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Abstract We quantify and examine the uncertainties in pre-
dictions of the lightestCP even Higgs boson pole mass Mh in
the Minimal Supersymmetric Standard Model (MSSM), util-
ising current spectrum generators and including some three-
loop corrections. There are two broadly different approxi-
mations being used: effective field theory (EFT) where an
effective Standard Model (SM) is used below a supersym-
metric mass scale, and a fixed order calculation, where the
MSSM is matched to QCD × QED at the electroweak scale.
The uncertainties on the Mh prediction in each approach are
broken down into logarithmic and finite pieces. The inferred
values of the stop mass parameters are sensitively depen-
dent upon the precision of the prediction for Mh . The fixed
order calculation appears to be more accurate below a super-
symmetry (SUSY) mass scale of MS ≈ 1.2 TeV, whereas
above this scale, the EFT calculation is more accurate. We
also revisit the range of the lightest stop mass across fine-
tuned parameter space that has an appropriate stable vacuum
and is compatible with the lightest CP even Higgs boson h
being identified with the one discovered at the ATLAS and
CMS experiments in 2012; we achieve a maximum value of
∼ 1011 GeV.

1 Introduction

The 2012 discovery at Large Hadron Collider experiments [1,
2] of a resonance that has measured properties compatible
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with those of a SM Higgs boson, raises some expectations.
Should the language of quantum field theory be interpreted
correctly by most of the research community, huge correc-
tions to the Higgs boson mass are expected, rendering its
measured value [3] of

Mh = 125.09 ± 0.32 GeV (1)

untenable unless its value is finely tuned with unrelated con-
tributions cancelling to a suspiciously large degree. This tech-
nical hierarchy problem can be solved by new physics that
appears around the TeV scale, the foremost example being
TeV scale supersymmetry. TeV scale supersymmetry pre-
dicts that the masses of new hitherto undiscovered sparti-
cles are not much higher than the TeV scale. These to date
have not been discovered, and the most natural portion of
supersymmetry parameter space is being heavily squeezed
by experimental constraints.

It is possible that there is some misunderstanding in the
way that quantum field theory generates such huge correc-
tions and that the technical hierarchy problem should be
taken cum grano salis. It is also possible that supersymme-
try is simply a little late to the LHC party, is a little heavier
than expected and isn’t quite as natural as was originally
thought. It is therefore crucial to try to discover superpar-
ticles. Within the simplest supersymmetric extension of the
SM, the MSSM, there is a lot of parameter space where h
appears to be essentially SM like. Its mass, which is Mh =
MZ cos 2β at tree level in the decoupling limit (MZ being
the mass of the Z boson and tan β = vu/vd is the ratio of the
two neutralCP-even MSSM Higgs field vacuum expectation
values (VEVs)), receives large corrections at the loop level.
It has been known for some time that the largest corrections
to its mass (squared) come from top/stop corrections, which
are enhanced by the large value of the top mass [4]:
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where M = √mt̃1mt̃2 , mt̃i is the running i th stop mass, mt is
the running top mass, Xt = At −μ/ tan β is the running stop
mixing parameter and v ∼ 246 GeV is the running SM-like
Higgs VEV. Each quantity on the right hand side of Eq. (2)
is evaluated at some DR

′
[5–7] renormalisation scale Q. The

stops play a crucial rôle in bringing the value of Mh pre-
dicted up to the measured value from the tree-level value.
The measured value of Mh in Eq. (1) prefers those parts of
parameter space that have larger stop masses and/or large
mixing between the two stops.

The truncation of perturbation theory at a finite order
generates a theoretical uncertainty on the prediction of Mh .
This then leads to an associated uncertainty in the inferred
masses and mixings of stops that agree with the experi-
mentally inferred value of Mh . The allowed range of stop
parameter space depends very sensitively on the accuracy of
the Mh prediction. Equation (2) shows that the stop mass
scale depends roughly exponentially upon Mh in the high
mt̃i limit.1 Achieving the most precise prediction for Mh is
then of paramount importance. In order to predict Mh with
higher accuracy and greater precision, higher-order contri-
butions and large log re-summation are required. To date,
terms up to two-loop order have been computed in the on-
shell scheme [8–19] and up to three-loop order in the DR/DR

′

scheme [4,13–15,20–32].
Currently, ATLAS and CMS perform many different

searches for stops. They depend upon various MSSM param-
eters, but in the more constraining and direct cases, the
searches rule out lightest stop masses up to around 1 TeV
[33,34]. Ideally, it would be useful to determine exactly how
heavy the stops might be so that it can be judged how much of
the viable parameter space has been excluded and so that one
may inform the utility of future higher energy colliders such
as the Future Circular Collider (FCC) [35–37]. However, it
was shown in Refs. [38–42] that stops far heavier than the
100 TeV putative centre of mass energy of the FCC are com-
patible with Eq. (1), provided that one is willing to accept the
tuning in v implied by the technical hierarchy problem.2 We
shall repeat this calculation taking our more precise estimates
of the theoretical uncertainties in Mh into account.

