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Abstract We investigate the Lagrange multiplier formula-
tion of teleparallel theories, including f (T ) gravity, in which
the connection is not set to zero a priori and compare it
with the pure frame theory. We show explicitly that the two
formulations are equivalent, in the sense that the dynamical
equations have the same content. One consequence is that
the manifestly local Lorentz invariant f (T ) theory cannot be
expected to be free of pathologies, which were previously
found to plague f (T ) gravity formulated in the usual pure
frame approach.

1 Introduction: gravity as torsion instead of curvature

Einstein’s theory of general relativity recently celebrated its
centenary in 2015, and has so far passed all experimental
and observational solar system tests with flying colors. Nev-
ertheless, there remain a few mysteries in astrophysics and
cosmology that could be a sign that general relativity might
need to be modified on larger scales. On the one hand for
galaxies and clusters there are discrepancies that could be
explained by large amounts of dark matter or some alternative
theory [1,2]. Another issue is the observation that apparently
the expansion of our Universe is currently accelerating [3,4].
A simple explanation is the presence of a positive cosmolog-
ical constant �, so that the Universe is asymptotically de
Sitter in the far future, not asymptotically flat, but other pos-
sibilities cannot yet be excluded.

These problems motivated the search for a modified the-
ory of gravity, which would agree with general relativity in
the regimes where the latter had been well-tested, but would
nevertheless better account for the larger scale observations,
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maybe giving a more “natural” explanation for the cosmic
acceleration, without the need for �.

The literature has no shortage for various gravity theories,
many of which modify general relativity at the level of the
action. The most straightforward example is f (R) gravity, in
which the scalar curvature R in the Hilbert-Einstein action
is replaced by a function f (R). Another class of gravity the-
ories, known as teleparallel gravity, stands out among the
rest, for it considers a connection that is curvatureless but
torsionful.1 Recall that in general relativity (GR), the metric
compatible Levi-Civita connection has nonzero curvature but
vanishing torsion. Gravity is therefore modeled entirely by
the effect of spacetime curvature. It may therefore seem rather
surprising that there exists a teleparallel equivalent of gen-
eral relativity (TEGR, or simply GR‖), which by construction
has zero curvature. For a detailed discussion see [6]. TEGR
models gravity as a torsional effect, but is otherwise com-
pletely equivalent to general relativity, at least at the action
level [7–10]. Since curvature is identically zero in a telepar-
allel theory, there is a global absolute parallelism.

In such theories the torsion tensor includes all the infor-
mation concerning the gravitational field.2 By suitable con-
tractions one can write down the corresponding Lagrangian
density – assuming an invariance under general coordinate
transformations, global Lorentz and parity transformations,

1 We emphasize that torsion, like curvature, is a property of a given
connection. Even in a theory with both curvature and torsion, such as
the Einstein-Cartan theory, torsion has a clear geometric meaning, and
it is best to treat it as such (from the point of view of well-posedness of
the evolution equations [5]), rather than “just another field” coupled to
standard general relativity.
2 Here we are considering the standard metric compatible type of
teleparallel theory. There are more general alternatives with both torsion
and non-vanishing non-metricity [11–13] which also merit considera-
tion.
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and using quadratic terms in the torsion tensor T ρ
ημ [7].

There is a certain combination of considerable interest, the
so-called TEGR “torsion scalar”:

T = 1

4
T ρ

ημTρ
ημ + 1

2
T ρ

μηT
ημ

ρ − Tρμ
ρT νμ

ν, (1)

which is equivalent to the scalar curvature obtained from the
standard Levi-Civita connection, up to a total divergence.

A more general quadratic “torsion scalar” can be obtained
by relaxing the coefficients:

T [a, b, c] = aT ρ
ημTρ

ημ + bT ρ
μηT

ημ
ρ + cTρμ

ρT νμ
ν. (2)

Only in the case a = 1/4, b = 1/2 and c = −1 does
the theory becomes equivalent to GR. Finally, f (T ) gravity
arises as a natural extension of TEGR, if one generalizes
the Lagrangian to be a function of T [14,15], see [16] for a
review. One could in fact have other even more generalized
teleparallel theories in addition to f (T ) theory.

