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Abstract In this paper we begin to perform systematic
investigation of all possible regimes in spatially flat vac-
uum cosmological models in cubic Lovelock gravity. We
consider the spatial section to be a product of three- and extra-
dimensional isotropic subspaces, with the former considered
to be our Universe. As the equations of motion are different
for D = 3, 4, 5 and general D � 6 cases, we considered
them all separately. Due to the quite large amount differ-
ent subcases, in the current paper we consider only D = 3, 4
cases. For each D case we found values for α (Gauss–Bonnet
coupling) and β (cubic Lovelock coupling) which separate
different dynamical cases, all isotropic and anisotropic expo-
nential solutions, and study the dynamics in each region to
find all possible regimes for all possible initial conditions
and any values of α and β. The results suggest that in both
D cases the regimes with realistic compactification originate
from so-called “generalized Taub” solution. The endpoint of
the compactification regimes is either anisotropic exponen-
tial (for α > 0, μ ≡ β/α2 < μ1 (including entire β < 0)) or
standard low-energy Kasner regime (for α > 0, μ > μ1); as
it is compactification regime, both endpoints have expanding
three and contracting extra dimensions. There are two unex-
pected observations among the results – all realistic com-
pactification regimes exist only for α > 0 and there is no
smooth transition between high-energy and low-energy Kas-
ner regimes, the latter with realistic compactification.

1 Introduction

It is interesting to note that the idea of extra dimensions is
older then General Relativity (GR) itself. Indeed, the first ever
extra-dimensional model was constructed by Nordström in
1914 [1], and it unified Nordström’s second gravity theory [2]
with Maxwell’s electromagnetism. After Einstein proposed
GR [3], it still took years before it was accepted: during the
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solar eclipse of 1919, the bending of light near the Sun was
measured and the deflection angle was in perfect agreement
with GR, while Nordström’s theory, as most of the scalar
gravity theories, predicted a zeroth deflection angle.

Though, the idea of extra dimensions was not forgotten –
in 1919 Kaluza proposed [4] a similar model but based on
GR: in his model five-dimensional Einstein equations could
be decomposed into 4D Einstein equations and Maxwell’s
electromagnetism. For such decomposition to exist, the extra
dimensions should be “curled” or compactified into a circle
and “cylindrical conditions” should be imposed. The work
by Kaluza was followed by Klein who proposed [5,6] a nice
quantum mechanical interpretation of this extra dimension
and so the theory, called Kaluza–Klein after its founders,
was finalized. It is interesting to note that their theory unified
all known interactions at that time. As a time flew, more
interactions were known and it became clear that to unify all
of them, more extra dimensions are needed. At present, one
of the promising theories to unify all interactions is M/string
theory.

One of the distinguishing features of M/string theories
is the presence of the curvature-squared corrections in the
Lagrangian. Scherk and Schwarz [7] demonstrated the pres-
ence of the R2 and RμνRμν terms in the Lagrangian of
the Virasoro–Shapiro model [8,9]; presence of the term of
RμνλρRμνλρ type was found in [10] for the low-energy limit
of the E8 × E8 heterotic superstring theory [11] to match
the kinetic term of the Yang–Mills field. Later it was demon-
strated [12] that the only combination of quadratic terms that
leads to a ghost-free nontrivial gravitation interaction is the
Gauss–Bonnet (GB) term:

LGB = L2 = RμνλρR
μνλρ − 4RμνR

μν + R2.

This term, first discovered by Lanczos [13,14] (and so some-
times it is referred to as the Lanczos term), is an Euler topo-
logical invariant in (3 + 1)-dimensional space-time, but in
(4 + 1) and higher dimensions it gives nontrivial contri-
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bution to the equations of motion. Zumino [15] extended
Zwiebach’s result on higher-than-squared curvature terms,
supporting the idea that the low-energy limit of the unified
theory might have a Lagrangian density as a sum of con-
tributions of different powers of curvature. The sum of all
possible Euler topological invariants, which give nontrivial
contribution to the equations of motion in a particular num-
ber of space-time dimensions, form more general Lovelock
gravity [16].

