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Abstract The Khuri-Treiman formalism models the
partial-wave expansion of a scattering amplitude as a sum of
three individual truncated series, capturing the low-energy
dynamics of the direct and cross channels. We cast this for-
malism into dispersive equations to study w7 scattering,
and compare their expressions and numerical output to the
Roy and GKPY equations. We prove that the Khuri—Treiman
equations and Roy equations coincide when both are trun-
cated to include only S- and P-waves. When higher partial
waves are included, we find an excellent agreement between
the Khuri-Treiman and the GKPY results. This lends cre-
dence to the notion that the Khuri-Treiman formalism is
a reliable low-energy tool for studying hadronic reaction
amplitudes.

1 Introduction

Three-body decays offer a unique window into hadron
dynamics. They are an especially useful tool for exploring
the hadron spectrum in the exotic sectors, where resonances
appear that cannot be accurately described by constituent
quark models. Some notable examples are the mysterious
XYZ peaks observed in three-body decays of heavy quarko-
nia [1-3]. Moreover, new methods have recently been devel-
oped that enable direct mapping from three-particle spectrain
a finite volume to three-particle scattering amplitudes in the
infinite volume, opening the door to lattice QCD calculations
[4-6]. Generally speaking, robust methods for constructing
reaction amplitudes that fulfill well-known properties from
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S-matrix theory, such as analyticity, unitarity, and crossing
symmetry for the analysis of three-particle final states are
mandatory.

One of the main issues posed by the presence of hadrons
in any reaction is their final-state interactions, which are for-
mally expressed in terms of the unitarity of the T-matrix. In
the case of 2 — 2 scattering, this effect can often be incorpo-
rated by neglecting unitarity in the 7- and u-channels while
preserving s-channel unitarity. For example, in the case of w7
scattering, the results obtained for the o meson with the Roy
equations (or other dispersive approaches that account for the
left-hand cut singularities in a nonperturbative way) are very
similar to those obtained with approaches that neglect alto-
gether the left-hand cut, or take it into account perturbatively
(see for example Refs. [7-9] and references therein). Despite
crossing symmetry, this is certainly not the case fora 1 — 3
decay, where ideally one wants to take into account unitarity
in the three possible two-hadron channels in the final state.

In the 1960s, Khuri and Treiman proposed a simple ampli-
tude model to study K — 3m decays [10]. This model
is based on the factorization of the scattering amplitude
A(s,t,u) into a sum of three functions, each of which
depends on a single Mandelstam variable only. Several more
studies later appeared that expanded upon this representation
of the amplitude [11-16] (see also the recent lectures in Ref.
[17]). For the lowest waves, this approach, which we refer
to as the Khuri-Treiman (KT) formalism, can be justified in
chiral perturbation theory (xPT) at lowest order via the so-
called reconstruction theorem [18-20]. From a broader point
of view, as we will discuss in detail below, the KT formalism
is a rather simple approach for modeling A(s, ¢, u). Gener-
ally speaking, an infinite sum of s-channel partial waves that
contain both right-hand cut (RHC) and left-hand cut (LHC)
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discontinuities is substituted by a finite sum of s-, ¢-, and
u-channel isobar amplitudes, each of which exhibit only a
RHC structure emanating from unitarity in the respective
channel. Although it is known that this model fails to prop-
erly account for asymptotic behavior at high energies, it is
expected to accurately describe the physics at low energies.
For this reason, it has often been used to study meson decays,
where the energy range is limited by the decay kinematics.
This formalism has recently been reviewed and applied to
various three-body decay channels of light and heavy mesons
[21-32].

Because the KT formalism has been applied to such a wide
range of processes, it is important to establish and validate its
range of applicability. This is what we propose to do in this
paper. Specifically, we compare the KT model amplitude for
7 scattering with the results of other, arguably more sophis-
ticated dispersive approaches. In the same spirit, we will not
strictly enforce elastic unitarity, unlike in Refs. [10,21-32].
The manuscript is organized as follows. In Sect. 2 we present
our notation for the general description of mm scattering,
as well as the form of the scattering amplitude in the KT
formalism. In Sect. 3 we analytically compare the KT and
Roy equations [33] for the lowest partial waves. We explic-
itly demonstrate that both formalisms exactly coincide when
truncated to S- and P-waves, complementing former results
discussed in Refs. [34-39]. In Sect. 4 we numerically study
the results obtained with the KT equations considering also
D- and F-waves, using as an input the parameterization of
the mwr scattering shift in Ref. [40]. We compare the results
obtained with the latter parameterization and with the results
of the GKPY equations discussed in the same work. The con-
clusions are given in Sect. 5. In the Appendix we specifically
discuss the contributions of the LHC to the partial waves.

2 Amplitudes

We begin by briefly reviewing the structure of w7 scattering
as it relates to our analysis of the KT equations. The gen-
eral form of the isopin invariant 7 scattering amplitude is
determined from the matrix elements of the transition-matrix
operator T':

1 n
ﬂ(7Tk(P3)7T1(P4)IT|7Ti(Pl)ﬂj(Pz)) = Ajjr(s, t, u)

= 3;j0kA(s, t,u) + 8ik8j AL, s, u) + 8;8k Au, t, s).
(1)

The Latin indices in Eq. (1) denote Cartesian isospin indices.!