Here, let us emphasize some aspects of teleparallel grav-
ity theories. As explained above, a teleparallel theory is one
which is described by a connection which is flat, i.e., curva-
ture vanishes. On the other hand, one can also formulate a the-
ory described purely in terms of the frame (or the co-frame),
with no mention of any connection. In 4-dimensions this is
known as a tetrad theory. It turns out that frame theories and
teleparallel theories are essentially equivalent. People have
long understood this to be the case, but we found that there
are a couple of subtleties that have not been addressed in the
literature. Firmly establishing this equivalence is the main
objective of the present work.

If one has a teleparallel geometry, starting at any point, one
can choose there a basis for the tangent space. Then one could
parallel transport it along any path to every other point in the
space. Since the curvature vanishes, the transport is unique,
independent of the path. This constructs a smooth global
“preferred” frame field,3 in which the connection coefficients
vanish, thus one gets a pure frame description – unique up
to an overall constant linear transformation. Conversely, if
one has a “preferred” smooth frame field, it allows one to
introduce a specific parallel transport rule: namely that vec-
tors are transported along paths by keeping their components
constant in this frame. This transport rule is path independent.
The associated curvature vanishes. The resulting connection
will have vanishing coefficients in this preferred frame. (This
is what is meant by having a connection which is zero.) Note

3 Hence, when trying to solve the equations, one cannot hope to get
any sensible results by choosing an ansatz frame that is singular, for
example the spherical frame (unless one introduces suitably flat con-
nection coefficients, which cancel the singularity in the frame, so that
the torsion tensor is smooth. For a concrete example of this see Section
VII in Obkuhov and Pereira [17]).

that geometrically these concepts make sense without any
need for a metric tensor (the torsion tensor, as well as the
curvature tensor, can be defined for any connection without
using any metric).

Let us suppose we also have a Lorentzian metric (this gives
the spacetime a local causal structure), then there is a distin-
guished subset of possible teleparallel connections which are
metric compatible. With such a connection, if one chooses
at one point an orthonormal frame its parallel transport to all
other points will give a global orthonormal frame field. Con-
versely, given a global orthonormal frame field it determines
a metric compatible teleparallel connection. Furthermore any
global frame field determines a metric by defining the frame
to be orthonormal.

One crucial aspect that one has to check for any theory of
gravity is the number of degrees of freedom it contains. The
number is two for general relativity in 4-dimensions.4

Although TEGR has the same degrees of freedom as gen-
eral relativity,5 a generic teleparallel theory does not. In the
case of f (T ) gravity, Miao Li et al. [18] – by utilizing the
Dirac constraint technique along with Maluf’s Hamiltonian
formulation [19] – concluded that in 4-dimensions there are
generically 5 degrees of freedom: namely, in addition to the
usual 2 degrees of freedom in the metric, the tetrad would
have 3 degrees of freedom. For a more intuitive understand-
ing of why 5 degrees of freedom could be expected in such a
theory, see Sect. 2 of [20]. (Recently, a Hamiltonian analysis
of f (T ) gravity was carried out by Ferraro and Guzmán [21].
They claimed that f (T ) gravity only contains 3 degrees of
freedom, not 5. According to our understanding their analy-
sis has some problems, but clarifying these issues is beyond
the scope of the present work.)

The extra degrees of freedom in f (T ) gravity are highly
nonlinear, as they do not manifest even at the level of second
order perturbation in a FLRW background [22]. In fact, it is
expected that they will give rise to problems such as superlu-
minal propagation and the ill-posedness of the Cauchy prob-
lem in f (T ) gravity, i.e., given an initial condition the evolu-
tion equations could not uniquely determine the future state
of the system. This would be a disaster because it means that
physics has lost its predictive power. For comprehensive dis-
cussions of this issue, see [20,23,24]. In view of said issue,

4 The number of degrees of freedom for GR in n-dimensions is
n(n − 3)/2. In the language of waves, this is the number of polariza-
tions. It is well-known that in 3-dimensions general relativity becomes a
topological theory, in which there is no propagating degrees of freedom,
and thus also no gravitational waves.
5 There are subtleties even in the TEGR case – in TEGR one physical
system is represented by a whole gauge equivalence class: an infinite set
of geometries, each with its own torsion and distinct teleparallel connec-
tion. In the pure frame representation, the gauge freedom representation
looks simply like local Lorentz gauge freedom, however it really cor-
responds to a whole equivalence class of teleparallel geometries, with
gauge equivalent torsions.
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it is important to further understand the degrees of freedom
in f (T ) gravity and other teleparallel theories.