When one hears of the extra spatial dimensions, the nat-
ural question arises – where they are? Our everyday experi-
ence clearly indicates there are three spatial dimensions, and
experiments in physics and theory support this (for instance,
in Newtonian gravity in more then three space dimensions
there are no stable orbits, while we clearly see they are). The
string theorists working with extra dimensions came with an
answer – the extra spatial dimensions are compact – they
are compactified on a very small scale, so small that we
cannot sense them with our level of equipment. But with
that answer, another natural question comes to mind – how
come that they are compact? The answer to this question is
not that simple. One of the ways to hide extra dimensions
and to recover four-dimensional physics, is to consider so-
called “spontaneous compactification” solution. Exact static
solutions with the metric as a cross product of a (3 + 1)-
dimensional Minkowski space-time and a constant curvature
“inner space”, were found for the first time in [17] (the gen-
eralization for a constant curvature Lorentzian manifold was
done in [18]). For cosmology, it is more useful to consider
the four-dimensional part given by a Friedmann–Robertson–
Walker metric, and the size of extra dimensions to be time-
dependent rather then static. In [19] it was demonstrated that
in order to have a more realistic model one needs to con-
sider the dynamical evolution of the extra-dimensional scale
factor. In [18], the equations of motion with time-dependent
scale factors were written for arbitrary Lovelock order in
the special case of a spatially flat metric (the results were
further proven and extended in [20]). The results of [18]
were further analyzed for the special case of 10 space-time
dimensions in [21]. In [22], the dynamical compactification
was studied with use of the Hamiltonian formalism. More
recently, searches for spontaneous compactifications were
made in [23], where the dynamical compactification of the
(5+1) Einstein–Gauss–Bonnet (EGB) model was considered;
in [24,25] with different metric Ansätze for scale factors cor-
responding to (3 + 1)- and extra-dimensional parts. Also,
apart from the cosmology, the recent analysis has focused
on properties of black holes in Gauss–Bonnet [26–30] and
Lovelock [31–35] gravities, features of gravitational col-
lapse in these theories [36–38], general features of spherical-
symmetric solutions [39], and many others.

If we want to find exact cosmological solutions, the most
common Ansatz used for the scale factor is exponential

or power law. Exact solutions with exponents for both the
(3 + 1)- and extra-dimensional scale factors were stud-
ied for the first time in [40], and exponentially increasing
(3+1)-dimensional scale factor and an exponentially shrink-
ing extra-dimensional scale factor were described. Power-
law solutions have been considered in [18,41] and more
recently in [20,42–45] so that by now there is an almost com-
plete description of the solutions of this kind (see also [46]
for comments regarding physical branches of the power-law
solutions). Solutions with exponential scale factors [47] have
also been studied in detail, namely, the models with both vari-
able [48] and constant [49] volume; the general scheme for
finding anisotropic exponential solutions in EGB was devel-
oped and generalized for general Lovelock gravity of any
order and in any dimensions [50]. The stability of the expo-
nential solutions was addressed in [51] (see also [52] for
stability of general exponential solutions in EGB gravity),
and it was demonstrated that only a handful of the solutions
found and described in [50] could be called “stable”, while
the most of them are either unstable or have neutral/marginal
stability.

In order to find all possible cosmological regimes in
Einstein–Gauss–Bonnet gravity, one needs to go beyond an
exponential or power-law Ansatz and keep the scale factor
generic. We are especially interested in models that allow
dynamical compactification, so that we consider the metric
as the product of a spatially three-dimensional and extra-
dimensional parts. In that case the three-dimensional part
is “our Universe” and we expect for this part to expand
while the extra-dimensional part should be suppressed in
size with respect to the three-dimensional one. In [53] we
demonstrated the there exist the phenomenologically sensi-
ble regime when the curvature of the extra dimensions is neg-
ative and the Einstein–Gauss–Bonnet theory does not admit
a maximally symmetric solution. In this case both the three-
dimensional Hubble parameter and the extra-dimensional
scale factor asymptotically tend to the constant values. In [54]
we performed a detailed analysis of the cosmological dynam-
ics in this model with generic couplings. Recent analysis of
this model [55] revealed that, with an additional constraint
on couplings, Friedmann-type late-time behavior could be
restored.

With the exponential and power-law solutions described
in the mentioned above papers, another natural question arise
– could these solutions describe realistic compactification or
are they just solutions with no connection to the reality? To
answer this question, we have considered the cosmological
model in EGB gravity with the spatial part being the product
of three- and extra dimensional parts with both subspaces
being spatially flat. As both subspaces are spatially flat, the
equations of motion could be rewritten in terms of Hubble
parameters and then they become first order differential equa-
tions and could be analytically analyzed to find all possible
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regimes, asymptotes, exponential and power-law solutions.
For vacuum EGB model it was done in [56] and reanalyzed
in [57]. The results suggest that in the vacuum model has
two physically viable regimes – first of them is the smooth
transition from high-energy GB Kasner to low-energy GR
Kasner. This regime exists for α > 0 (Gauss–Bonnet cou-
pling) at D = 1, 2 (the number of extra dimensions) and for
α < 0 at D � 2 (so that at D = 2 it appears for both signs
of α). Another viable regime is the smooth transition from
high-energy GB Kasner to anisotropic exponential regime
with expanding three-dimensional section (“our Universe”)
and contracting extra dimensions; this regime occurs only for
α > 0 and at D � 2.