There are several current publicly available MSSM spec-
trum calculator computer programs on the market. These cal-
culate the spectrum consistent with weak-scale data on the
gauge couplings and the masses of SM states. Each employs

1 More precisely, M2
h has a logarithmic dependence on M in the large

M limit.
2 Large stop masses make the running soft-breaking squared Higgs
mass parameters very large, requiring a huge cancellation in the min-
imisation of the Higgs potential to achieve v ∼ 246 GeV.
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Fig. 1 Schematics of different MSSM approximation schemes: fixed
order DR

′
and EFT. In the fixed order DR

′
scheme the MSSM is matched

to effective QCD × QED at the scale Qmatch. In the EFT scheme the
MSSM is matched to an effective SM at the supersymmetric scale MS .
Horizontal lines show the matching scales

an approximation scheme. The two approximation schemes
examined here are called the fixed order DR

′
scheme and

the EFT scheme, depicted in Fig. 1. The fixed order DR
′

scheme matches effective QED×QCD to the MSSM at a sin-
gle scale Qmatch. The values Qmatch = MZ or Qmatch = Mt

are commonly taken, and data on gauge couplings and quark,
lepton and electroweak boson masses are input at this scale
Qmatch (see Ref. [43] for a more detailed description). These
couplings are then run using MSSM renormalisation group
equations (RGEs) to M , where the Higgs potential minimi-
sation conditions are imposed and supersymmetric physical
observables including Mh are calculated. Mh is calculated
using the known higher order diagrammatic corrections, up
to three loops, of the order o ∈ {αsαt , αsαb, αt

2, αtαb, αb
2,

ατ
2, αs

2αt }, where αs = g3
2/(4π), αt,b,τ = y2

t,b,τ /(4π)

and yt , yb, yτ are the top, bottom and tau Yukawa cou-
plings, respectively, and g3 is the QCD gauge coupling.
These fixed-order corrections include two-loop terms which
are proportional to o ln2(MS/MZ )/(4π)2 as well as terms
of order oM2

Z/M2
S/(4π)2. However, some three-loop terms,

for example of order {αt
2αs, αt

3}× ln3(MS/MZ )/(4π)3, are
missed. As MS becomes larger (for example as motivated by
the negative results of sparticle searches), such missing loga-
rithmic higher order terms become numerically more impor-
tant, and missing them will imply a larger uncertainty in
the fixed order DR

′
prediction of Mh . This has motivated

the approximation scheme which we call the EFT scheme,
where the heavy SUSY particles are decoupled at the SUSY
scale MS and the RGEs are used to re-sum the large logarith-
mic corrections. However, the EFT scheme neglects terms of
order MZ

2/M2
S at the tree level and therefore is less accurate
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the closer MS is to MZ . Which scheme is the most accu-
rate for various different physical predictions is not obvious
beforehand and depends on the MSSM parameters. It is one
of our goals to determine in which domain of MS the fixed-
order scheme becomes less accurate than the EFT scheme.

The preceding paragraph has been greatly simplified for
clarity of discussion. In the MSSM there are many gauge
and Yukawa couplings and one-loop corrections from all of
these are included in the fixed order DR

′
calculations. Also,

we have used MS as a catch-all supersymmetric scale, but
really the individual sparticles contribute to the logarithms
and finite terms with their own masses, not with some uni-
versal value of MS .

The programs used for our Mh predictions are the fixed
order DR

′
spectrum generators SOFTSUSY 4.1.1 [43,44],

FlexibleSUSY 2.1.0 [45,46] and HSSUSY 2.1.0 [46],
which uses the EFT approach. We include the three-loop
corrections that are available in Himalaya 1.0.1 [47].

In Ref. [48], the hybrid fixed order DR
′
EFT calcula-

tion of FeynHiggs [49,50] was compared to the purely
EFT calculation of SUSYHD [42]. The observed numerical
differences between the (mostly) on-shell hybrid calcula-
tion of FeynHiggs and the DR

′
calculation of SUSYHD

were found to be mainly caused by renormalisation scheme
conversion terms, the treatment of higher-order terms in
the determination of the Higgs boson pole mass and the
parametrisation of the top Yukawa coupling. When these
differences are taken into consideration, excellent agreement
was found between the two programs for SUSY scales above
1 TeV. This finding confirms that above this scale the terms
neglected in the EFT calculation are in fact negligible and
the EFT calculation yields an accurate prediction of the
Higgs boson mass. Similarly, in Ref. [51] the DR

′
hybrid

fixed order/EFT calculation implemented in Flexible-
SUSY (denoted as FlexibleEFTHiggs) was compared
to the DR

′
fixed order calculation available in Flexible-

SUSY. A prescription for an uncertainty estimation of both
calculations was given and it was found that (based on that
uncertainty estimate) above a few TeV the hybrid and the
pure EFT calculations are more precise than the fixed order
DR

′
calculation.