As mentioned, this class of physical theories can be
regarded in (at least) two different ways: as a theory for-
mulated purely in terms of an (orthonormal) frame, or as a
theory with both a frame and a flat connection. One could
dynamically achieved the flat connection condition by using
a Lagrangian multiplier to enforce vanishing curvature. The
frame-connection-multiplier formulation is a particular sub-
class of the general metric-affine gravity theories, see §5.9
in [25]. As we remarked, it has generally been understood
that one can achieve the desired result using this Lagrange
multiplier approach. Upon examination we found that there
are some subtle aspects, which have not all been addressed
in the existing literature, including [17,25–27]. We note that
the issue is not trivial. The vanishing curvature constraint
depends on the connection coefficient and its first partial
derivative. In Classical Mechanics, it is well known that one
cannot in general achieve the desired result by introducing
into the action with Lagrange multipliers a constraint which
depends on the time derivatives of the dynamical variables.
The standard counter-example of such a non-holonomic con-
straint is “rolling without slipping” (for discussions see [28]
pp 14–16 and [29]). Likewise in field theory, one cannot in
general introduce via Lagrange multipliers constraints which
depend on the derivatives of the field, however sometimes
this does produce the desired result. We do not know of any
general results, so we need to check each case carefully.

2 The Lagrange multiplier approach

The representation in terms of a non-vanishing teleparal-
lel connection may give some insights. Enforcing vanish-
ing curvature via a Lagrange multiplier has been treated in
many sources including Kopczyński [30], Hehl et al. [25]
and Blagojević [31]. See also [26] and [32]. This can be
done even for the most general metric-affine gravity theory
or for the a priori metric compatible case such as f (T ) grav-
ity. Our formulation here will essentially be like that of the
Obukhov-Pereira metric-affine formulation [17].

It is straightforward to restrict that approach to our needs
by completely eliminating the metric using orthonormal
frames. There are interesting technical details about how
the number of independent components of the dynamical
equations work out so that this approach is equivalent to the
approach with a priori vanishing connection. The equiva-
lence has been, until now, not explicitly shown at this level of
detail, although most of the underlying ideas were implicit in
the earlier foundational works of Blagojević and Nikolić [26],
as well as those of Blagojević and Vasilić [27], and Obukhov-
Pereira [17]. The Lagrange multiplier formulation was also
mentioned in a more recent work by Golovnev, Koivisto, and

Sandstad [33], but the counting of the number of components
was not carried out. We will demonstrate the equivalence in
this section. However, let us first clarify what it means to not
set the connection to be zero.

In the usual formulation of f (T ) gravity, the Weitzenböck
connection is defined by

w
�λ

νμ = ẽ λ
A ∂ν ẽ

A
μ. (3)

This expression actually corresponds to a very specific
choice of frame in which the frame connection coefficient,
often referred to as the spin connection, vanishes – hence
we have used ẽ to denote such a preferred orthoparallel
frame (Kopczyński [30] called such frames OT, standing for
“orthonormal teleparallel”).

However, the Weitzenböck connection is well-defined
even if we keep the frame connection nonzero [6,34]:

w
�λ

νμ = eλ
A∂μe

A
ν + eλ

AωA
Bμe

B
ν, (4)

where ωA
Bμ is the frame connection coefficient defined via

ωA
B = ωA

Bμdxμ. In this work, Greek indices {μ, ν, . . .}
run over all spacetime local coordinates, while capital Latin
indices {A, B, . . .} refer to the orthonormal frame. We remark
that this formula is not special to the Wetzenböck connection.
It takes any connection components ω in the frame with upper
case Latin indices to the components of the same connection
in a frame with Greek indices (which are holonomic here).
There is in general no special restriction on the connection.
For our purpose, ω corresponds to a flat, Wetzenböck, con-
nection but need not vanish.

One could then calculate the torsion tensor, the torsion
scalar T , the action given the explicit form of the function
f (T ), and the field equations, using the above Weitzenböck
connection (4). For instance the torsion tensor now reads

T λ
μν = w

�λ
νμ − w

�λ
μν. (5)

However we do not gain anything new, since all this just
says that the connection 1-form is non-zero if we go to
another basis that is different from the orthoparallel frame.
In fact, we can work in the Lagrange multiplier approach,
and see that the degrees of freedom of the theory remains
unchanged.