The same analysis but for EGB model with �-term was
performed in [58,59] and reanalyzed in [57]. The results
suggest that the only realistic regime is the transition from
high-energy GB Kasner to anisotropic exponential solution,
it requires D � 2, see [57–59] for exact limits on (α,�).
The low-energy GR Kasner is forbidden in the presence of
the �-term so the corresponding transition do not occur.

In these studies we have made two important assump-
tions – we considered both subspaces being isotropic and
spatially flat. But what will happens in we lift these con-
ditions? Indeed, the spatial section being a product of two
isotropic spatially-flat subspaces could hardly be called “nat-
ural”, so that we considered the effects of anisotropy and spa-
tial curvature in [60]. The initial anisotropy could affect the
results greatly – indeed, say, in vacuum (4 + 1)-dimensional
EGB gravity with Bianchi-I-type metric (all the directions
are independent) the only future asymptote is nonstandard
singularity [43]. Our analysis [60] suggest that the transition
from Gauss–Bonnet Kasner regime to anisotropic exponen-
tial expansion (with expanding three and contracting extra
dimensions) is stable with respect to breaking the symmetry
within both three- and extra-dimensional subspaces. How-
ever, the details of the dynamics in D = 2 and D � 3 are
different – in the latter there exist anisotropic exponential
solutions with “wrong” spatial splitting and all of them are
accessible from generic initial conditions. For instance, in
(6 + 1)-dimensional space-time there are anisotropic expo-
nential solutions with [3+3] and [4+2] spatial splittings, and
some of the initial conditions in the vicinity of E3+3 actually
end up in E4+2 – the exponential solution with four and two
isotropic subspaces. In other words, generic initial conditions
could easily end up with “wrong” compactification, giving
“wrong” number of expanding spatial dimensions (see [60]
for details).

The effect of the spatial curvature on the cosmological
dynamics could be dramatic – say, positive curvature changes
the inflationary asymptotic [61,62]. In the case of EGB grav-
ity the influence of the spatial curvature reveal itself only if
the curvature of the extra dimensions is negative and D � 3

– in that case there exist “geometric frustration” regime,
described in [53,54] and further investigated in [55].

The current manuscript could be called a spiritual succes-
sor of [56–59] – now we are performing the same analysis
but for cubic Lovelock gravity. In this paper we consider only
D = 3, 4 (the number of the extra spatial dimensions) for
vacuum case, other D cases, as well as �-term case and pos-
sible influence of anisotropy, spatial curvature and different
kinds of matter source are to be considered in the papers to
follow.

The manuscript is structured as follows: first we introduce
Lovelock gravity and derive the equations of motion in the
general form for the spatially-flat (Bianchi-I-type) metrics.
Then we add our Ansatz and write down simplified equa-
tions. After that we describe the scheme we are going to use
to analyze the particular cases. Then we consider particular
cases with D = 3 and D = 4; for the former, we are going to
describe the scheme step-by-step. In each section, dedicated
to the particular case, we describe it and briefly summarize its
features. Finally we summarize both cases, discuss their dif-
ferences and similarities. After that we compare the dynamics
in this cubic Lovelock with the dynamics in quadratic Love-
lock (Einstein–Gauss–Bonnet) case, described in [56,57]. At
last, we draw conclusions and formulate perspective direc-
tions for further investigations.

2 Equations of motion

Lovelock gravity [16] has the following structure: its
Lagrangian is constructed from terms

Ln = 1

2n
δ
i1i2...i2n
j1 j2... j2n

R j1 j2
i1i2

. . . R j2n−1 j2n
i2n−1i2n

, (1)

where δ
i1i2...i2n
j1 j2... j2n

is the generalized Kronecker delta of the
order 2n. One can verify that Ln is Euler invariant in D < 2n
spatial dimensions and so it would not give nontrivial contri-
bution into the equations of motion. So that the Lagrangian
density for any given D spatial dimensions is sum of all

Lovelock invariants (1) upto n =
[
D

2

]
which give nontriv-

ial contributions into equations of motion:

L = √−g
∑
n

cnLn, (2)

where g is the determinant of metric tensor, cn are coupling
constants of the order of Planck length in 2n dimensions and
summation over all n in consideration is assumed. The metric
ansatz has the form

gμν = diag{−1, a2
1(t), a2

2(t), . . . , a2
n(t)}. (3)
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As we mentioned earlier, we are interested in the dynamics in
cubic Lovelock gravity, so we consider n up to three (n = 0
is boundary term while n = 1 is Einstein–Hilbert, n = 2 is
Gauss–Bonnet and n = 3 is cubic Lovelock contributions).
Substituting metric (3) into the Lagrangian and following the
usual procedure gives us the equations of motion:

2

⎡
⎢⎢⎣

∑
j �=i

(Ḣ j + H2
j ) +

∑
{k>l}
�=i

Hk Hl

⎤
⎥⎥⎦

+ 8α

⎡
⎢⎢⎣

∑
j �=i

(Ḣ j + H2
j )

∑
{k>l}
�={i, j}

HkHl

+ 3
∑

{k>l>
m>n}�=i

Hk Hl HmHn

⎤
⎥⎥⎦

+ 144β

⎡
⎢⎢⎣

∑
j �=i

(Ḣ j + H2
j )

∑
{k>l>m>
n}�={i, j}

HkHl HmHn

+ 5
∑

{k>l>m>
n>p>q}�=i

Hk Hl HmHnHpHq

⎤
⎥⎥⎦ − � = 0 (4)

as the i th dynamical equation. The first Lovelock term – the
Einstein–Hilbert contribution – is in the first set of brackets,
the second term – Gauss–Bonnet – is in the second set and
the third – cubic Lovelock term – is in the third set; α is the
coupling constant for the Gauss–Bonnet contribution while
β is the coupling constant for cubic Lovelock; we put the
corresponding constant for Einstein–Hilbert contribution to
unity. Also, since in this section we consider spatially flat
cosmological models, scale factors do not hold much in the
physical sense and the equations are rewritten in terms of
the Hubble parameters Hi = ȧi (t)/ai (t). Apart from the
dynamical equations, we write down the constraint equation

2
∑
i> j

Hi Hj + 24α
∑
i> j>
k>l

Hi Hj HkHl

+ 720β
∑

i> j>k
>l>m>n

Hi Hj HkHl HmHn = �. (5)

As mentioned in Sect. 1, we want to investigate the par-
ticular case with the scale factors split into two parts – sep-
arately three dimensions (three-dimensional isotropic sub-
space), which are supposed to represent our world, and the
remaining represent the extra dimensions (D-dimensional
isotropic subspace). So we put H1 = H2 = H3 = H and

H4 = · · · = HD+3 = h (D designs the number of additional
dimensions) and the equations take the following form: the
dynamical equation that corresponds to H ,

2

[
2Ḣ + 3H2 + Dḣ + D(D + 1)

2
h2 + 2DHh

]

+ 8α

[
2Ḣ

(
DHh + D(D − 1)

2
h2

)

+ Dḣ

(
H2 + 2(D − 1)Hh + (D − 1)(D − 2)

2
h2

)

+ 2DH3h + D(5D − 3)

2
H2h2

+ D2(D − 1)Hh3 + (D + 1)D(D − 1)(D − 2)

8
h4

]

+ 144β

[
Ḣ

(
Hh3 D(D − 1)(D − 2)

3

+ h4 D(D − 1)(D − 2)(D − 3)

12

)

+ Dḣ

(
H2h2 (D − 1)(D − 2)

2

+ Hh3 (D − 1)(D − 2)(D − 3)

3

+ h4 (D − 1)(D − 2)(D − 3)(D − 4)

24

)

+ H3h3 D(D − 1)(D − 2)

3
+

+ H2h4 D(D − 1)(D − 2)(7D − 9)

24

+ Hh5 D
2(D − 1)(D − 2)(D − 3)

12

+ h6 (D + 1)D(D − 1)(D − 2)(D − 3)(D − 4)

144

]

−� = 0, (6)

the dynamical equation that corresponds to h,

2

[
3Ḣ+6H2+(D−1)ḣ+D(D − 1)

2
h2 + 3(D − 1)Hh

]

+ 8α

[
3Ḣ

(
H2++2(D − 1)Hh+ (D − 1)(D − 2)

2
h2

)

+ (D − 1)ḣ
(

3H2 + 3(D − 2)Hh

+ (D − 2)(D − 3)

2
h2

)
+ 3H4 + 9(D − 1)H3h

+ 3(D − 1)(2D − 3)H2h2 + 3(D − 1)2(D − 2)

2
Hh3

+D(D − 1)(D − 2)(D − 3)

8
h4

]

+ 144β

[
Ḣ

(
H2h2 3(D − 1)(D − 2)

2

+ Hh3(D − 1)(D − 2)(D − 3)

123



Eur. Phys. J. C (2018) 78 :551 Page 5 of 22 551

+ h4 (D − 1)(D − 2)(D − 3)(D − 4)

8

)

+ (D − 1)ḣ
(
H3h(D − 2)

+ H2h2 3(D − 2)(D − 3)

2

+ Hh3 (D − 2)(D − 3)(D − 4)