Our work differs from Refs. [48,51] in that we perform a
comparison between the DR

′
fixed order and the pure EFT

predictions. Our DR
′

fixed order calculation is also a loop
higher in order than the previous work. We shall give a pre-
scription for the estimation of the theoretical uncertainties of
the two Mh predictions in the DR

′
scheme based on the pro-

cedures described in Refs. [40,42,51]. Based on our uncer-
tainty estimates we derive an MS region in that scheme, above
which the EFT prediction becomes more precise than the
fixed order one.

In Sect. 2, we estimate and dissect theoretical uncertainties
in state-of-the art predictions of the lightest CP even Higgs

boson pole mass in the DR
′

scheme. Then, in Sect. 3, we
update the upper bounds on the lightest stop mass from the
experimental determination of the Higgs boson mass and
from the stability of an appropriate vacuum by our detailed
quantification of the theoretical uncertainties and state-of-
the-art calculation of Mh . We summarise in Sect. 4.

2 Higgs boson mass prediction uncertainties

Sources of uncertainty in the DR
′

fixed-order calculation of
the lightest CP-even Higgs boson pole mass prediction can
be divided into two classes:

– Missing higher order contributions to the Higgs self
energy and to the electroweak symmetry breaking
(EWSB) conditions.

– Missing higher order corrections in the determination of
the running DR

′
gauge and Yukawa couplings and the

VEVs from experimental quantities.

The prescription presented in Ref. [51] to estimate these
missing higher order contributions is sensitive to leading and
subleading logarithmic as well as non-logarithmic terms. An
analysis of how these different kinds of higher order terms
enter the uncertainty estimate can be found in that reference.
In theCP-conserving MSSM the known two- and three-loop
contributions to the CP even Higgs self energy and EWSB
conditions are included. The currently unknown (sublead-
ing) logarithmic higher order corrections can be estimated by
varying the renormalisation scale at which the Higgs boson
mass is calculated, Qpole. We estimate this uncertainty as in
Ref. [51],

ΔM
(Qpole)

h = max
Qpole∈[MS/2,2MS ]

∣∣Mh(Qpole) − Mh(MS)
∣∣ ,

(3)

where MS is the SUSY scale, usually set to MS = √mt̃1mt̃2 .
In Fig. 2 we show this uncertainty as the blue dashed line
for a scenario with degenerate DR

′
mass parameters (aside

from the Higgs mass parameters, which are fixed in order
to achieve successful EWSB), tan β = 20 and maximal

stop mixing, Xt = −√
6MS . For this scenario ΔM

(Qpole)

h
varies between 0.5–1 GeV, depending on the SUSY scale.
In Ref. [51] this uncertainty is larger, because the three-loop
contribution to the Higgs boson mass was not included. The
kink at MS ≈ 700 GeV is due to a switch in the approx-
imation scheme being used in the calculation of the three-
loop contribution of Himalaya: the integrands of the three-
loop integrals were expanded in different sparticle “mass
hierarchies” where different sparticles were approximated as
being massless [31]. As MS changes, Himalaya switches
from one mass hierarchy to another one that fits better to
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Fig. 2 Individual sources of uncertainty of the three-loop fixed order
DR

′
Higgs boson mass prediction of SOFTSUSY

the given parameter point, resulting in the kink. We note

that ΔM
(Qpole)

h is approximately independent of MS as MS

becomes large. The dominant Qpole dependence comes from
the first term on the right-hand side of Eq. (2): from the run-
ning Z mass, at one-loop order. This will be cancelled by
to leading order in log(Qpole) by the one-loop electroweak
corrections that are added to Mh by the spectrum generators
that we employ. However, higher order logarithms (formally
at the two-loop order) in the electroweak gauge couplings
remain. These remaining pieces have no explicit dependence
at leading order on M = MS . In the limit of large MS , the first
term in the square brackets of Eq. (2) contains both a depen-
dence on a large MS and Qpole through renormalisation of
the running top Yukawa coupling yt = √

2mt/(v sin β). The
Qpole dependence of leading logarithm terms due to this are
cancelled by the explicit two-loop terms of order α2

t /(4π)2

in the Mh calculation that the spectrum generators employ,
but higher powers of the logarithms do not cancel. The Qpole

dependence from this term is then formally of three-loop
order, but is boosted somewhat by the large value of yt . For
tan β = 20 and large MS , the Qpole dependence is small,
partly aided by cancellations in the beta function of yt . How-
ever, for tan β = 5, as is the case in Ref. [51], for example,
one can see an increase in scale uncertainty with a larger MS

due to a larger value of yt (and consequently a larger beta
function/scale dependence).