To be more specific, our claim is this:

The amount of information in any teleparallel theory
of gravity in which curvature is constrained to vanish
via a Lagrange multiplier is the same as that in the
formulation in which the connection is set to zero a
priori.
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To see this, let us first consider a general Lagrangian den-
sity (i.e., a 4-form in 4-dimensions) of the form6

L (g, θ, Dg, T, R, λ), (6)

where g is the metric tensor, Dg is the covariant differential
of the metric, T is the torsion 2-form, R is the curvature 2-
form, and λ is a Lagrange multiplier, all of which are written
abstractly for convenience. We “eliminate” g as an indepen-
dent variable via

g = ηABθ A ⊗ θ B, ηAB = diag(−1,+1,+1,+1), (7)

where θ A is the orthonormal (co-)frame. The torsion 2-form
and curvature 2-form are related to the orthonormal frame
and the connection 1-form by

T A = dθ A + ωA
B ∧ θ B = 1

2
T A

μνdx
μ ∧ dxν, and (8)

RA
B = dωA

B + ωA
C ∧ ωC

B = 1

2
RA

Bμνdx
μ ∧ dxν . (9)

We also impose metric compatiblity as an a priori constraint:

0 ≡ DgAB := dgAB − ωAB − ωBA = −2ω(AB). (10)

Then ωAB and RAB are antisymmetric: ωAB ≡ ω[AB],
RAB ≡ R[AB].

Working only with covariant objects, the variation of the
Lagrangian density is

δL = δθ A ∧ ∂L

∂θ A
+ δT A ∧ ∂L

∂T A
+ δRA

B ∧ ∂L

∂RA
B

+ δλA
B ∧ ∂L

∂λA
B

,

(11)

where

δT A = Dδθ A + δωA
B ∧ θ B, and (12)

δRA
B = DδωA

B . (13)

Hence

δL = d

(
δθ A ∧ ∂L

∂T A
+ δωA

B ∧ ∂L

∂RA
B

)

+ δθ A ∧ εA + δωA
B ∧ ε B

A + δλA
B ∧ ∂L

∂λA
B

, (14)

where we introduced symbolic names for the Euler-Lagrange
variational expressions:

6 For simplicity we do not discuss any matter source fields; they do not
play an essential role in the issue we are addressing.

εA := ∂L

∂θ A
+ D

∂L

∂T A
, and (15)

εAB := θ[B ∧ ∂L

∂T A] + D
∂L

∂RAB
. (16)

Since ωAB is antisymmetric εAB is also: εAB ≡ ε[AB].
Let us consider a local frame gauge transformation δθ A =

l ABθ B , where l AB , being an infinitesimal Lorentz transfor-
mation, is antisymmetric. We have consequently δωA

B =
−Dl AB . Since δL is a scalar under this transformation, we
have, from Eq. (14), the following identity:

0 ≡ d

(
l ABθ B ∧ ∂L

∂T A
− Dl AB ∧ ∂L

∂RA
B

)
+ l ABθ B ∧ εA

− Dl AB ∧ ε B
A + (l ACλCB − lCBλA

C ) ∧ ∂L

∂λA
B

. (17)

Since

Dl AB ∧ ∂L

∂RA
B

= −d

(
l AB

∂L

∂RA
B

)
+ l AB D

∂L

∂RA
B

, (18)

and d2 = 0, we get from Eqs. (16) and (17)

0 ≡ d
(
l ABεAB

)
+ l ABθB ∧ εA − Dl AB ∧ εAB

+ l AB
[
λBC ∧ ∂L

∂λA
C

− λCA ∧ ∂L

∂λCB

]
. (19)

This yields the Noether differential identity:

DεAB + θ[B ∧ εA] − 2λC[B ∧ ∂L

∂λ
A]
C

≡ 0, (20)

which does not depend on any of the field equations being
satisfied.

