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Abstract We study the minimal geometric deformation
decoupling in 2 + 1 dimensional space–times and imple-
ment it as a tool for obtaining anisotropic solutions from
isotropic geometries. Interestingly, both the isotropic and the
anisotropic sector fulfill Einstein field equations in contrast
to the cases studied in 3 + 1 dimensions. In particular, new
anisotropic solutions are obtained from the well known static
BTZ solution.

1 Introduction

It is well known that the minimal geometric deformation
(MGD) decoupling, originally proposed [1] in the context
of the Randall–Sundrum brane-world [2,3], has been a pow-
erful tool to investigate self-gravitating distributions in the
brane-world scenario [4–9] as well as to find new black hole
solutions in a more general context [10,11] (for some recent
applications see for instance [12–27]). In recent years, the use
of the MGD-decoupling as a method to obtain new and rel-
evant solutions of the Einstein field equations has increased
considerably [16,20–25]. In particular, it is interesting to
note that local anisotropy can be induced in well known
spherically symmetric isotropic solutions of self-gravitating
objects, leading to more realistic interior solutions of stellar
systems.

Inspired by the success of the method in 3+1 dimensional
space–times, it would be worth considering the application
of the MGD-decoupling method in the lowest dimension in
which the Einstein theory makes sense, i.e., three dimen-
sional space–times. Although, as stated by Staruszkiewicz
in his pioneering paper [28] “three-dimensional gravitation
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theory is a theory without a field of gravitation; where no
matter is present, space is flat”, solutions of the Einstein field
equations in 2 + 1 dimensional space–times coupled to mat-
ter content have been considered as a testing ground to study
some aspects shared with their 3 + 1 dimensional counter-
parts with emphasis given to point particle solutions, perfect
fluids, cosmological spacetimes, dilatons, inflatons, stringy
solutions, etc. (for a recent and very exhaustive review on
2 + 1 exact solutions, see [29]).

In particular, some properties of 3 + 1-dimensional black
holes such as horizons, Hawking radiation and black hole
thermodynamics, are also present in three-dimensional grav-
ity which is simpler to deal with. Such is the case of the cel-
ebrated BTZ [30] black hole solution, which shares many of
the features of the Kerr black hole, for instance the presence
of event and inner horizons, an ergosphere and a nonvanish-
ing Hawking temperature.

For these reasons, in this work we shall study the MGD-
decoupling method in three-dimensional space–times and
obtain anisotropic solutions from the static BTZ solution.
The work is organized as follows. In the next section we
review the main features of the Einstein equations coupled
to matter sources in three-dimensional space–times. Next, we
implement the MGD-decoupling method applied to a circu-
larly symmetric system containing a perfect fluid in Sect. 3.
Section 4 is devoted to obtaining anisotropic solutions from
the static BTZ geometry. We summarize our conclusions in
Sect. 5.

2 Einstein equations

Let us consider the Einsteins field equations

Rμν − 1

2
Rgμν = −κ2T tot

μν , (1)
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and assume that the total energy–momentum tensor is given
by

T (tot)
μν = T (m)

μν + αθμν, (2)

where Tμ
ν = diag(−ρ, p, p) is the matter energy momen-

tum for a perfect fluid and θμν is an additional source coupled
with the perfect fluid by the constant α. Since the Einstein
tensor is divergence free, the total energy momentum tensor
T (tot)

μν satisfies

∇μT
(tot)μν = 0. (3)

In Schwarzschild like-coordinates, the circularly symmetric
line element reads

ds2 = eνdt2 − eλdr2 − r2dφ2, (4)

where ν and λ are functions of the radial coordinate r only.
Considering the metric (4) as a solution of the Einstein equa-
tions, we obtain1

8πρ̃ = e−λλ′

2r
(5)

8π p̃r = e−λν′

2r
(6)

8π p̃⊥ = −e−λ

4

(
ν′ (λ′ − ν′) − 2ν′′) , (7)

where the prime denotes derivation respect to the radial coor-
dinate and we have defined

ρ̃ = ρ + αθ0
0 (8)

p̃r = p − αθ1
1 (9)

p̃⊥ = p − αθ2
2 . (10)