The size of the missing (subleading) logarithmic high-
er order contributions to the running MSSM DR

′
gauge and

Yukawa couplings can be estimated in a similar way to that of
Qpole by varying the renormalisation scale Qmatch, at which
the said parameters are determined. We define this uncer-

tainty as

ΔM (Qmatch)
h = max

Q∈[Qmatch/2,2Qmatch]
|Mh(Q) − Mh(Qmatch)|

(4)

where Qmatch is the scale at which these parameters are deter-
mined, usually set to MZ or Mt . The uncertainty ΔM (Qmatch)

h
is shown as blue dashed-dotted line in Fig. 2 and is below
0.2 GeV for the scenario shown.

Besides the logarithmic higher order corrections there are
also ‘non-logarithmic’ higher corrections, which are impor-
tant and should be taken into account in any robust uncer-
tainty estimate [51]. We estimate these non-logarithmic cor-
rections by changing the calculation of the running MSSM
parameters mt , αs and αe.m. by higher orders: the running
DR

′
top mass mt is calculated in two different ways, similar

to Ref. [51]:

m(1)
t = Mt + Σ̃

(1),S
t + Mt

[
Σ̃

(1),L
t + Σ̃

(1),R
t

]

+ Mt

[
Σ̃

(1),SQCD
t + Σ̃

(2),SQCD
t +

(
Σ̃

(1),SQCD
t

)2
]

(5)

and

m(2)
t = Mt + Σ̃

(1),S
t + mt

[
Σ̃

(1),L
t + Σ̃

(1),R
t

]

+ mt

[
Σ̃

(1),SQCD
t + Σ̃

(2),SQCD
t

]
, (6)

where Mt denotes the top pole mass, Σ̃
(1),S
t , Σ̃

(1),L
t and

Σ̃
(1),R
t denote the scalar, left-handed and right-handed part

of the one-loop top self energy without SUSY-QCD contri-
butions and Σ̃

(1,2),SQCD
t denote the one-loop and two-loop

SUSY-QCD contributions from Refs. [52–54].3 Note, that in
Ref. [51] the two-loop SM-QCD contribution has been used
on the right hand side of Eqs. (5) and (6), while here we use
the full two-loop SUSY-QCD contribution of O(α2

s ). Since

the latter is significantly larger, the difference between m(1)
t

andm(2)
t is larger in our case. Equations (5) and (6) are equiv-

alent at O(αs
2), but differ at O(αe.m.αs), for example. Since

the difference contains both logarithmic and non-logarithmic
terms, it can be used as an uncertainty estimate. Similar to
Ref. [51] we define

ΔM (mt )
h =

∣∣∣Mh(m
(1)
t ) − Mh(m

(2)
t )

∣∣∣ . (7)

In Ref. [51] four different top mass calculations are com-
bined, whilst we combine only two. The size of ΔM (mt )

h is

shown in Fig. 2 as a green dotted line. Since ΔM (mt )
h contains

terms of the form log(mt/mt̃i ), the uncertainty increases log-
arithmically with the SUSY scale. It therefore serves as an

3 Note that the terms involving square brackets differ in Eqs. (5) and
(6).
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estimate of both (leading) logarithmic and non-logarithmic
higher order corrections and is a reasonable measure to
express the fact that the fixed-order calculation suffers from
a large theoretical uncertainty for multi-TeV stop masses.

We estimate the effect of unknown higher order logarith-
mic and non-logarithmic threshold corrections to αs and αe.m.

in a similar way to our approach for estimating ΔM (mt )
h :

αs
(1) = αs

SM(5)

1 − Δ(1)αs − Δ(2)αs
, (8)

αs
(2) = αs

SM(5)
[
1 + Δ(1)αs + (Δ(1)αs)

2 + Δ(2)αs

]
, (9)

and

α(1)
e.m. = α

SM(5)
e.m.

1 − Δ(1)αe.m. − Δ(2)αe.m.
, (10)

α(2)
e.m. = αSM(5)

e.m.

[
1 + Δ(1)αe.m. + (Δ(1)αe.m.)

2

+Δ(2)αe.m.

]
(11)

and take the difference as an uncertainty estimate,

ΔM (αs)
h =

∣∣∣Mh(αs
(1)) − Mh(αs

(2))

∣∣∣ , (12)

ΔM (αe.m.)
h =

∣∣∣Mh(α
(1)
e.m.) − Mh(α

(2)
e.m.)

∣∣∣ . (13)

Note that the uncertainties estimated byΔM (αs)
h andΔM (αe.m.)

h
were not included in Ref. [51]. Their respective sizes are
shown in Fig. 2 as yellow dashed and brown double-dotted
lines, respectively. Due to the logarithmic contributions of
the form log(mt/mt̃i ) to the threshold corrections of αs and
αe.m., the two uncertainties increase logarithmically with the
SUSY scale. However, since αe.m. is very small, the uncer-
tainty ΔM (αe.m.)

h is negligible. The magnitude of ΔM (αs)
h can

be around 20% of ΔM (mt )
h for large MS .