The variables s, ¢, and u refer to the usual Mandelstam vari-
ables. In addition, the invariant amplitude can be expressed in

! For a detailed derivation of this decomposition we refer the reader to
Refs. [41,42].
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terms of a single function A(s, 7, #) and permutations of its
arguments by virtue of crossing symmetry. Bose symmetry
also requires this function to be symmetric in the second and
third variable, A(s, t, u) = A(s, u, t). Our primary interest
in the structure A; jx; (s, ¢, u) is its decomposition into ampli-
tudes of well-defined isospin in the s-channel, AU )(s, t,u),
which is accomplished by means of projectors:

2

Aija (s t,u) = > Pl AD (s 1,10, ©)
=0

1
O _
Pijkl = gaij(skly

1
1)
Pijia = 5 (8ix8j1 — 8id i)
1 1
Pl = 5 (0udji + 8dj) — 388, 3)

The amplitudes AD (s, t, u) can be written, in turn, as com-
binations of the amplitude A(s, 7, #) and permutations of the
arguments by comparing Egs. (1) and (2):

AO (s 1, u) 31 17 [ A, t,u)
AOG ru) [ =10 1 =1 || A@, s, u)
AD (s, 1, u) 0 1 1 Au,t,s)
A(s,t,u)
=K | A{,s,u) |. “4)
Au,t,s)

The left-hand side of Eq. (4) can be decomposed into an
infinite series of s-channel partial-wave amplitudes tl(l)(s):

AD (s, 1u) = D@+ D P (s), (5)
=0
I 1 +1
1 (s) = 5/ dzg Py(z) AV (s, 1 (s, 2), uls, zy)),
-1

(6)

where Py(zs) are Legendre polynomials in the variable z;,
the s-channel scattering angle, which has the form

I —u

4p2(s)’ 2

7y =25(s, t,u) =

Additionally, the cross-channel variables under this projec-
tion are given by

1(s,25) = —2p*(s)(1 — zy), 8)
u(s, z5) = —2p*(s)(1 + zy), )

where pz(s) = (s — 4m?) /4 is the momentum squared in
the center-of-mass frame, and m is the charge-averaged pion
mass. The normalization of the partial-wave amplitudes is
chosen such that

(D)
772”(5‘)6218( () _1

Doy
g (9) = 2io(s)

) (10)
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where o(s) = /1 — %2 — 2p(s5)/\/s. The threshold

parameters (which are dimensionless with our definitions)
are defined through

v 2
v _ (D), () P(S)
pzl(S)Retz (s)=a +b£ 74- . (11)

We now wish to describe the amplitude A(s, ¢, u) within
the KT formalism. This involves truncating the infinite series
of s-channel partial-wave amplitudes tél) (s), which contain
both RHC and LHC structure. Truncating this expansion at
some maximum orbital angular momentum ¢p,,x defines an
amplitude that is regular in the variables ¢ and u. The singu-
larities generated by ¢- and u-channel physics can be partially
recovered by adding truncated ¢- and u-channel series expan-
sions of partial-wave-like functions [24,28,31,43]:

emax
AGs,t 1) = Y (2L + 1) Po(zo) p* (s)aj (s)
£=0
+@E =+ —>u), (12)

where the functions aj(s), az (¢), and aj (u) are isobars in
the indicated channel. By assumption, the isobars contain
only RHC singularities in their respective channel variable
and thus exclusively account for the singularity structure of
A(s, t, u). It is important to recognize that the isobars are not
independent functions: the symmetry A(s, t, u) = A(s, u, t)
implies aé (1) = (—1)la2f(t). Note that crossing symmetry is
respected in Eq. (12) since we take €pax to be the same integer
for each truncated series and the inclusion of the p?¢ factors
enforces the proper behavior of A(s, ¢, u) near threshold [44,
45]. As we mentioned in the introduction, this representation
of the amplitude is consistent with the reconstruction theorem
[18], but only if £max < 1. In this regard, the representation
given by Eq. (12) is more general, however, its effectiveness
is restricted to low energies and partial waves, as it lacks
Mandelstam analyticity in the angular momentum plane. We
accept the limitations of this representation and aim to test
the limits of its effectiveness.

From here, we construct isobars of definite isospin in the
s-channel and denote them as Ezé”(s). These can be defined
by comparing the KT amplitude in Eq. (12) with Eq. (4).
Specifically, we define:

a)” (x) ag(x)
a’ ) | =K | ajx) |, (13)
al” (x) ag (x)

where x = s, ¢, u and the matrix K has been introduced in
Eq. (4). Using this relation in Eq. (12) we obtain

Canax SO,y _ =)
Aty =Y QL+ 1)Pe<zs)p2‘<s>M
=0
Cmax ~(1) ~(2)
+ 30+ DR DO
=0 2

Zmax _(1) _(2)
J’_
+Y e+ l)Pz(Zu)Pze(u)M

=0

(-1t

(14)

where z; and z,, are the 7- and u-channel center-of-mass scat-
tering angles,

S —u

Zt=Zt(S,fsu)=mv (15)
-39
Zu = 2u(s, t,u) = W (16)

For the rest of the paper we will use the condensed notation
2¢(s,2) = z:(s,t(s, 2), u(s, z)) and the analogous notation
for z,. In Eq. (14) it should be understood that dél) =0
unless ¢ 4+ [ is an even integer so that Bose symmetry is
respected. We remind the reader that the specific choice of
the nomenclature in Eq. (14) is such that the well-defined
isospin amplitudes AW (s, t, u) have isobars Ezé” (s) in the s-
channel projection. More specifically, inserting Eq. (14) into
Eq. (4), one obtains