The conservation equation (3) reads

p′ + ν′

2
(ρ + p)−α(θ1

1 )′ + ν′α
2

(θ0
0 − θ1

1 )+ α

r
(θ2

2 − θ1
1 ) = 0,

(11)

which is a linear combination of Eqs. (5), (6) and (7). Note
that Eqs. (5), (6) and (7) correspond to the Einstein field
equations for an anisotropic fluid. In this sense, the source
θμν generate anisotropy in the original system controlled
by the parameter α, which disappears when α → 0, as
can be easily checked. Note that we have to solve for Eqs.
(5), (6), (7) and (11) but we deal with five unknows func-
tions, {ν, λ, ρ̃, p̃r , p̃⊥}. A conventional way to decrease the
degrees of freedom to solve the system of differential equa-
tions considered is providing an ansatz which in general is
an equation of state relating the components of the energy–
momentum tensor. However, in this work, we shall obtain

1 In what follows we shall assume κ2 = 8π .

solutions by the MGD-decoupling method, as explained fur-
ther below.

3 Minimal geometric deformation

In this section we introduce the MGD-decoupling method for
2+1 dimensional space–times. Let us implement the follow-
ing “geometric deformation” on the radial metric component
grr

e−λ = μ(r) + α f (r), (12)

where α is the decoupling parameter and f (r) is the generic
deformation undergone by the radial metric component,
μ(r). After replacing (12) in Einstein equations (5), (6) and
(7), we can separate the system of equations in two sets as
follows. One set is obtained by setting α = 0 and corresponds
to a perfect fluid

16πrρ = −μ′ (13)

16πp = μν′

r
(14)

32πp = μ′ν′ + 2μν′′ + μν′2, (15)

with conservation equation given by

p′ + ν′

2
(ρ + p) = 0, (16)

which is a linear combination of Eqs. (13), (14) and (15). The
other set of equations corresponds to the source θμν

16πrθ0
0 = − f ′ (17)

−16πθ1
1 = f ν′

r
(18)

−32πθ2
2 = f ′ν′ + 2 f ν′′ + f ν′2, (19)

with conservation

(θ1
1 )′ − ν′

2
(θ0

0 − θ1
1 ) − 1

r
(θ2

2 − θ1
1 ) = 0. (20)

As in the previous case, Eq. (20) is the linear combination of
Eqs. (17), (18) and (19). Note that unlike the 3 + 1 dimen-
sional cases studied in [16,20–23] both the equations of the
isotropic (perfect fluid) and anisotropic (θμν) sector are Ein-
stein equations. In this sense, the Einstein tensor Gμν of the
new solution turns out to be the linear combination of two
Einstein tensor each one fulfilling Einstein field equations.
More precisely, if G(m)

μν = −κ2Tm
μν stands for the isotropic

sector, and G̃μν = −κ2αθμν for the anisotropic one, the Ein-
stein tensor of the new solution is simply given by Gμν =
G(m)

μν + G̃μν . The above result can be naturally extended for
arbitrary number of sources, namely, given the Einstein field
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equations for a collection of sources they can be transformed
into a collection of Einstein’s equations, one for each source.
Even more, given a source T (tot)

μν = T (m)
μν + ∑

i
αiθ

(i)
μν , with

i ≥ 1 and ∇μTμν = ∇μθ(1)μν = · · · = ∇μθ(n)μν = 0, the

Einstein tensor associated with T (tot)
μν can be decomposed as

Gμν = G(m)
μν + G(1)

μν + · · ·G(n)
μν from where

G(m)
μν = −κ2T (m)

μν

G(1)
μν = −κ2α1θ

(1)
μν

...
...

G(n)
μν = −κ2αnθ

(n)
μν . (21)

This fact is remarkable because in 3 + 1 space–times
the anisotropic system does not fulfil Einstein but “quasi
Einstein” field equations [16,20,22] as a consequence of a
missed − 1

r2 term which avoid the matching with standard
Einstein equations. Even more, in 3 + 1 dimensions it is
shown that, despite this “quasi Einstein” behaviour for the
equations, the conservation can be written as a linear com-
bination of the “quasi Einstein” field equations and, there-
fore, the perfect fluid and the decoupling source θμν do not
exchange energy but their interaction is purely gravitational,
which can be summarized by

∇μT
mμν = ∇μθμν = 0. (22)

In the next section we implement the MGD-decoupling
method to obtain a new solution from the static BTZ geom-
etry.