2

+ h4 (D − 2)(D − 3)(D − 4)(D − 5)

24

)

+ H4h2 3(D − 1)(D − 2)

2

+ H3h3 (D − 1)(D − 2)(11D − 27)

6

+ H2h4 3(D − 1)(D − 2)2(D − 3)

4

+ Hh5 (D + 1)(D − 1)(D − 2)(D − 3)(D − 4)

12

+ h6 D(D − 1)(D − 2)(D − 3)(D − 4)(D − 5)

144

]

−� = 0, (7)

and the constraint equation,

2

[
3H2 + 3DHh + D(D − 1)

2
h2

]

+24α

[
DH3h + 3D(D − 1)

2
H2h2

+D(D − 1)(D − 2)

2
Hh3

+D(D − 1)(D − 2)(D − 3)

24
h4

]

+720β

[
H3h3 D(D − 1)(D − 2)

6

+H2h4 D(D − 1)(D − 2)(D − 3)

8

+Hh5 D(D − 1)(D − 2)(D − 3)(D − 4)

40

+h6 D(D − 1)(D − 2)(D − 3)(D − 4)(D − 5)

720

]

= �. (8)

Looking at (6)–(8) one can notice that the structure of
the equations depends on the number of extra dimensions D
(terms with (D−4) multiplier nullifies in D = 4 and so on).
In previous papers, dedicated to study cosmological dynam-
ics in EGB gravity, we performed analysis in all dimensions,
sensitive to EGB case [56–59]. In the cubic Lovelock, the
structure of the equations of motion is different in D = 3, 4, 5
and in the general D � 6 cases. Also, since the current paper
is dedicated to the vacuum case, we have � ≡ 0.

3 General scheme

The procedure of the analysis is exactly the same as described
in our previous papers [56–59] and is as follows:

• we solve (8) with respect to H – one can see that (8) is
cubic with respect to H and sixth order with respect to h,
so that to have analytical solutions, we solve it for H ; as
a result we have three branches H1, H2 and H3. In lower-
dimensional cases we wrote down solutions explicitly,
but in higher dimensions they become quite bulky, so
draw H(h) curves instead. If we take the discriminant
of (8) with respect to H , and then its discriminant with
respect to h, we obtain critical values for (α, β) which
separate qualitatively different cases;

• we find analytically isotropic exponential solutions: to
do this we substitute Ḣ = ḣ ≡ 0 as well as h = H into
(6)–(8); the system simplifies into a single equation and
we solve it, finding not only roots but also the ranges of
(α, β) where they exist;

• we find analytically anisotropic exponential solutions:
to do this we substitute Ḣ = ḣ ≡ 0 into (6)–(8); the
system could be brought to two equations: bi-six order
polynomial in h with powers of α and β as coefficients
and H = H(h, α, β). Both of them are usually higher-
order with respect to their arguments so retrieving the
solutions in radicand is impossible. But if we consider the
discriminant of the former of them, the resulting equation
gives us critical values for (α, β) which separate areas
with different number of roots;

• altogether first three items provides us with a set of critical
values for (α, β) which separate domains with different
dynamics;

• we solve (6)–(7) with respect to Ḣ and ḣ;
• we substitute obtained Hi curves into Ḣ and ḣ and obtain

the latter as a single-variable functions: Ḣ(h) and ḣ(h);
• the obtained Ḣ(h) and ḣ(h) expressions are analyzed for

all possible domains in (α, β) space to obtain all possible
regimes;

• obtained exponential regimes are compared with exact
isotropic and anisotropic solutions (see [50]) to find the
nature of the exponential regimes in question;

• power-law regimes are analyzed in terms of Kasner expo-
nents (pi = −H2

i /Ḣi )1 to verify that low-energy power-
law regimes are standard Kasner regimes with

∑
pi =∑

p2
i = 1 while high-energy power-law regimes are

Lovelock Kasner regimes with
∑

pi = (2n − 1) = 5.

1 Of course, this notation assumes Ḣ �= 0 – initially Kasner exponents
are defined for power-law regimes a(t) ∝ t p and so Ḣ �= 0 holds for
p �= 0. When we use this notation for arbitrary regime, we could have
Ḣ = 0 at some point or as asymptote (for exponential regime) – in that
case pi diverges and that is exactly what we see in our analysis.
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The described above scheme allows us to completely
describe all existing regimes for a given set of the param-
eters (α, β). In the first case to consider, D = 3, we are
going to completely describe all steps in detail.