There are some inter-dependencies between the differ-
ent sources of uncertainty and it is practically impossible
to exactly take these into account unless the higher order
corrections are explicitly calculated. However, the quantifi-
cation of theoretical uncertainties is an inexact pursuit and
it serves us well enough to combine the different sources of
uncertainty linearly

ΔM (SS+H)
h = ΔM

(Qpole)

h + ΔM (Qmatch)
h + ΔM (mt )

h

+ΔM (αs)
h + ΔM (αe.m.)

h (14)

in order to have some kind of reasonable estimate of the total
level of theoretical uncertainty in the prediction. The com-
bination ΔM (SS+H)

h is shown in Fig. 2 as a red solid line.
As expected, due to logarithmic contributions of the form
log(mt/mt̃i ), the combined uncertainty of the fixed-order
calculation of SOFTSUSY increases with the SUSY scale
and reaches ΔM (SS+H)

h ∼ 4 GeV for MS ∼ 10 TeV. The
size of the individual uncertainties show that the prescription

proposed in Ref. [51] is reasonable, because the additional
uncertaintiesΔM (Qmatch)

h ,ΔM (αs)
h andΔM (αe.m.)

h that we have
introduced here are small. However, compared to the com-
bined uncertainty estimate of Ref. [51] our combined uncer-
tainty is smaller by about 40% for SUSY scales of around
MS ∼ 1 TeV and about 25% smaller for MS ∼ 10 TeV. The

main reasons are the reduced scale uncertainty ΔM
(Qpole)

h
due to the three-loop Higgs boson mass corrections that are
included here and our different definition of ΔM (mt )

h .
In the following we compare the fixed-order Higgs boson

mass prediction for this scenario to the pure EFT calcula-
tion of HSSUSY [46]. HSSUSY is a spectrum generator from
the FlexibleSUSY package, which implements the high-
scale SUSY scenario, where the quartic SM Higgs coupling
λ(MS) is predicted from matching to the MSSM at a high
SUSY scale MS . It provides a prediction of the Higgs pole
mass in the MSSM in the pure EFT limit, v2 � M2

S , up to the
two-loop level O(αs(αt + αb) + (αt + αb)

2 + αταb + ατ
2)

[40,55–57], including next-to-next-to-leading-log (NNLL)
re-summation [58,59]. Additional pure SM three- and four-
loop corrections [60–65] can be taken into account on
demand.

To estimate the Higgs boson mass uncertainty of HSSUSY
we use the procedure developed in Ref. [66], which is an
extension of the methods used in Refs. [40,42]. The sources
of uncertainty of HSSUSY are divided into the following
three categories:

– SM uncertainty from missing higher order corrections in
the determination of the running SM MS parameters

– EFT uncertainty from neglecting terms of order
O(v2/M2

S)

– SUSY uncertainty from missing higher order contribu-
tions from SUSY particles

As in the fixed order DR
′

calculation, we divide the SM
uncertainty into a logarithmic and non-logarithmic part.
However, since large logarithmic corrections to the Higgs
mass are re-summed in the EFT calculation, for the ‘loga-
rithmic part’, we refer specifically to smaller logarithms of
the form ln(Qmatch/mt̃1) or ln(Qpole/Mt ). These small loga-
rithmic higher order corrections are estimated by varying the
renormalisation scale Qpole, at which the Higgs boson mass
is calculated in the effective SM:

ΔM
(Qpole)

h = max
Qpole∈[Mt/2,2Mt ]

∣∣Mh(Qpole) − Mh(Mt )
∣∣ . (15)

The non-logarithmic part is estimated by switching the three-
loop QCD contributions [60,61] on or off in the extraction
of the running SM top Yukawa coupling from the top pole
mass,
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ΔM
(ySM

t )

h =
∣∣∣Mh(y

SM,2	
t (MZ )) − Mh(y

SM,3	
t (MZ ))

∣∣∣ . (16)

Although this difference is sensitive to non-logarithmic
higher order contributions to the Higgs boson mass, it shows
an additional dependence on the separation of the elec-
troweak scale and the SUSY scale (as was observed in
Refs. [42,67] and shown in the green dotted line of Fig. 3).
The main reason for this dependence is that the running top
Yukawa coupling (the largest dimensionless parameter in the
MSSM) enters the RGEs of the other MSSM parameters, thus
affecting their running below MS . The effect is stronger for
more separated scales.

