitivity of decay
width to the initial 1P state mass.

In Table 4, we also list the results from other models [3–5]
as well as the experimental results for comparison. According
to Table 4 and Fig. 3a, we conclude that our results of the 1P
states are consistent with experimental data, which means we
can apply the same method to study the 2P states.

Under the assumption of 0+(2P) state, the results of ours
and other models are shown in Table 5. The total width of our
calculation is 130.2 MeV, which is smaller than the results
of other models and close to the upper limit of experimental
value. Though the 2P state D∗

J (3000)0 has larger phase space
and more decay channels than those of 1P state D∗

0(2400)0,
why we get a narrower full width? The reason is the different
structures of wave functions. The numerical values of the
wave functions fa1 and fa2 for 1P state as the function of
internal momentum |
q| are all positive (Fig. 4a), while the
wave functions of the 2P state have a node (Fig. 4b). The
wave function values after the node become negative and it
makes contrary contribution to the positive part, which will
cause cancellation in the overlap integral between these two
parts. The node structure reduces the decay width of the 2P
state.

From our results, the channels of Dπ, D1(2420)π, Dρ

give large contribution to the full decay width, and D1(2420)π

channel is dominant. As shown in Eq. (8), large transition
amplitude means that these three channels have large over-
lap integrals. For example, we draw the wave functions of
final state D1(2420)(3P1and1P1) and initial D∗

J (3000) in
Fig. 4c, d. When the recoil momentum of the final meson is
small (ignoring the difference between internal momenta of
the initial and final states here), the peak values of the ini-
tial and final wave functions are coincident. Thus, we obtain
large overlap integral values of the wave functions before
the 2P node. However, the part after the node gives small
cancellation since the corresponding values of the 1P wave
function are small at this time. As a result, we obtain a large
decay width of D1(2420)π channel.

Other examples of D(11S0) and D(21S0) are shown in
Fig. 4e, f. For the channel of D(11S0)π , when compared
with D1(2420)π , the part after the node gives negative con-
tribution. Because the peak values of the those wave func-
tions are not coincident, the positive contribution of the part
before the node is not dominant. The negative part after the
node changes the sign of the overlap integral, which cause
the width of D(11S0)π is narrower than that of D1(2420)π .
For the D(21S0)π channel, both wave functions have node
structure. Compared with D(11S0)π channel, the contribu-
tion from the part before the 2P node is obviously smaller for
D(21S0)π . But the contribution after the 2P node becomes
positive again because both wave functions (2S and 2P
states) are negative at this time. Therefore, although the phase
space is narrow, the decay width of D(21S0)π channel is not
very small.

It has been mentioned in Sect. 1 that the relativistic cor-
rections are large for the excited states. We can explain this
argument according to the figures of the wave functions. If
contribution from large internal momentum q is significant,
we can conclude that relativistic corrections are considerable.
In Fig. 4e, for the 1S state, the peak value of the wave func-
tion appear in the region of small q, while for the 1P state, in
Fig. 4c, d, the peak values appear in the region of middle q.
This means the 1P state has larger relativistic correction than
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Fig. 3 Total decay widths of D∗
0 (2400) and D∗

J (3000) change with the masses

Table 5 Two-body strong decay
widths (MeV) of D∗

J (3000)0 as
the 2P(0+) state. “-” means the
channel is forbidden, “�”
means the channel is not
included by this method. Ref.
[9] uses 3P0 Model; Ref. [7]
uses QPC Model; Ref. [10] uses
Relativistic quark model and
Ref. [17] uses effective
Lagrangian approach

Chanel Final states Ours Ref. [9] Ref. [7] Ref. [10] Ref. [17]

D(1S0)π D+π− 11.6 23.94 49 25.4 66.2

D0π0 6.1 11.97 33.3

D(21S0)π D(2550)+π− 6.9 � � 18.6 �
D(2550)0π0 3.3

Dη D0η0 0.51 4.26 8.8 1.53 10.8

Dη′ D0η′0 6.0 1.07 2.7 4.94 �
DsK D+

s K− ∼10−3 2.85 6.6 0.76 54.2

D1(2420)π D1(2420)0π0 18.7 26.20 38 96.1(1P1) �
D1(2420)+π− 36.8 �

D1(2420)η D1(2420)0η0 0.85 1.37 1.1 � �
D1(2430)π D1(2430)0π0 2.1 6.69 30 � �

D1(2430)+π− 4.1 �
D1(2430)η D1(2430)0η0 0.12 0.35 0.91 � �
Ds(2460)K Ds1(2460)+K− 1.2 12.81 1.5 � �
D∗ρ D∗(2007)0ρ0 7.0 31.60 41 32 �

D∗(2010)+ρ− 13.3 62.01

D∗ω D∗(2007)0ω0 7.5 29.91 13 10.2 �
D∗
s K

∗ D∗+
s K ∗(892)− 4.1 3.06 1.0 � �

Ds(2536)K− Ds1(2536)+K− – 6.40 – – –

Total 130.2 224.5 193.6 189.5 164.5

Experimental value 110.5 ± 11.5

that of the 1S ground state. When comparing Fig. 4e with Fig.
4f, wave functions after the node give sizable contribution,
which happens in large q region. This means higher excited
states have larger relativistic corrections. So we conclude that
a relativistic model is needed to deal with the excited state
problem.