Lmax

AD (s, 1,u) =20+ D Pz p* (9 ()
£=0
Kmax

1 o
+ 2D QU DPG) P (05 Ciray (@)
=0 I
Kmax

+ ) D @+ D PP W)

=0 I

1 (I /
x 5Crray (=D, (17)

where the coefficients C; ;s are the matrix elements of

2 1
2, 10
3 3
c=2 , .3 (18)
3 3
2 1
27 Z
L3 3

We again remind the reader that the functions Zzél)(s) have
only a RHC, and for each of them we write a dispersion

@ Springer
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relation with an arbitrary number of subtractions n,>

n—1 —(1)(j)(s )

&21)(5,) — Z ag]—'l(s — sl)j

j=0

N (s —s1)" /oo ds’ Ima/)(s’)
4 Sth (s’

—_ Y, 19
—s)"(s" —5) (19

where sg, = 4m?. For simplicity, all of the subtractions are
taken at the same point s1 < s, and the subtraction constants
are denoted as Ezél)(] ) (s1). Asitis written, Eq. (19) might lead
one to think that the subtraction constants have no physical
meaning. This, however, depends on the subtraction point
chosen and the contribution of the crossed channels. In any
case, with appropriate (linear) transformations, the subtrac-
tions constants at any subthreshold point can be related to the
effective range parameters [introduced in Eq. (11)]. We will
see this in an specific case in Sect. 3. Dispersion relations
similar to Eq. (19) are implied for the 7- and u-channel iso-
bars. Inserting this dispersive representation into Eq. (17),
and the resulting amplitudes AD (s, 1, u) into the partial-
wave projection, Eq. (6), one obtains the KT representation
of the partial-wave amplitudes of well-defined isospin in the
s-channel,
(txn)y” () = p** (s)a;”(s)
= R(s) a"w
+ Y Y U+ 1)C 55— i (s1)

.1 j=0

1
+Z(2Z’~|—1)C11/;/ dr'S% (5. 1)

ma!” (1)

or Sth ( - sl)n .
(20)
The following functions have been introduced above:
) 1 +! .
Ry () = 5/_1 dz (t(s,2) —s1)’ Pe(2)
x Py (zt(s, 2)p* (105, 2)), @1
(n) / Lot
%“&HZE/IM

(60 —s)" Pg(z)Pg/(zl(s 2 (s, )

—1(s,2)
(22)
The functions Réé,) (s) are polynomials in s. Furthermore,
both Réé? (s) and Séz,) (s, t') behave as p*(s) for s — 4m?>.

In the s-channel physical region, Eq. (20), together with
Eq. (19), can be written more compactly as a Roy-like equa-
tion,

2 Strictly speaking, it is more correct to write n = ng,; since the number
of subtractions performed can vary for each wave. While this possibility
has been explored, the results presented in Sect. 4 consider only the same
number of subtractions for all waves.

@ Springer

() (s) = p*(s)
x | P )+Z g Qe ()t (")
) = ’ 2@’ /) KT Y )

(23)

where we used Im(tKT)g)(s) = pzz (s)ImZzél)(s) for s >
st. The polynomial term? P;I)(s) and the integral kernels
Q(IZKI,/ (s, t') are given by

P s) = ZZ<(S_.S‘) ai" (518"

o1 j=0
) (1)(1)
’ Rgg/( ) (s1)
+ Q0+ DHCrp 220(5) I ), 24)
B 1 (s —s1)" 170
Qu/(s t) (l/—Sl)” |: . 8(@8
St 5. 1)
+Crp 20 4+ 1)—" s | (25)

This is our final form of the KT equations for w7 scattering.

3 Analytical comparison of KT and Roy equations for
S- and P-waves

We begin in this section with a brief introduction to the
Roy equations before comparing them with the KT equa-
tions developed in Sect. 2. The Roy equations have been
used extensively to study w scattering, with initial stud-
ies following Roy’s original paper [46-50], but also more
recently in the context of newer data [39,40]. The Roy equa-
tions impose, within a given kinematical region, rigorous
conditions on the determination of partial-wave amplitudes
of definite isospin, based on analyticity and crossing sym-
metry. In their exact form, the Roy equations couple the infi-
nite set of partial waves. However, any practical application
requires a finite truncation, which makes them resemble the
KT equations as we will demonstrate. The starting point for
deriving these equations is to write down a twice-subtracted
fixed-¢ dispersion relation for these amplitudes. Roy realized
these could be written as a matrix equation [33]:

AD (s, 1,u) = Z (Cs)pr lap () + Br (1)(s — w)]
u2
—/ ( 5011 + m(cus)ll’>
xImAY) (x, 1, u(x, 1)), (26)

3 The explicit form of the polynomial contributions P[ )(s) is shown

in Appendix B for the casesn = 1 and n = 2.
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where we are using the notation in Eq. (4). The column
vectors characterizing the #-dependent subtraction constants
ap(t) and By (t) have isospin 0,2 and isospin 1 compo-
nents, respectively. The matrices (Cy;);p and (Cy, )y are
the crossing matrices and are given explicitly in Ref. [33].4
The Roy equations themselves are the partial-wave projec-
tion of Eq. (26). Using the notation of Ref. [39], these can be
compactly written as

ZIZI// (s, x)

(froy)} () = k" (5) + Z

o Sth
x Tm (1Roy) ) (X). (27)

In this equation, the kinematical functions kf,l) (s) are known
linear polynomials in s resulting from projecting over the
subtraction polynomials. They contain two parameters; the
S0- and S2-wave scattering lengths a(()o) and a(() ), respec-
tively. The integral kernels K ; e’, (s, x) are known as well and
are fully documented in Appendix A of Ref. [39]. Including
the results of Refs. [51,52] with experimental information
on the scattering lengths and imaginary parts Im (tRoy)E{l) (s)
for sph < § < o0, the real part of Eq. (27) can be fully deter-
mined on the interval —4m? < s < 60m?, and analytically
continued to the complex plane in a region limited by the
Lehmann ellipse [39]. This implies the Roy equations are
particularly useful for studying the resonance properties of
low-energy mmr scattering. Indeed, they have proven to be a
popular resource in this regard.