The EFT uncertainty is estimated by Ref. [42] by mul-
tiplying the one-loop contribution of each individual SUSY
particle to the quartic Higgs coupling λ(MS) at the SUSY
scale by the factor (1+v2/M2

S). We use the resulting change
in the Higgs boson pole mass prediction as an estimate for
the EFT uncertainty,

ΔM
(v2/M2

S)

h =
∣∣∣Mh − Mh(v

2/M2
S)

∣∣∣ , (17)

where Mh(v
2/M2

S) is the predicted Higgs boson mass with
the additional v2/M2

S terms. In Ref. [57] it was shown that
this uncertainty estimate is very conservative.

The SUSY uncertainty is also divided into a logarithmic
and a ‘non-logarithmic’ part. We estimate the (leading) log-
arithmic part again by varying the scale Qmatch, at which the
matching of the MSSM to the effective SM is performed,
similar to Ref. [42],

ΔM (Qmatch)
h = max

Q∈[MS/2,2MS ]
|Mh(Q) − Mh(MS)| . (18)

Like ΔM
(ySM

t )

h , ΔM (Qmatch)
h also shows an additional depen-

dence on the separation of the electroweak scale and the
SUSY scale due to the dependence of the RGEs on the
running parameters. The non-logarithmic part is estimated
by re-parametrising the threshold correction for λ(MS) in
terms of the MSSM top Yukawa coupling at the SUSY scale,
ytMSSM(MS), and we take the resulting shift in the Higgs
boson mass as an estimate for the uncertainty

ΔM
(yMSSM

t )

h =
∣∣∣Mh − Mh(y

MSSM
t (MS))

∣∣∣ . (19)

A similar uncertainty was defined in Ref. [51], where the loop
order of the calculation of yMSSM

t (MS)was switched between

tree- and one-loop level. Our uncertainty ΔM
(yMSSM

t )

h is sig-
nificantly smaller than the one used in Ref. [51], because we
are working at one loop higher order and the uncertainty there
contains large two-loop next-to-leading logarithms (see the
discussion in Ref. [46]).

Analogously to our procedure with the fixed order DR
′

calculation, we combine all individualHSSUSY uncertainties

103 104

MS /GeV

0

1

2

3

4

5

Δ
M

h
/

G
eV

Xt = −√
6MS, tan β = 20

combined

ΔM
(Qpole)
h

ΔM
(Qmatch)
h

ΔM
(ySM

t )
h

ΔM
(yMSSM

t )
h

ΔM
(v2/M2

S)
h

Fig. 3 Individual sources of uncertainty of the two-loop EFT Higgs
boson mass prediction of HSSUSY

linearly,

ΔM (HSSUSY)
h = ΔM

(Qpole)

h + ΔM (Qmatch)
h + ΔM

(ySM
t )

h

+ΔM
(yMSSM

t )

h + ΔM
(v2/M2

S)

h . (20)

Figure 3 shows the individual uncertainties of HSSUSY
from these three categories. For low SUSY scales, MS �
1 TeV, the combined uncertainty estimate of HSSUSY,
ΔM (HSSUSY)

h , (red solid line) is dominated by the EFT uncer-

tainty ΔM
(v2/M2

S)

h (brown dashed-double-dotted line) due to
the fact that the neglected terms of O(v2/M2

S) are not neg-
ligible in this region. For MS � 2 TeV the EFT uncertainty
drops below 0.1 GeV and the remaining sources dominate.
For even higher scales of MS � 10 TeV, the two compo-

nents of the SUSY uncertainty, ΔM (Qmatch)
h and ΔM

(yMSSM
t )

h ,
become smaller because the dimensionless running cou-
plings become smaller at higher SUSY scales in this sce-
nario. For high scales of MS � 10 TeV the combined uncer-
tainty is dominated by the SM uncertainty, in particular by

the uncertainty ΔM
(ySM

t )

h in the extraction of the running SM
top Yukawa coupling at the electroweak scale, which remains

at ΔM
(ySM

t )

h ∼ 0.5 GeV.
In Fig. 4 the Mh prediction in the fixed-order and the

EFT approximation schemes are shown, together with their
uncertainties.4 We see from the figure that the allowed MS

range depends sensitively on the approximation scheme:
1.3–3.0 TeV for fixed-order and 2.5–4.6 TeV for EFT. The

4 There are small differences in the calculations of SOFTSUSY and
of FlexibleSUSY producing their Mh predictions: for example, the
two-loop calculations of the electroweak corrections differ.
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Fig. 4 Higgs boson mass predictions at fixed three-loop order with
SOFTSUSY (red solid line) and FlexibleSUSY (blue dashed line)
and in the EFT (black dashed line). The coloured regions show the
estimated composite theoretical uncertainties in the different predic-
tions of Mh . The FlexibleSUSY uncertainty is very similar to the
SOFTSUSY one, and so is not shown for reasons of clarity. The orange
band shows the experimentally measured Higgs boson mass with the
experimental uncertainty

Higgs mass increases as a function of the SUSY scale due
to the logarithmic enhancement from heavy SUSY parti-
cles. As discussed above, the combined uncertainty of the
fixed-order calculations (red band) tends to increase with
increasing MS , while the uncertainty of the EFT calculation
(grey band) decreases. The point where the fixed-order and
the EFT calculation have the same estimated uncertainty is
Mequal

S = 1.2 TeV. To improve the prediction near this point,
a “hybrid” calculation should be used, where the large log-
arithms are re-summed and O(v2/M2

S) terms are included
[46,48,50,51,57,68,69].