Before continuing with the particular cases, it is necessary
to introduce the notations we are going to use through the
paper. We denote Kasner regime as Ki where i is the total
expansion rate in terms of the Kasner exponents

∑
pi =

(2n − 1) where n is the corresponding order of the Lovelock
term (see, e.g., [20]). This way, for Einstein–Hilbert it is
n = 1 and so

∑
pi = 1 (see [63]) and the corresponding

regime is K1, which is usual low-energy regime in vacuum
EGB case (see [57,59]) and we expect it to play the same
role here. For Gauss–Bonnet it is n = 2 and so

∑
pi = 3

and the regime K3 is typical high-energy regime for vacuum
EGB case (again, see [57,59]). Finally, for cubic Lovelock it
is n = 3 and so

∑
pi = 5 and the regime K5 is expected to

be typical high-energy regime for this case.
Another power-law regime is what we call “generalized

Taub” (see [64] for the original solution). It is the regime
which was mistakenly taken for K3 in [59], but in [57] it was
corrected and explained (they both have

∑
pi = 3 which

causes misinterpreting). It is a situation when for one of the
subspaces the Kasner exponent p is equal to zero and for
another – to unity. So we denote P1,0 the case with pH =
1, ph = 0 and P0,1 the case with pH = 0, ph = 1.

We denote the exponential solutions as E with subindex
indicating its details – Eiso is isotropic exponential solution
and E3+D is anisotropic – with different Hubble parameters
corresponding to three- and extra-dimensional subspaces. In
practice, in each particular case there are several different
anisotropic exponential solutions, so that instead of using
E3+D we use Ei where i counts the number of the exponential
solution (E1, E2 etc). In case if there are several isotropic
exponential solutions, we count them with upper index: E1

iso,
E2
iso etc.
The final regime is what we call “nonstandard singularity”

and we denote is as nS. It is the situation which arise in Love-
lock gravity due to its nonlinear nature. Since the equations
(6)–(7) are nonlinear with respect to the highest derivative (Ḣ
and ḣ in our case), when we solve them, the resulting expres-
sions are ratios with polynomials in both numerator and
denominator. So there exist a situation then the denominator
is equal to zero for finite values of H andor h. This situation
is singular, as the curvature invariants diverges, but it happen-
ing for finite values of H andor h. Tipler [65] call this kind
of singularity as “weak” while Kitaura and Wheeler [66,67]
– as “type II”. Our previous research demonstrate that this
kind of singularity is wide spread in EGB cosmology – in
particular, in totally anisotropic (Bianchi-I-type) (4 + 1)-
dimensional vacuum cosmological model it is the only future
asymptote [43].

4 D = 3 case

In this case the equations of motion (6)–(8) take form (H -
equation, h-equation, and constraint correspondingly)

4Ḣ + 6H2 + 6ḣ + 12h2 + 12Hh + 8α(6Ḣh(H + h)

+ 3ḣ(H2 + h2 + 4Hh) + 18H2h2

+ 18Hh3 + 3h4 + 6H3h)

+ 144β(2(Ḣ + H2)Hh3 + 3(ḣ + h2)H2h2) = 0, (9)

6Ḣ + 12H2 + 4ḣ + 6h2 + 12Hh

+ 8α(3Ḣ(H2 + 4Hh + h2) + 6ḣH(H + h) + 6Hh3

+ 18H2h2 + 18H3h + 3H4)

+ 144β(3(Ḣ + H2)H2h2 + 2(ḣ + h2)H3h) = 0, (10)

6H2 + 18Hh + 6h2 + 24α(3H3h + 9H2h2 + 3Hh3)

+720βH3h3 = 0. (11)

As mentioned above, for this case we describe each step
with details while in the cases to follow we skip the details.
Finding the discriminant of the discriminant of (11) with
respect to H gives us two critical values for μ ≡ β/α2;
μ1 = 1/6, μ2 = 3/2. These are two values for μ which
qualitatively change the behavior of the H(h) curves.

To find out the details of isotropic exponential solutions,
let us substitute Ḣ = ḣ ≡ 0 and h = H into (9)–(11); the
system simplifies to a single equation

720βH6 + 360αH4 + 30H2 = 0, (12)

and it has trivial solution H = 0 as well as up to two more
solutions

H2 = −3α ± √
9α2 − 6β

12β
. (13)

Analyzing (13) leads us to the following: we have one
isotropic exponential solution if (α < 0, β < 0) and
(α > 0, β < 0), and two solutions if α < 0, β > 0,
0 < μ = β/α2 < 3/2; in all other cases (13) is imaginary
and so the isotropic solutions are absent.