Now that we have introduced the Roy equations, we pro-
ceed by comparing them with our formalism of the KT equa-
tions. If restricted to the elastic region, the Roy equations
Eq. (27) can be seen as a closed set of coupled nonlinear
integral equations for amplitudes (tRoy)y) (s), since each of
the former can be written in terms of a single function, the
phase shift (Sél) (s). The same can be said of the KT equations,
but this approach will not be pursued here. We instead con-
sider the Roy and KT equations as integral representations of
the analytical partial waves in terms of their discontinuities
and subtraction constants. As mentioned in Sect. 1, the aim
in this section is to analytically compare the KT and Roy
equations when truncating both formalisms to include only
S- and P-waves (£, ¢ = 0, 1). One needs to consider the
previous sentence with care: by truncation of the Roy equa-
tions to S- and P-waves, we mean letting the values of ¢ and
¢ in Eq. (27) to be either O or 1. This truncation should not
be confused with what is usually done in several analyses
of the Roy equations [39,40,46-50], where one solves the
integral equation for a finite number of low partial waves.
Consequently, what we refer to as the Roy equations in com-

4 They are related to the matrix C used in Sect. 2 through (Cs);p =
1Cpand (Cug)pp = ACrp (=D,

parison to the KT equations under truncation does not exactly
coincide with those Roy equation analyses.

From Eq. (14), the KT amplitude A(s, ¢, u) with £y = 1
has the expansion

a\(s)—aPs)  alP @)
3 2

a® (w)
2

That the Roy equations 1mp1y this KT-like structure for
A(s, t, u), with the functions dé” (s) having only a RHC, has
been already discussed in Refs. [34-39]. In what follows,
we show in full detail that Roy and KT equations under the
truncation specified give the same partial-wave amplitudes as
in Eq. (28). To that end, let us consider a single subtraction
n = 1 in each of the KT isobars. Since we are considering
only one subtraction in each isobar, we simplify the notation

Als, 1, 1) = + 8( —wal" )

42 42 ( —nal’ ). (28)

throughout this section by writing a( =0 (s1) = a(l)(sl)
In this way, the KT polynomials of Eq (24) are

5 3
P (5) = 3 (a6 1) + 245 51) + 3 Gs = 4mDa; s1),
(29)
2 3
P (5) = 5 (@ 0 +2a5" (51) = 5 Gs —4m™af (1),
(30)
3
PV (s) = Jay ). 31

Although we have made a total of three subtractions, there
are only two effective parameters, the subtraction constant
c"zfl) (s1) and the linear combination Ez(()o) (s1)+ 25162) (s1). This
is similar to what happens in the Roy equations. Let us now
pay attention to the difference between the kernels of the KT
and Roy equations,

pwi )) ol s, 1"y — k[ (s, ). 32)

For instance, for the case (¢, I) = (0,0) and (¢/, ") = (1, 1)
(recall that we are taking the number of subtractions n = 1),

1r N o
TAy (s, 1) =

we have:
Q 9 25+t — 4m? 1+s—4m2
2( D) = dmP(s —dm) E g
2 _ 3¢ _
34m 3s —2(¢ sl)’ (33)
7t — 1)t —4m?)
6 25+t — 4m? s — 4m?
KOs, 1) = — 1
01 ) = T am s — dm?) g( T )
am? —3s — 2t/
. 34
7t (t' — 4m?) (34

It can be seen that the logarithmic terms cancel, and thus
the difference is a first order polynomial in s. This happens

for all A%, (t',s) as long as £, £’ < 1. Recalling that these

@ Springer
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differences appear under an integral in which the integration
variable is ¢/, we can write

1
2P s)

(rkm)y) (5) = (1roy)y () = p — k")

+ Z /S h ' all, (4m2,t’)1m(tR0y)§f Q)
/ t

+ (s —4m )Z/

[ ALl @m?, r)} Im(1Roy)!! ()
NG Sth

= 2P () = kD) + x4 s —amDyD . (35)

where the imaginary part Im(tKT) v )(t ) = Im(tRoy) v )(t )
are ( (n
given as an input, and Xy and Y, ~ are constants not

depending on s. Moreover, they are related through:

(0) 2
0) _ 2x0 — SXO

2
6y = -2y = o (36)

The above difference (tKT)le)(s) — (tRoy)y)(s) is also a lin-
ear polynomial in s. The next question is can we choose
our constants al (sl) and a, )(sl) + 2a0 (s1) such that
(tKT)e )(s) - (tRoy)e (s) = 0 for the three S- and P-waves?
The P-wave is proportional to (s — 4m?), so x{l) = 0. We
thus have to satisfy five conditions with only two parameters.
It turns out that the solution

( O (s1) + 2a(2)(S1)) = (af)o) +2a(§2)) ( Qe 2x(2)) :
(37
27m?al" 51) = (20" — 57 ) = (20" = 557). (38)

fulfills indeed the five conditions.’ Hence, we have proved
that, under the conditions indicated above,

(k) (5) — (tRoy) " (s) = 0. (39)

This is a highly nontrivial result: the kernels of both
approaches are originally different, but it turns out that they
are such that the differences in the partial-wave amplitudes
are only polynomials, and that the three polynomials can be
put to zero with only two free parameters.