4 Anisotropic solution from the static BTZ geometry

The static BTZ solution has a line element given by

ds2 =
(

−M + r2

L2

)
dt2 − dr2

−M + r2

L2

− r2dφ2, (23)

from where

eν = μ =
(

−M + r2

L2

)
. (24)

The matter content generating the static BTZ geometry is
given by

ρ = − 1

8πL2 (25)

p = 1

8πL2 . (26)

As it is well known, the static BTZ solution corresponds
to a black hole in a space-time filled with a cosmological
constant. In the next section we shall deform the BTZ black
hole solution by the MGD-decoupling method. More pre-
cisely, we shall fill the space–time with certain source θμν

Fig. 1 Circularly symmetric space–time filled with both θμν and cos-
mological constant 
. Note that the case θμν = 0 yields BTZ black
hole

satisfying suitable equations of state [22] which, after grav-
itational interaction with the cosmological constant, lead to
the deformed BTZ geometry. In Fig. 1 we show schemati-
cally the kind of system we shall consider henceforth.

4.1 Isotropic solutions

Considering an isotropic pressure for the source θμν [22]
implies

θ1
1 = θ2

2 . (27)

Combining Eqs. (18) and (19) leads to

f ′ + 2r f

L2M − r2 = 0, (28)

from where

f = c1L
2
(

−M + r2

L2

)
, (29)

with c1 a constant of integration with dimension of inverse
of length squared. From Eq. (12) we obtain

e−λ =
(

1 + αc1L
2
)(

−M + r2

L2

)
. (30)

Replacing in Eqs. (4), (5), (6) and (7) we obtain the line
element

ds2 =
(

−M+ r2

L2

)
dt2− dr2

(αc1L2+1)
(
−M + r2

L2

) −r2dφ,

(31)
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and the matter content

ρ̃ = −1 + αc1L2

8πL2

p̃r = p̃⊥ = 1 + αc1L2

8πL2 . (32)

It is worth mentioning that Eqs. (31) and (32) correspond
to an isotropic solution for 2+1 dimension. In fact, a straight-
forward calculation reveals that the curvature scalars read

R = 6

(
αc1 + 1

L2

)

Ricc2 = 12
(
αc1L2 + 1

)2

L4

K = 12
(
αc1L2 + 1

)2

L4 , (33)

where R, Ricc2 and K stand form he Ricci, Ricci squared
and the Kretschmann scalars respectively. Note that from Eq.
(33) we recover BTZ only if α → 0.

4.2 Conformally symmetric solutions

In this case we impose

θ2
2 = −θ0

0 − θ1
1 , (34)

which implies that the source is traceless as required by the
conformal symmetry. Combining condition (34) with (17),
(18) and (19) we obtain

f ′ (L2M − 2r2
)

r
+ 2 f

(
r2 − 2L2M

)

L2M − r2 = 0, (35)

from where

f = c1

(
r2 − L2M

)

(
2r2 − L2M

)3/2 . (36)

In this case c1 is a constant of integration with dimension
of length. In order to obtain the line element and the matter
content of the new solution we perform the same procedure
followed in the last section. In this case combining (36) and
(12) with (4), (5), (6) and (7), we obtain the grr component
of the metric

e−λ =
(
r2

L2 − M
) (

αc1L2 + (
2r2 − L2M

)3/2
)

(
2r2 − L2M

)3/2 , (37)

and the anisotropic matter content given by

ρ̃ = L2r2

8π
(
L3M − 2Lr2

)2

(
αc1√

2r2 − L2M
4M

)

− L4M

8π
(
L3M − 2Lr2

)2

(
2αc1√

2r2 − L2M
+ M

)

− 4r4

8π
(
L3M − 2Lr2

)2 (38)

p̃r = 1

8π

(
αc1

(
2r2 − L2M

)3/2 + 1

L2

)

(39)

p̃⊥ = − L2r2

8π
(
L3M − 2Lr2

)2

(
αc1√

2r2 − L2M
+ 4M

)

+ L4M

8π
(
L3M − 2Lr2

)2

(
M − αc1√

2r2 − L2M

)

+ 4r4

8π
(
L3M − 2Lr2

)2 . (40)

Note that in this case the method leads to an anisotropic
solutions with curvature scalars given by

R = 6

L2 (41)

Ricc2 = 12

L4 − 6α2c2
1

(
L4M2 − L2Mr2 + r4

)

(
L2M − 2r2

)5
(42)

K = 12

L4 − 24α2c2
1

(
L4M2 − L2Mr2 + r4

)

(
L2M − 2r2

)5
. (43)

As in the previous case the BTZ solution is recovered in the
limit α → 0.