As a next step we find out when anisotropic exponential
solutions exist; to do this we substitute Ḣ = ḣ ≡ 0 (but
h �= H ) into (9)–(11); the resulting equations could be solved
to obtain h and H :

147456μ2ζ 6 + (93312μ3 − 96768μ2 − 32256μ)ζ 5

+ (21504μ + 2304 − 1908μ2)ζ 4

+ (1056μ − 1920 − 288μ2)ζ 3 + (304 − 192μ)ζ 2

+ (18μ − 24)ζ + 1 = 0;
H = −8h

P1

P2
, where ζ = αh2, μ = β/α2, (14)
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and P1 and P2 are bulky polynomials up to ζ 5 and μ4 orders.
The discriminant of (14) is 18th-order polynomial in μ and
have roots: single root μ1 = 1/6, quadruple roots μ3 =
(−2 3

√
100/27 + 14/27) ≈ 0.175 and μ4 = 2/3, and single

root μ2 = 3/2. So that for α < 0 we have: for μ < 1/6
(including μ < 0) we have ζ > 0, so that h2 < 0 and so
no real solutions for h; for 3/2 > μ > 1/6 there are no real
solutions for ζ ; at μ = 3/2 we have double root for ζ < 0
and so h = ±√

αζ , and finally for μ > 3/2 we have two
distinct roots ζ1,2 < 0 and so h = ±√

αζ1,2. To summarize,
for α < 0 we have exponential solutions only for μ � 3/2.

For α > 0 the situation is the following: for μ � 1/6
(including μ < 0) there are two distinct roots ζ1,2 < 0 and
so h = ±√

αζ1,2; for μ = 1/6 additional double root is
added to the above roots (making total three different roots),
for μ3 > μ > 1/6 the double root from before is splitted
making four different roots, at μ = μ3 pairs of roots coincide
leaving only two different roots and for μ > μ3 roots degrade
into nonstandard singularities leaving us with no roots at all.
At μ � 3/2 we have roots again, but they are negative, so
that the roots for h = ±√

αζ are imaginary. Concluding, for
α > 0 we have exponential solutions only for μ � μ3.

Now we can solve (11) with respect to H and plot the
resulting curves in Fig. 1. There red curve corresponds to
H1, blue to H2 and green to H3. The panels layout is as
follows: α < 0, β < 0 on (a) panel, α < 0, β > 0, μ < 3/2
on (b) panel, α < 0, β > 0, μ > 3/2 on (c) panel, α > 0,
β < 0 on (d) panel, α > 0, β > 0, μ < 0.3 on (e) panel, and
α > 0, β > 0, μ > 0.3 on (f) panel. One can see that on (a)
and (d) panels (and so β < 0 and arbitrary α) we have one
isotropic exponential solution (there exist H = h solution)
while on (b) panel (α < 0, β > 0, η > 2/3) we have two
different isotropic exponential solutions; in all other cases
there are no isotropic solutions.

The next step is derive Ḣ and ḣ – we solve (9)–(10) with
respect to them and substitute H1, H2 and H3 branches sep-
arately. The resulting expressions are quite bulky so that we
do not write them down, but provide the graphs in Figs. 2
and 3. There we presented ḣ(h) as red and Ḣ(h) as blue
curves and the panels layout is as follows: in Fig. 2 we pre-
sented α < 0 cases: β < 0 on (a)–(c) panels (H1 branch
on (a) panel, H2 branch on (b) panel and H3 branch on (c)
panel), β > 0, μ < 3/2 on (d)–(f) panels (H1 branch on (d)
panel, H2 branch on (e) panel and H3 branch on (f) panel)
and β > 0, μ > 3/2 on (g)–(i) panels (H1 branch on (g)
panel, H2 branch on (h) panel and H3 branch on (i) panel).
In Fig. 3 we presented α > 0 cases: β < 0 on (a)–(c) pan-
els (H1 branch on (a) panel, H2 branch on (b) panel and H3

branch on (c) panel), β > 0, μ < 0.3 on (d)–(f) panels (H1

branch on (d) panel, H2 branch on (e) panel and H3 branch on
(f) panel) and β > 0, μ > 0.3 on (g)–(i) panels (H1 branch
on (g) panel, H2 branch on (h) panel and H3 branch on (i)
panel).

After that we obtain the expressions for the Kasner expo-
nents, associated with both subspaces: pH = −H2/Ḣ and
ph = −h2/ḣ. The Ḣ and ḣ are obtained during the previ-
ous step while Hi – on pre-previous. Similar to the Ḣ and
ḣ, the expressions themselves are bulky and we just provide
the resulting graphs. They are presented in Figs. 4 and 5 and
the layout is following that of Ḣ and ḣ: in Fig. 4 we pre-
sented α < 0 cases: β < 0 on (a)–(c) panels (H1 branch
on (a) panel, H2 branch on (b) panel and H3 branch on (c)
panel), β > 0, μ < 3/2 on (d)–(f) panels (H1 branch on (d)
panel, H2 branch on (e) panel and H3 branch on (f) panel)
and β > 0, μ > 3/2 on (g)–(i) panels (H1 branch on (g)
panel, H2 branch on (h) panel and H3 branch on (i) panel).
In Fig. 5 we presented α > 0 cases: β < 0 on (a)–(c) pan-
els (H1 branch on (a) panel, H2 branch on (b) panel and H3

branch on (c) panel), β > 0, μ < 0.3 on (d)–(f) panels (H1

branch on (d) panel, H2 branch on (e) panel and H3 branch on
(f) panel) and β > 0, μ > 0.3 on (g)–(i) panels (H1 branch
on (g) panel, H2 branch on (h) panel and H3 branch on (i)
panel).