For higher waves, £, £/ > 2, the kernels K’, (s, t) have
more complicated structures. For instance, when o =2,

one also finds the term log(l + #), in addition to
log <1 + s— 4m2

are not purely polynomials, and the above result cannot be
proved.

). In that case, the differences in the kernels

5 Asadvanced in Sect. 3, we explicitly see in Egs. (37) and (38) that the
subtraction constants can be linearly related to the threshold parameters.

@ Springer

4 Numerical results

Since the proof of the result in the previous section only
holds when restricting to S- and P-waves, in this section we
numerically study to what extent the KT equations are useful
when higher partial waves are considered. Specifically, we
now set £max = 3 in Eq. (14) and thus consider up to the F-
wave. In this way, partial waves with ¢ > 4 (G- and higher
waves) are set to zero, and do not contribute to the imaginary
parts in Eq. (23). As stated above, the KT and Roy equations
give the real part of the amplitudes once the imaginary part
is given, up to a polynomial contribution. As an input for
the KT equations, we shall use the CFD parameterization of
Ref. [40], which we now briefly discuss. This work parame-
terizes the inelasticities r]é[) (s) and phase shifts (Sé” (s) of the
partial-wave amplitudes, Eq. (10). Two different parameter-
izations are given in Ref. [40], called UFD and CFD, which
respectively stand for unconstrained and constrained fit to
data. They do not differ on the form of the parameterization
but in the values the parameters take. In the UFD parameter-
ization only the data are fitted, while in the CFD dispersive
constraints are imposed on the amplitudes. Among these, the
most relevant ones are the Roy and GKPY equations, which
are, respectively, twice- and once-subtracted dispersion rela-
tions for the 7 amplitude. Hence, the amplitudes computed
with the CFD parameterization satisfy, within uncertainties,
these dispersive equations. Both parameterizations of Ref.
[40] provide the phase shifts and inelasticities along the RHC.
These quantities can be used as inputs to the Roy or GKPY
equations so that the amplitudes can be computed at any
point on the complex plane. The real part of the amplitudes
obtained with the Roy or GKPY equations along the RHC are
very similar to those obtained with the CFD parameterization
for the amplitudes, since the latter are constrained to satisfy
the former. We can use as well the CFD parameterization of
Ref. [40] as an input for our KT equations to obtain the real
part of the partial-wave amplitudes (tKT),(ZI) (s), and compare
our results with the original input.

The real parts of the input amplitudes are the black solid
lines in Fig. 1. The CFD parameterization reaches up to
a center-of-mass energy squared s, = (1.42 GeV)? ~
2 GeV?. Since the dispersive integrals in the KT equa-
tions extend to infinity, we shall take as an approximation
57 (s) = 8" (sm) and " () = 0y (sm) for s > s,
It is important to mention here that we do not use the full
CFD parameterization since above s ~ 2 GeV? we set the
phase shift to a constant instead of using the Regge formu-
las of Ref. [40]. With the input amplitudes fixed, the only
remaining freedom in the KT equations are the subtraction
constants appearing in the polynomial terms. The subtrac-
tion constants are chosen so as to minimize the difference in
the region sy, < s < 57 between the real part of the input
amplitudes and those computed with the KT equations. To
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Fig. 1 Comparison of the real part of the different input partial-wave
amplitudes (tCFD)él)(s) taken from Ref. [40] (black lines, labeled as
CFD) with (1) (s). The two setups A (blue dashed line) and B (red

be more specific, we are minimizing the following x2-like
function:

2 1

T Z/ 7 s (Re [(IKT)((ZI)(S)—(tCFD)y)(s)DZ_

Sf — Sth N Sth
(40)

We recall that the goal here is not to describe the phase shifts
and inelasticities parameterized in Ref. [40], but rather a
comparison between the amplitudes used as an input and
the output given by the KT equations. For this reason we
will not dwell on the calculation of errors, which should be

(O e

T T T

T T T T [ T T T T

Re t(()Q)(s)

I T T T T Y T S S

0.5 1 1.5 2
s (GeV?)

—0.6

T T [ T T T T [ T T T T [ T T 1T

0.4 - 2N e

T T
L1

T
W
|

0.2

T T
L1

Re ) (s)

T T
L1

—0.2

T
|

T T

—0.4

0.08

T T T

0.06

e
=)
=
T T T T

T T T

0.02

T

Fr T T

dash-dotted line) represent different choices of the number of subtrac-
tions in each wave and the maximum value of s (s s) taken into account
into the fit of the subtraction constants (see text for more details)

approximately equal to those given by the CFD parameter-
ization. Two different setups for the fits will be considered.
In setup A we choose for the number of subtractions n = 1
and sy =1 GeV?, while setup B is computed with n = 2
and sy = 1.9 GeV? < sm.0 where s,, has been defined

6 In Setup B we choose sp =19 GeV? close to but smaller than
sm =~ 2 GeV2, in which our input for Imtél)(t’) changes from the CFD
parameterization to a constant phase and inelasticity one. By choosing
sf < Sm, we avoid the point s = s, in which, despite the fact that
the amplitude is continuous, some small numerical perturbations could
appear.
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Fig. 2 Same as Fig. 1, but restricted to S- and P-waves, and including the dispersive output (green dotted lines, GKPY) of Ref. [40]. The (green)
error band is associated with the GKPY dispersive output, as given in Ref. [40]

above. In setup A we seek a description of low energies with
a small number of subtractions. In contrast, in setup B we
have extended the range of the fit up to the maximum allowed
by the CFD parameterization and the number of subtractions
is increased.