3 Counting the components

Now let us consider a special case, the teleparallel
Lagrangian:

L‖(θ A, T A) + λA
B ∧ RB

A. (21)

The concern is the following: do the field equations
obtained from Eq. (21) contain the same amount of physical
information – no more and no less – as the equations obtained
from the coframe Lagrangian L‖(θ, dθ), or equivalently the
frame Lagrangian L‖(e, ∂e)? Note that the variation of the
Lagrangian in Eq. (21) involves variation with respect to
the frame, the connection and the multiplier, whereas the
coframe Lagrangian involves only variation with respect to
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the frame. From the first Lagrangian, the multiplier varia-
tion would enforce the vanishing of curvature, which leads
to a preferred frame with a vanishing connection; then the
frame variation reduces to that obtained from the pure frame
Lagrangian. So the remaining technical issue is whether the
equation obtained by variation with respect to the connection
could have any “physical” content beyond determining the
multiplier. To put it differently: does the connection or the
multiplier contain any dynamics?

As mentioned, the variation with respect to λA
B implies

flatness RA
B = 0. Then there exists a frame in which D = d,

in which we no longer have local gauge freedom. However,
while it is generally believed that imposing flatness via a
Lagrange multiplier is equivalent to imposing flatness a pri-
ori, it is not obvious how the counting of independent com-
ponents works out to match so well, especially since in the
Lagrange multiplier approach there are gauge degrees of free-
dom. This is what we shall elaborate on now.

The argument is just as easy, and actually more clear, in
n-dimensions. Then RA

B is a 2-form while λA
B is an (n − 2)-

form. It is easy to see that the Lagrange multiplier has some
gauge freedom. Consider the transformation

λA
B → λA

B + Dχ A
B, (22)

where χ is an (n−3)-form. Under such a transformation the
Lagrangian in Eq. (21) picks up an additional term

Dχ A
B ∧ RA

B = d(χ A
B ∧ RB

A) + (−1)nχ A
B ∧ DRB

A. (23)

By the Bianchi identity, DRB
A = 0. Therefore only a total

derivative term is added to the Lagrangian in Eq. (21), and
thus the equations of motion are invariant under this gauge
transformation. In other words, we have a gauge freedom that
does not allow us to determine λAB completely, but only up
to total differential terms. From Eqs. (16) and (21) we find
the explicit form for the expression obtained by variation of
the connection one-form:

εAB = θ[B ∧ ∂L

∂T A] − DλAB = 0. (24)

This is the only dynamical equation that contains the
Lagrange multiplier, and it indeed is invariant under the
multiplier gauge transformation (22) since, schematically,
D2χ ∼ R∧χ = 0. Our aim is to show that relation Eq. (24)
serves only to determine the multiplier (as much as it can be
determined), and that it has no other extra dynamical content
independent of (15).

Let us keep track of the number of independent compo-
nents. Let n be the spacetime dimension, and N = (n

2

) =
n(n − 1)/2 the dimension of the orthonormal frame gauge

group SO(1, n − 1).7 The number of independent compo-
nents of the connection 1-form is Nn, that of RA

B and λA
B is

Nn(n − 1)/2, and that of εAB is Nn. Finally, the multiplier
gauge freedom Dχ A

B has N (n − 1)(n − 2)/2 independent
components.8 Thus the field equations can determine of λ

Nn(n − 1)

2
− N (n − 1)(n − 2)

2
= N (n − 1) (25)

components. This is the total number of multipliers minus
their inherent gauge freedom. It is effectively the number of
components of Eq. (24) that serve the purpose of determining
the Lagrange multiplier value. Since we are not actually inter-
ested in the values of the multipliers, this is the content of Eq.
(24) that can be neglected. There are thus Nn−N (n−1) = N
components of Eq. (24) that can contain “physical informa-
tion”, since they are not involved in determining the multi-
pliers. However exactly this many components are automat-
ically satisfied by virtue of the Noether identity in Eq. (20),
the teleparallel condition imposed by the multiplier and the
frame dynamical equation (15). Indeed, we observe that in
the Noether identity it is not εAB but DεAB which actually
appears. Due to the differential operator D, the identity con-
tains, schematically, D2λ ∼ R ∧ λ ≡ 0. That is, DεAB

contains the part of εAB which is entirely independent of
λAB . This is an indication that the part of Eq. (24) that is
independent of λAB is automatically a consequence of the
frame dynamical equation (15) and the identity Eq. (20) – it
has no independent information.