3 Upper bound on the lightest stop mass

The logarithmic enhancement of the loop corrections to the
Higgs boson mass from heavy stops suggests that there is an
upper limit on the mass of the lightest stop from the require-
ment of predicting Mh = 125.09 GeV and a stable and appro-
priate (i.e. colour and charge preserving) vacuum. As was
already shown in Ref. [40], the maximum lightest stop mass
is around 1011 GeV. At very large stop masses, EWSB is
fine-tuned, despite the fact that the Higgs mass in our spec-
trum generators comes out to be small. This is because the
generators implicitly tune parameters in order to obtain the
measured central value of the Z boson mass MZ = 91.1876
GeV (or equivalently, the inferred value of v ∼ 246 GeV).

We see this in the MSSM EWSB equation [70] which pre-
dicts MZ :

M2
Z

2
=

m2
H̄1

(Q) − m2
H̄2

(Q) tan2 β(Q)

tan2 β(Q) − 1
− 1

2
�ΠT

Z Z (Q) − μ2

(21)

where m2
H̄i

= m2
Hi

− ti/vi , �ΠT
Z Z (Q) is the Z self-energy

and ti are the tadpole contributions from loops. Q is the scale
at which EWSB is calculated: usually around the TeV scale
and vi are the two Higgs VEVs of the CP even electrically
neutral MSSM Higgs fields. When the stop masses are huge,
they contribute to huge values of m2

H̄i
through the MSSM

RGEs, which at one loop order are [71]:

1

κ

dm2
H1

dt
= 6 y2

b

(
m2

H1
+ m2

Q̃3
+ m2

d̃3
+ A2

b

)

− 6g2
2M

2
2 − 6

5
g2

1M
2
1 + 3

5
g2

1

[
m2

H2
− m2

H1

+ Tr(m2
Q̃

− m2
L̃

− 2m2
ũ + m2

d̃
+ m2

ẽ)
]
, (22)

1

κ

dm2
H2

dt
= 6 y2

t

(
m2

H2
+ m2

Q̃3
+ m2

ũ3
+ A2

t

)

− 6g2
2M

2
2 − 6

5
g2

1M
2
1 + 3

5
g2

1

[
m2

H2
− m2

H1

+ Tr(m2
Q̃

− m2
L̃

− 2m2
ũ + m2

d̃
+ m2

ẽ)
]
, (23)

where t is the natural logarithm of the renormalisation scale
and Mi , mi are soft supersymmetry breaking mass param-
eters of order MS , as defined in Ref. [71]. In order for the
left-hand side of Eq. (21) to obtain the experimental value,
the first and the last term must cancel to a very large degree.
There is no fundamental reason why this is the case and the
terms must be tuned.

In practice,HSSUSY inverts the Higgs minimisation equa-
tions, taking μ(MS) and the value of the CP-odd Higgs
boson mass mA(MS) as input values. In this scheme, m2

H̄i

are implicitly tuned in order to give M2
Z at the experimen-

tal central value. Once this single tuning has been achieved,
there are no more large corrections to Mh from heavy sparti-
cles: they are all proportional to MZ ∝ v, which has already
been tuned.

We estimate the upper bound on the lightest DR
′

stop
mass mt̃1 in Fig. 5 by scanning over MS and the relative DR

′

stop mixing parameter Xt/MS in a scenario with degenerate
SUSY breaking mass parameters (except for m2

Hi
) set equal

to MS , μ(MS) = mA(MS) = MS and tan β = 1 to make the
tree-level Higgs mass vanish. This should then be the limit-
ing case where we require the largest correction from stops in
order to predict Mh in the correct range to satisfy the experi-
mental measurement. The Higgs boson mass has been calcu-
lated with the pure EFT calculation HSSUSY, because it has
a smaller uncertainty than the fixed-order calculations in the
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Fig. 5 Higgs boson mass prediction with the EFT calculationHSSUSY
as a function of the lightest DR

′
stop mass and the DR

′
stop mixing

parameter for degenerate SUSY mass parameters and tan β(MS) = 1.
The solid lines show the central value of Mh according to Eq. (1) plus or
minus the theoretical uncertainty. The dark regions at the top and bottom
of the plot display regions of parameter space which have charge and
colour breaking minima. Hatched regions have λ(MS) < 0

limit of large stop masses. The black lines show the contours
of Mh = 125.09 GeV ± ΔM (HSSUSY)

h , where ΔM (HSSUSY)
h

is the estimate of the theory uncertainty from HSSUSY, as
described in Sect. 2. In the red hatched region the quartic
Higgs coupling is negative at the SUSY scale, λ(MS) < 0,
pointing to a potentially unstable electroweak vacuum.5,6