Now let us explore the causal structure of the solution.
First note that the solution still have a Killing horizon (eν =
0) at rH = L

√
M . Even more, e−λ diverges for the critical

radius

rc = L

√
M

2
< rH . (44)

In fact, this critical radius must be considered a real singu-
larity provided some of the curvature scalar diverge at the
same point. For this geometry we have two causal horizons
at e−λ = 0. The first one is at rH , as in the BTZ case, but
there is a second root given by

r0 =
√

α2/3c2/3
1 L4/3 + L2M√

2
. (45)

It is worth noticing that r0 ≥ rc and depending on the values
of the constant will be inside or outside the Killing horizon
rH . In particular for

αc1 < LM2/3, (46)
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we obtain that r0 is in the interval rc < r0 < rH and r0 > rH
for αc1 > LM2/3. In order to avoid unacceptable space–time
signature outside rH we should demand the condition given
by Eq. (46). In this case the behaviour resembles that of a
charged BH solution but with singularity at certain critical
radius, rc, instead of at the origin.

4.3 Linear anisotropic source

In this case, we choose a linear anisotropic source with equa-
tion of state give by

θ0
0 = aθ1

1 + bθ2
2 . (47)

Combination of (47) with (17), (18) and (19) leads to

2 f
(
L2M(a + b) − ar2

)

L2M − r2 + f ′ ((b − 1)r2 + L2M
)

r
. (48)

from where

f = c1

(
r2 − L2M

) (
(b − 1)r2 + L2M

)− a
b−1 −1

. (49)

The constant of integration has dimensions of

(Lenght)−(2+ 2a
1−b−2). Combining (49) and (12) we obtain

e−λ = F0 + αc1L
4
(
r2

L2 − M

)(
(b − 1)r2

L2 + M

)�

. (50)

where

F0 = r2

L2 − M, (51)

and � = − a
b−1 −1. To complete the analysis, we compute the

content of the isotropic matter responsible of this geometry
by replacing (49) and (12) in (5), (6) and (7) to obtain

ρ̃ = − 1

8πL2 − αc1
(
L2M(a + b) − ar2

)

8π

×
(
(b − 1)r2 + L2M

)�

8π
(52)

p̃r =
αc1L2

(
r2

L2 − M
) (

(b − 1)r2 + L2M
)�

8πL2

+
(
r2

L2 − M
)

8πL2 (53)

p̃⊥ = −αc1L2F(z)
(
(b − 1)r2 + L2M

)�

8πL6

+ L4M + L2Mr2 − 2L2r2 − r4

8πL6 , (54)

where � = − a
b−1 − 2 and

F(z) = L2r4(a + (b − 2)M − b + 1) − (b − 1)r6

+L6M2 + L4Mr2(−a + M − 2). (55)

Now we analyse the causal structure directly from equations
(52).2 First, note that we can avoid the apparition of any sin-
gularity taking � > 0 which implies b < 1 and a > 2(1−b).
Second, observe that e−λ has two roots: one corresponding
to the Killing horizon rH = L

√
M and the other at

r0 =

√(
− 1

αc1L2

)
a

a+b−1 −1 − L2M
√
b − 1

. (56)

In this case, r0 could be avoided for suitable choices of the
parameters α, c1, a and b. In particular, note that no real
solutions can be obtained for r0 when

(
− 1

αc1L2

)
� < L2M. (57)

5 Conclusions

In this work we implemented the minimal geometric
deformation-decoupling method in 2 +1 circularly symmet-
ric and static space–times obtaining that both the isotropic
and the anisotropic sector fulfil Einstein field equations in
contrast to the cases studied in 3 + 1 dimensions, where
the anisotropic sector satisfies certain “quasi-Einstein” field
equations. In this sense the Einstein field equations for a col-
lection of sources can be transformed into a collection of
Einstein’s equations, one for each source. As an example,
we implemented the decoupling method to obtain new solu-
tions from the well known static BTZ geometry. In particular,
the anisotropic system were solved providing suitable equa-
tions of state for the source θμν namely the isotropic, the
conformal and the linear equation of state. The results are in
concordance with their 3 + 1 counterparts obtained in ref-
erence [22] in the sense that some extra structures such as
causal horizons and singularities appear as a consequence of
the minimal geometry deformation-decoupling. In addition,
it was shown that in the case of linear equation of state those
extra structures can be avoided for certain values of the free
parameters of the solution, as shown in reference [20] for
3 + 1 spacetimes.

We conclude this paper by noting that the method here
developed can be easily applied to obtain new and relevant
solutions taking as the isotropic sector any of the already
known 2 + 1 space–times.

2 In this case the curvature scalars are too long expressions to be
included in the manuscript.
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