Let us say this in another way. Here are 4 physically equiv-
alent sets of effective dynamical equations:

ωAB = 0, E AB = 0, (26)

RAB = 0, E AB = 0, (27)

RAB = 0, E (AB) = 0, DεAB = 0, (28)

RAB = 0, E (AB) = 0, εAB = 0, (29)

where the frame dynamical equation has been written as a
4-form

E AB := θ A ∧ εB . (30)

7 Here we are considering the metric compatible case using orthonor-
mal frames. In other teleparallel theories for the frame gauge group
GL(n) one would have N = n2 and for SL(n) N = n2 − 1.
8 According to the Hodge-Kodaira-de Rham generalization of the
Helmholtz decomposition (see, e.g., [35,36]), locally a differential form
can be decomposed into a sum of terms which are in the kernel and the
co-kernel of the differential operator d, and can be expressed as the
differential and codifferential of certain potentials. For a k-form in n-
dimensions, the sizes of these terms are determined by the binomial
coefficients

(n
k

) = (n−1
k−1

) + (n−1
k

)
.
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Here E (AB) denotes its symmetric part and E [AB] its antisym-
metric part. Effectively, E [AB], DεAB and εAB (24) contain
equivalent physical information. The key is the Noether dif-
ferential identity, Eq. (20), which guarantees that

E [AB] = 0 ⇐⇒ DεAB = 0. (31)

In the frame with vanishing connection the second of these
equations says that εAB is closed, then (at least locally) it is
exact – which thus means one can find a multiplier in (24)
that makes εAB vanish.

Thus the Lagrange multiplier approach yields the same
number of independent components as the usual approach in
which the curvature-free condition is imposed a priori.

There still remains a slight possibility that the first term on
the right hand side of Eq. (24) might, in n-dimensions, con-
tain a closed but not exact (n−1)-form. Then it might include
an extra global condition for the connection-multiplier rep-
resentation that is not required in the coframe version. To us
this seems unlikely, but we have not yet been able to rule it out
for spaces that have a non-vanishing (n − 1)-cohomology.9

Thus generically a teleparallel theory has effectively n2

physical dynamical equations 0 = E AB = E (AB) + E [AB].
Only for the special case of the teleparallel equivalent of
GR the anti-symmetric part vanishes identically: E [AB] ≡ 0,
leaving n(n + 1)/2 dynamical equations.

It is important to emphasize at this point that, for TEGR, in
the connection-multiplier representation there are two local
Lorentz symmetries:

(1) Transforming the frame along with the standard induced
connection transformation leaves the action invariant.

(2) Transforming the frame while keeping the connection
fixed changes the action by a total differential.

Transformation (1) applies to all teleparallel theories,
whereas (2) is obviously is no longer true in the case of a
general teleparallel theory, such as f (T ) gravity.

4 Conclusion

One major advantage of the Lagrange multiplier formula-
tion is that it permits us to use any orthonormal frame that
corresponds to a metric, since it manifestly preserves local
Lorentz invariance. This avoids the important and practical

9 Future works considering explicit examples of 4-dimensional space-
times with nontrivial 3-cohomology might shed some light on this issue.
We propose to study class A Bianchi models (types I, II, VIII, IX), which
can all be compactified. In particular, Bianchi type I model can have a
3-torus topology, and type IX can have an S3 topology. Both of these
spacetimes have spatial volume 3-forms that are closed but not exact.

problem of identifying the correct frame compatible with the
zero-connection in the usual approach.

Although it has long been argued that this approach is
equivalent to the usual frame approach which sets the connec-
tion to zero a priori, we found that there are some subtleties in
the counting of the number of components in the Lagrange
multiplier approach, which until now have not been fully
discussed in detail. In this work we showed that indeed the
number of physically significant components for the equa-
tions in the Lagrange multiplier formulation agrees with that
obtained using the frame approach.

Consequently, a manifestly local Lorentz invariant f (T )

theory cannot be expected to be free of the pathologies which
were previously found to plague f (T ) gravity formulated in
the usual pure frame approach. Nevertheless, the Lagrange
multiplier teleparallel formulation might shed some light on
the properties of the extra degrees of freedom and the “rem-
nant symmetry” discovered in [37] (which was further dis-
cussed in [20]).
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