In setup A, n = 1 and thus there are a total of six subtrac-
tions, but only five free parameters, since the subtraction con-
stants a(()O)(O) (s1) and a(()z)(o) (s1) always appear in the same
linear combination [see also the discussion in Sect. 3 and
Eqgs. (29)-(31)]. Analogously, in setup B, although n = 2
and there is a total of twelve subtractions, the number of free
parameters is only seven and setup B introduces two addi-
tional free parameters with respect to setup A. The values of
the x2-like function defined in Eq. (40) are x> = 1.5- 1073
and 2.7 - 1073 for setups A and B, respectively. We remark
here that this is not a x? function, and hence the compari-
son between the values for the two setups has no statistical
meaning. We further remark that the inclusion of D- and F'-
waves is found to be necessary for an accurate description of
the dispersive output with the KT equations, but only in the
sense of the additional polynomial degrees of freedom they
introduce. That is, the explicit inclusion of the imaginary
contributions Imtél)(t/ ) for £ > 1 appearing in the disper-
sive projections in Eq. (23) are negligible. Despite the fact
that these contributions are actually relevant over the entire
interval s € (4m?, o0), their inclusion is typically smooth as
we further discuss in the Appendix and their net contribution
is found to be small in comparison to the aforementioned
polynomials. The partial waves obtained within each setup
are shown in Fig. 1. We see that the agreement with the orig-
inal input is quite good and clearly better for setup B. In
Fig. 2, showing only S- and P-waves up to /s = 1.1 GeV,
we include in the comparison the dispersive output obtained
with the GKPY equations and its associated error band, as
given in Ref. [40]. We see that all curves lie well within or
at the edges of the error bands.

@ Springer

Together with the general comparison of the real part of the
input and KT amplitudes, we can more specifically compare
the threshold parameters of the different waves that we have
included in our study, cf. Eq. (11), obtained with the two
approaches. In Table 1 we show the values of the aé” and bfz[)
parameters computed with the KT equations and compared
with those of Ref. [40] (the results labeled as CFD in that
work are quoted here). We see that the agreement is also
quite good. This is expected since these parameters control
the low-energy behavior of the amplitudes, which the KT
equations are able to reproduce in the whole energy range
(sth < s < sp,) considered here.

Up to now we have checked the agreement between the
real part of the amplitudes along the RHC obtained from KT
equations and those from the CFD parameterization and the
GKPY dispersive amplitudes of Ref. [40]. Since the subtrac-
tion constants have been fixed so as to minimize the differ-
ence between the input amplitudes and the output from the
KT equations, this agreement could be seen as natural. One
may therefore ask: to what extent does the agreement stand
away from the real axis? In this context, the CFD parameter-
ization of Ref. [40] is used in Refs. [53,54] to compute the
amplitudes on the complex plane by means of GKPY and
Roy equations, as described above. In particular, the position
and coupling of poles associated with several resonances are
computed in those works. As done with the Roy and GKPY
equations, our KT equations allow us to compute the ampli-
tudes at any point on the complex plane. Hence, we now com-
pare the results obtained in Refs. [53,54] with those obtained
with the KT equations. To that end, let us first briefly discuss
the relation between resonances and amplitudes, mainly to
define our notation. Resonances manifest in the amplitudes
as poles on the unphysical Riemann sheets which are con-
tinuously connected with the physical one on the real axis.
To reach the unphysical sheets the amplitudes must be ana-



Eur. Phys. J. C (2018) 78:574

Page 9 of 14 574

Table 1 Threshold parameters and the pole positions and couplings
for the o, p, f0(980), and f>(1270) (the latter two are simply denoted
above simply as fj and f>, respectively) obtained with the KT equations
(second and third columns for setups A and B, respectively) are shown.

For comparison, we also show in the fourth column the same quantities
extracted from the GKPY equations or the CFD parameterization of
Ref. [40], as quoted in Refs. [40,53,54]

KT-A KT-B GKPY-CFD

al’ 0217 0.213 0.221(9) [40]
b 0.274 0.275 0.278(7) [40]
as? —0.044 —0.047 —0.043(8) [40]
b —0.078 —0.079 —0.080(9) [40]
10% -4V 37.5 37.9 38.5(1.2) [40]
103 (Y 5.6 5.7 5.13) [40]
10% - ) 17.8 17.8 18.8(4) [40]
104 b —34 —34 —4.2(1.0) [40]
10* - af? 1.9 1.8 2.8(1.0) [40]
104 b -32 -32 —2.8(8) [40]
109 - 4 5.7 57 5.1(1.3) [40]
105 - bV —4.0 —4.0 —4.6(2.5) [40]
V5o (MeV) (448, 270) (448, 269) (457715, 2791 [53]
g0 | GeV 3.36 3.37 3.591014 (53]
V55 (MeV) (762.2,72.4) (763.4,73.5) (763.771-1,73.211) [53]
lgo] 5.95 6.01 6.011004 (53]
V57 (MeV) (1000, 24) (995, 26) (996 + 17,2510 (53]
lgs| (GeV) 2.4 2.3 2.3+0.2 [53]
V57 (MeV) (1275.1, 89.5) (1268.9, 86.4) (1267.3705,87+9) [54]
lgp| (GevTh 5.6 5.5 5.0+0.3 [54]

lytically continued. Denoting as #7; (s) the amplitude7 on the
second Riemann sheet, we take its customary definition in
terms of the amplitude on the physical sheet, #; (s):