In our study, we also calculate the decay widths of
D∗

J (3000)+, shown in Table 6. All channels are similar to
D∗

J (3000)0, and the full width is 131.3 MeV.
Considering many theoretical prediction of the mass are

lower than 3000 MeV [7,10,13–15] and the properties of
these states could be revised after more experimental data
collected, we also calculate the total width changing with the
mass from 2900 to 3020 MeV, which is shown in Fig. 3b. The
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Fig. 4 Several examples of wave functions for some states

total width of the neutral one ranges from 135.6 to 126.3 MeV,
while the charged one’s result changes from 136.8 to 127.7
MeV. The full width of the 2P state becomes narrower along
with the phase space increasing, which is opposite to that of

the 1P case. The reason is that the recoil momentum becomes
more considerable when phase space is larger for the 2P
state. This results in greater contribution from the part after
the nodes, so the decay width gets smaller. We also notice
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Table 6 Two-body strong
decay widths (MeV) of
D∗

J (3000)+ as the 2P(0+) state

Chanel Final states Width Chanel Final states Width

D(1S0)π D+π0 6.5 D(21S0)π D0π+ 3.8

D0π+ 13.5 D0π+ 7.7

Dη D0η0 0.56 Dη′ D0η′0 5.7

D(2420)π D1(2420)+π0 18.3 D(2430)π D1(2430)+π0 2.1

D1(2420)0π+ 37.4 D1(2430)0π+ 4.3

D(2420)η D1(2420)+η0 0.77 D(2430)η D1(2430)+η0 0.11

D∗ρ D∗(2010)+ρ0 6.1 D∗ω D∗(2010)+ω0 6.5

D∗(2007)0ρ− 12.9 Ds(2460)K Ds1(2460)+K 0 1.2

DsK D+
s K 0 0.05 D∗

s K
∗ D∗+

s K ∗(892)0 3.8

Total 131.3

that there is a rise at the tail of the curve. It is because some
new channels open when the mass of D∗

J (3000) increase to
3000 MeV, such as D∗

s K
∗, D1(2420)η, D1(2430)η. Thus,

the total widths have the sudden rise.

4 Summary

In this work, we study the two-body strong decay properties
of two orbitally excited scalar D mesons by the improved BS
method. Our results of the D∗

0(2400), as the 0+(1P) states,
are consistent with the present experimental data, which
shows the suitability of our method. However, the sensitivity
of decay width to its mass means more precise measure-
ments are needed. For the 0+(2P) assignment of D∗

J (3000),
the full decay width is about 131 MeV, which is a little higher
but close to the present experimental data. Besides the Dπ

mode, we find Dρ and D1(2420)π channels also contribute
much to the full width, and they can be helpful in the further
investigation. Considering the theoretical uncertainties from
relativistic corrections of highly excited states and the prelim-
inary experimental data at present, D∗

J (3000) is still a strong
candidate for the 23P0 state. We expect more experimental
and theoretical efforts on this newly discovered resonance.
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Appendix: Bethe–Salpeter wave functions

BS method has been used extensively to describe the prop-
erties of heavy-light mesons [32,36]. Here we only list some
wave functions related to this work [20,37]

1. Wave function of 0− state

The general form of the wave function is

ϕ0−(q⊥) = M

[
/P

M
fb1(q⊥) + fb2(q⊥) + /q⊥

M
fb3(q⊥)

+ /P/q⊥
M2 fb4(q⊥)

]
γ5, (A.1)

where constraint conditions are

fb3 = M(ω2 − ω1)

m1ω2 + m2ω1
fb2,

fb4 = − M(ω1 + ω2

m1ω2 + m2ω1
fb1. (A.2)

The positive part is expressed as

ϕ++
0− (q⊥) =

[
B1(q⊥) + /P

M
B2(q⊥) + /P

M
B3(q⊥)

+ /P/q⊥
M2 B4(q⊥)

]
γ5. (A.3)

where

B1 = M

2

(
ω1 + ω2

m1 + m2
fb1 + fb2

)
,

B2 = M

2

(
fb1 + m1 + m2

ω1 + ω2
fb2

)
,

B3 = − M(ω1 − ω2)

m1ω2 + m2ω1
B1,

B4 = − (m1 + m2)M

m1ω2 + m2ω1
B1. (A.4)
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2. Wave function of 1+ state

We separate pseudo-vector 1+ state into 1++ and 1+− to
discuss. The general form of 1++(3P1) state is

ϕ1++(q⊥) = iεμναβ

Pν

M
qα⊥εβγ μ

[
γ μ fc1

+ /P

M
γμ fc2 + q⊥

M
γ μ fc3 + /Pγ μ

/q⊥
M2 fc4

]
,

(B.5)

where constraint conditions are

fc3 = − M(ω1 − ω2)

m1ω2 + m2ω1
fc1,

fc4 = M(ω1 + ω2)

m1ω2 + m2ω1
fc2.