In order to tell whether a point with λ(MS) < 0 really is
excluded, one should examine the full MSSM scalar poten-
tial. We consider this to be beyond the scope of the present
work, and so for now, we simply leave it as a point of inter-
est. We also display regions which are excluded because they
would lead to charge and colour breaking minima which are
deeper than the electroweak vacuum, outside the region [40]

X2
t

m Q̃3
mũ3

<

(
4 − 1

sin2 β

)(
mQ̃3

mũ3

+ mũ3

mQ̃3

)
. (24)

Applying Eq. (24) at Q = MS with our boundary conditions
on the quantities within it leads to

− 2 < Xt/MS < 2, (25)

5 Around Xt ≈ 0 the Higgsinos and electroweak gauginos give the
dominant negative contribution to λ(MS) for tan β = 1. For slightly
larger values of Xt the stop contributions become dominant, leading to
a positive λ(MS). For large stop mixing, the stop contribution becomes
negative as well, driving λ(MS) < 0 again.
6 For slightly larger values of tan β the region around Xt ≈ 0 becomes
allowed. However, with larger tan β the tree-level Higgs boson mass
rapidly increases, which leads to a significantly lower bound on the
lightest stop mass.

which corresponds to the non-darkened region in the horizon-
tal middle band of Fig. 2. From regions with a stable elec-
troweak vacuum based on the criterion in Eq. (25) and where
Eq. (1) is satisfied including the theoretical uncertainty, we
estimate an upper bound of mt̃1 < 3.7 × 1011 GeV.

4 Summary

By using the state-of-the-art EFT Higgs boson mass predic-
tion of HSSUSY we derived an estimate for the upper bound
of the lightest running stop mass that is compatible with the
measured value of the Higgs boson mass of Mh = 125.09
GeV, taking into account the uncertainty estimate of the EFT
calculation. Our estimate for the range of the lightest stop
mass is

mt̃1 < 3.7 × 1011 GeV, (26)

provided the sparticle spectrum is not split so that some spar-
ticles are much lighter than mt̃1 , as this would invalidate the
assumptions implicit within the EFT calculation that all spar-
ticles are around MS . Our more precise estimate of theoretical
uncertainties in the prediction of Mh does not qualitatively
change the conclusion of the previous study in Ref. [40].
Unfortunately, such a bound is very much higher than the
potential energies of conceivable terrestrial particle acceler-
ators.

We also compared the precision of the Higgs boson
mass predictions of the state-of-the-art DR

′
fixed-order and

EFT spectrum generators SOFTSUSY, FlexibleSUSY
and HSSUSY in the MSSM. We estimated the uncertain-
ties of the Higgs boson mass of the fixed-order and the EFT
calculation by considering unknown logarithmic and non-
logarithmic higher-order corrections. As part of our work,
we have provided a scheme to estimate the theoretical uncer-
tainties in fixed-order DR

′
calculations, based on the pre-

scription used in Ref. [51]. Our prescription is an extension
of Ref. [51], which takes further sources of uncertainty into
account. By comparing the precision of the predictions of
the two methods, we concluded that for SUSY masses below
Mequal

S = 1.2 TeV, the fixed-order calculation is more pre-
cise, while above that scale the EFT method is more precise.
To estimate this scale, we took the maximal mixing case
where all soft supersymmetry breaking masses are set to be
degenerate at MS (except for mHi , which are fixed in order to
achieve successful EWSB) and where tan β = 20. The pre-
cise value of Mequal

S will change depending upon the scenario
and can vary between MS = 1.0 TeV and 1.3 TeV for min-
imal/maximal stop mixing and small/large values of tan β.
However, once one imposes the experimental measurement
upon Mh , MS ≥ 1.3 TeV according to the fixed-order calcu-
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lation7 and 2 TeV according to the EFT calculation, as Fig. 4
shows. For MS ≥ 1.3 TeV, the EFT has smaller uncertain-
ties and so one is likely to be in a régime where Mh is better
approximated by EFT methods. It is unclear as yet, however,
whether details of the MSSM spectrum other than Mh are bet-
ter approximated by EFT methods. One question which we
have not addressed is: which approximation scheme (fixed
order DR

′
or EFT) is more accurate when there is a hierarchi-

cal sparticle spectrum? It is quite possible, for example, that
the stops are heavy but several of the other MSSM sparticles
are significantly lighter. For such scenarios the precision of
the fixed order DR

′
calculation would have to be compared

with the precision of an appropriate EFT that contains the
light sparticles. We leave such a study for future work.
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