11 (s) = 177" (s) + 2i0 (s). 41)
Around the pole s >~ s,

52

8
tr(s) ~ —"—, (42)

s —Sp
and we define the coupling g, of the resonance to the mx
channel in terms of the residue g, as®
2¢+1
2 2
=—lon——32°. 43

KT @

In Table 1 we show the poles and couplings of the different
resonances that show up in the amplitudes considered in this
work (S-, P-, D-, and F-waves). It can be seen that there is
an excellent agreement between the determination obtained

7 Here, for simplicity in the notation, we drop the £, I scripts notation.

8 We choose this particular definition of the coupling to directly com-
pare with the results given in Refs. [40,53,54].

with the KT equations and those from the dispersive approach
of Refs. [53,54], which use our same input amplitudes but
into dispersive equations in principle very different from KT
equations.

Our final discussion about the results for the partial-wave
amplitudes obtained with the KT formalism concerns the
unitarity of said amplitudes. As explained before, Ref. [40]
parameterizes the amplitudes through the phase shifts Sél) (s)
and inelasticities ny) (s) as given in Eq. (10), with the latter
chosen such that né” (s) < 1. Hence, the input amplitudes
are unitary by construction. However, there is nothing in the
KT equations (neither in the Roy nor GKPY equations) that
force the partial waves to fulfill unitarity. For instance, in
the derivation of our KT equations in Sect. 2, the unitarity
requirement is not used, and only dispersion relations for the
different functions entering in the full amplitude A(s, ¢, u)
are used. A similar statement can be made about the Roy
equations.” Unitarity is only achieved when a specific con-

9 As discussed for instance in Ref. [39], the unitarity of the partial wave
is an additional requirement to be imposed on the Roy equations. The
same can be said about the other dispersive approaches referred to in this

@ Springer
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Fig. 3 Phase shift (left) and inelasticity (right) for the SO wave. The
notation for the different curves and the band is as in Fig. 2. These quan-
tities are constructed from the real and imaginary parts of the SO partial
wave. The real part of the KT or GKPY amplitudes is given by the

straint is imposed relating the real and the imaginary parts. A
second point to be taken into account is that, as explained in
Sect. 3, in this work we are not obtaining tél)(s) as the solu-
tion of the integral equation in Eq. (23). Rather, our approach
in this work is to consider Eq. (23) as an integral representa-
tion for the amplitude te([) (s), which can be obtained when a
given input (namely, a specific parameterization of the imag-
inary part) is used to feed the equations. The fact that the
input used fulfills unitary does not guarantee that the ampli-
tude obtained as an output will fulfill unitarity. Hence, in
this approach, unitarity violations'? are to be expected and,
indeed, they are present. Yet, as we shall see below, we can
advance the idea that using a unitary parameterization of the
input amplitude makes these unavoidable unitary violations
quite small.

Let us take as an example the SO wave. In Fig. 3 we show
the phase shift and inelasticity of this wave as given by the
CFD parameterization of Ref. [40] (black solid line), and
as obtained from tO(O) (s) calculated with KT equations (blue
dashed and red dash-dotted lines for setup A and B, respec-
tively). Since the real part of téo) (s) closely follows the input
amplitude (see Figs. 1 and 2), and the imaginary parts are
equal by construction, we expect 8(()0) (s) and n(()o) (s) to be
similar in both approaches and, indeed, they are. However,
for ﬁ < 1GeV (K K threshold), we see that the input
inelasticity is exactly one due to the parameterization. This
is not the case for the KT equation, which shows a value

n(()o) > 1 in a small region around /s >~ 1 GeV. For low

energies, n(()o) is very close to 1, and for /s > 1 GeV the

Footnote 9 continued

paper. This can be achieved, for instance, by looking only for solutions
in a subspace of unitary solutions.

10 These refer to either ’720 (s) < 1in the elastic region, or né” (s)>1
in any region.
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dispersive approach used (for instance, Eq. (20) for the KT approach),
whereas the imaginary part, by construction, is given by the amplitude
used to feed the dispersive equations. In both cases, this is the CFD
parameterization

KT determination of n(()o) closely follows the inelasticity of

the input amplitude. We also show in Fig. 3 r](()o) as computed
with the partial wave that results from the GKPY equations
(green dotted line), as well as a simple estimation of its error
from one of the partial waves (see Fig. 2). We observe that
our KT dispersive output lies well within this error band.
Furthermore, the value n(()o) (s) = 1fors < 4m%< is well
comprised in this error band. All this considered, and given
that unitarity is not imposed in KT equations, we can safely
say that unitarity is well fulfilled for low energies.

For higher energies, s — 00, due to the p” (s) factors cho-
sen in our definitions of the amplitudes to satisfy the threshold
behavior, the absolute value of the real part of the partial-
wave amplitudes grows as s* (with some positive integer 1),
and then the inelasticity does not satisfy unitarity either. This
behavior could be corrected by cutting the KT equation for
tél)(s) at some value of s and imposing there some appro-
priate asymptotic behavior, but this is beyond the scope of
our exploratory study. Furthermore, as said, this unwanted
behavior occurs for s — oo, whereas the KT equations are
meant to be low-energy approximations.