(B.6)

The positve part of the wave function is

ϕ++
1++(q⊥) = iεμναβ

Pν

M
qα⊥εβγ μ

[
C1(q⊥) + /P

M
C2(q⊥)

+q⊥
M

C3(q⊥) + /P/q⊥
M2 C4(q⊥)

]
. (B.7)

where the conefficients are

C1 = 1

2

(
fc1 + ω1 + ω2

m1 + m2
fc2

)
,

C2 = −1

2

(
m1 + m2

ω1 + ω2
fc1 + fc2

)
,

C3 = M(ω1 − ω2)

m1ω2 + m2ω1
C1,

C4 = − M(m1 + m2)

m1ω2 + m2ω1
C1.

(B.8)

And the general form of 1+−(1P1) state is

ϕ1+−(q⊥) = q⊥ · ε

[
fd1(q⊥) + /P

M
fd2(q⊥)

+ /q⊥
M

fd3(q⊥) + /P/q⊥
M2 fd4(q⊥)

]
γ5, (B.9)

Similar constraint condition is

fd3 = − M(ω1 − ω2)

m1ω2 + m2ω1
fd1,

fd4 = − M(ω1 + ω2)

m1ω2 + m2ω1
fd2.

(B.10)

The postive part of the wave function is

ϕ++
1+−(q⊥) = q⊥ · ε

[
D1(q⊥) + /P

M
D2(q⊥)

+ /q⊥
M

D3(q⊥) + /P/q⊥
M2 D4(q⊥)

]
γ5. (B.11)

where

D1 = 1

2

(
fd1 + ω1 + ω2

m1 + m2
fd2

)
,

D2 = 1

2

(
m1 + m2

ω1 + ω2
fd1 + fd2

)
,

D3 = − M(ω1 − ω2)

m1ω2 + m2ω1
D1,

D4 = − M(m1 + m2)

m1ω2 + m2ω1
D1.

(B.12)

3. Wave function of 1− state

The wave function of 1−(3S1) state is

ϕ1−(q⊥) = (q⊥ · ε)

[
fe1(q⊥) + /P

M
fe2(q⊥) + /q⊥

M
fe3(q⊥)

+ /P/q⊥
M2 fe4(q⊥)

]

+ M/ε

[
fe5(q⊥) + /P

M
fe6(q⊥) + /q⊥

M
fe7(q⊥)

+ /P/q⊥
M2 fe8(q⊥)

]
.

(C.13)

Constraint conditions are

fe1 = q2⊥ fe3(ω1+ω2)+2M2 fe5ω2
M(m1ω2+m2ω1)

,

fe2 = q2⊥ fe4(ω1−ω2)+2M2 fe6ω2
M(m1ω2+m2ω1)

,

fe7 = M(ω1−ω2
m1ω2+m2ω1

fe5,

fe8 = M(ω1+ω2)
m1ω2+m2ω1

fe6. (C.14)

The positive part of the wave function is

ϕ++
1− (q⊥) = (q⊥ · ε)

[
E1(q⊥) + /P

M E2(q⊥)

+ /q⊥
M E3(q⊥) + /P/q⊥

M2 E4(q⊥)
]

+M/ε
[
E5(q⊥) + /P

M E6(q⊥)

+ /q⊥
M E7(q⊥) + /P/q⊥

M2 E8(q⊥)
]
, (C.15)

123



Eur. Phys. J. C (2018) 78 :583 Page 11 of 11 583

where the coefficients are

E1 = 1

2M(m1ω2 + m2ω1)

[
(ω1 + ω2)q

2⊥ fe3

+(m1 + m2)q
2⊥ fe4 + 2M2ω2 fe5 − 2M2m2 fe6

]
,

E2 = 1

2M(m1ω2 + m2ω1

[
(m1 − m2)q

2⊥ fe3

+(ω1 − ω2)q
2⊥ fe4 − 2M2m2 fe5 + 2M2ω2 fe6

]
,

E3 = 1

2

[
fe3 + m1 + m2

ω1 + ω2
fe4 − 2M2

m1ω2 + m2ω1
fe6

]
,

E4 = 1

2

[
ω1 + ω2

m1 + m2
fe3 + fe4 − 2M2

m1ω2 + m2ω1
fe5

]
,

E5 = 1

2

[
fe5 − ω1 + ω2

m1 + m2
fe6

]
,

E6 = 1

2

[
−m1 + m2

ω1 + ω2
fe5 + fe6

]
,

E7 = M

2

ω1 − ω2

m1ω2 + m2ω1

[
fe5 − ω1 + ω2

m1 + m2
fe6

]
,

E8 = M

2

m1 + m2

m1ω2 + m2ω1

[
− fe5 + ω1 + ω2

m1 + m2
fe6

]
. (C.16)
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