5 Discussion and conclusions

In this work, we explored the various aspects of the KT for-
malism within the context of w7z scattering. Our main goal
was to assess the validity of the KT formalism within a kine-
matical range characteristic of hadronic processes in general.
Since w scattering is the most well studied and simplest,
purely hadronic process, this makes it an ideal system for test-
ing the KT formalism. To accomplish this, we derived the KT
equations for w7t scattering in Sect. 2 and followed this with a
proof showing the KT and Roy equations are equivalent when
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truncating both formalisms to include only S- and P-waves
in Sect. 3. While the connection between the Roy equations
and the reconstruction theorem under a similar truncation has
already been made in previous works, here we demonstrated
that a general representation of the amplitude in terms of
three distinct expansions in all of the scattering channels also
reproduces this result. Numerical results testing the validity
of the KT equations including higher waves was explored in
Sect. 4. The dispersive output from the KT equations using
as an input the CFD parameterization of Ref. [40] up to the
F-wave and a center-of-mass energy /s = 1.42 GeV was
compared with the GKPY equations and the CFD input itself.
The KT equations provide an excellent agreement with both
the CFD parameterization and GKPY equations at the level
of partial-wave amplitudes and subsequent resonance pole
parameters. In addition, since the KT equations (as well as
the Roy or GKPY equations) do not imply per se the uni-
tarity of the partial waves, we have studied how much they
deviate from exact unitarity. We found that the KT equations
satisfy unitarity within the CFD parameterization error for
low energies. This supports the idea that the KT formalism is
a good and simple approach for modeling amplitudes at low
energies. The contribution to the partial waves coming from
the LHC in the KT approach is also explored in some detail.
It is found that, in the scattering region, and for some waves,
this contribution can be well accounted for by polynomials.
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Appendix A: LHC contributions

A dispersive representation of the wr partial waves tél)(s)
would have, generally speaking, three different contribu-
tions: two terms from the integrals of the discontinuities
along the RHC and LHC, and a polynomial term stemming
from the subtractions performed in the dispersion relation.
These contributions are easily identifiable in our KT repre-
sentation of the partial waves, Eq. (23). The RHC and LHC
respectively arise from the singular and nonsingular terms of
the kernels, Eq. (25), whereas the polynomial term is given
by Eq. (24). In this appendix we discuss the relative impor-
tance of the LHC contribution to the partial waves in the
KT dispersive representation. In Fig. 4 we show, for the S-
and P-waves, the three contributions to the partial waves,
together with the total amplitude. For simplicity, we consider
the number of subtractions given by setup A discussed above
for the KT approach. We immediately mention two features.
First, in the SO and P waves, where prominent resonances
show up, the general shape of the amplitude is given by that
of the RHC contribution. Second, the LHC contribution is
of non-negligible magnitude in the three waves. However,
even if the LHC contribution is large, we see that, for the
S0 and P waves, it has no particular structure in the region
s < 1 GeV? (the maximum range for setup A), whereas it
has a more complicated structure in the S2 wave. In Fig. 5
we show the LHC contribution for the three waves compared
with order n polynomials, whose coefficients have been fit-
ted to reproduce the LHC contribution. For the S2 wave,
although the polynomial is able to account for the bulk of the
LHC contribution, the particular details of the former cannot
be described even with higher-order polynomials. Although
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Fig. 4 Contributions to the total partial-wave amplitude using setup A as described above (black dashed line): RHC integral (purple dash-dotted
line), LHC integral (blue solid line), and polynomial term (orange dash-double-dotted line). Only the S- and P-waves are shown
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Fig. 5 Comparison of the LHC integral (blue solid line) shown in Fig. 4 with order n polynomials (red dashed and green dash-dotted lines) with

coefficients fitted to reproduce the LHC integral

this agrees with the expectation for the LHC to dominate the
S2 lineshape, in absence of any resonance pole, the devia-
tions of the polynomial from the LHC are of the same order
as the deviations of KT from the Roy result shown in Fig. 1,
and we cannot derive any strong conclusions from that. On
the other hand, for the SO and P waves it can be seen that
it is possible to accurately reproduce the LHC contribution
with low-order polynomials. Therefore, if one writes down
independent (i.e., crossing symmetry violating) dispersion
relations for the partial waves tlfl) (s), the contributions from
the LHC can be reabsorbed into the polynomial coefficients
that are already present in the dispersion relation for the RHC.
This is the meaning of the common statement that LHC con-
tributions can be neglected (or at least treated perturbatively)
in scattering process like 7w — 7.

Appendix B: Polynomials

In this Appendix we collect the polynomials used in the KT
equations, Eq. (24). The variable § stands for § = s/ m?, and
the analogous definition is implied for the subtraction point,
§1 = s1/m?>. For compactness, we have dropped the 51 depen-
dence in the subtraction constants, Ezél)(j ) (s1) —> &21)0 ) The
first six equations, Egs. (B1)—-(B6), represent the polynomial
contributions PZ(I)(s) (we remind the reader that the appro-
priate factors p*(s) have been explicitly factored out) to the
partial-wave amplitudes when one subtraction (n=1,asin
setup A) is performed on each isobar, a, )(s) Analogously,
the six equations Eqgs. (B7)-(B12) represent the additional
contributions, APZ(I)(S), when two subtractions (n = 2, as
in setup B) are performed.
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