Before proceeding with the description of the regimes,
one more important note should be taken. As could be seen
from Fig. 1, some of the branches are discontinued – for
instance, let us consider H3 branch from Fig. 1a (α < 0,
β < 0 case). One can see that it describe “internal” part of
the loop but starting from some h > 0 it “jumps” into another
branch of evolution. Obviously, this cannot happen in real
physical evolution, so that it is the description which we use
allows such “jumps”, while the real physical evolution, for
instance, for hyperbolic-like curve in the first quadrant of
Fig. 1a, is described partially by H2 and partially by H3.
Then to recover the real physical evolution, we “glue” the
appropriate parts of the (Ḣ(h), ḣ(h)) curves. As a way of
example, for the above mentioned hyperbolic-like curve from
the first quadrant of Fig. 1a, we plot (Ḣ(h), ḣ(h)) for H2

branch in Fig. 6a (see Fig. 2b), for H3 branch – in Fig. 6b
(see Fig. 2c). Then we notice the discontinuity in the Fig. 6b
– it corresponds to the “jump” from the “inner” loop-like
evolution curve to the curve under consideration at some
h = hcr . So that for h < hcr we use H2 part and for h > hcr
– the H3 part; the resulting glued curve is presented in Fig. 6c.
One can verify that the resulting curve is free of any “jumps”
and so represents physical evolution curve.

Exactly the same could be done for the analysis in terms
of the Kasner exponents pi ≡ −H2

i /Ḣi , and the example for
the same curve is presented in Fig. 6d–f. Again, in Fig. 6d
we presented Kasner exponents (red for pH , blue for ph and
green for

∑
pi ) for H2 branch (see Fig. 4b), in Fig. 6e –

for H3 branch (see Fig. 4b) (please note the discontinuity)
and finally in Fig. 6f we present proper Kasner exponents for
physical evolution curve.

With all these notes done, let us describe the resulting
regimes. To do so we use (Ḣ(h), ḣ(h)) curves from Figs. 2
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(b)(a)

(d)(c)

(f)(e)

Fig. 1 H(h) graphs for vacuum D = 3 case: three different colors
correspond to three different branches H1, H2 and H3; α < 0, β < 0
on a panel, α < 0, β > 0, μ < 3/2 on b panel, α < 0, β > 0, μ > 3/2

on c panel, α > 0, β < 0 on d panel, α > 0, β > 0, μ < 0.3 on e panel,
and α > 0, β > 0, μ > 0.3 on f panel (see the text for more details)

and 3 for all different cases, glue different branches properly
to obtain physical evolution curves and analyze them; the
same procedure is performed for the Kasner exponents pH
and ph . We analyze the corresponding (Ḣ(h), ḣ(h)) as well

as pH and ph curves for each particular case to find past and
future asymptotes for all possible initial conditions.

The resulting regimes are: for α < 0, β < 0 case
(Figs. 1a, 2a–c and 4a–c) we have P1,0 ↔ Eiso and P0,1 ↔
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(a) (b) (c)

(d) (e) (f)

(g) (i)
(h)

Fig. 2 Ḣ(h) and ḣ(h) graphs for vacuum D = 3 case: ḣ(h) in red and
Ḣ(h) in blue; α < 0, β < 0 on a–c panels: H1 branch on a panel, H2
branch on b panel and H3 branch on c panel; α < 0, β > 0, μ < 3/2
on d–f panels: H1 branch on d panel, H2 branch on e panel and H3

branch on f panel; α < 0, β > 0, μ > 3/2 on g–i panels: H1 branch on
g panel, H2 branch on h panel and H3 branch on i panel (see the text
for more details)

Eiso on hyperbolic-like curve and K1 ↔ nS as well as
nS ↔ nS on the inner loop-like curve. The regimes P1,0

and P0,1 are the regime with power-law behavior for one of
the Hubble parameters with pi = 1 and “effective” p j = 0
for another, hence the designation: for P1,0 we have pH = 1,
ph = 0 while for P0,1 we have pH = 0, ph = 1. Let us
note that for D = 3 there is no real difference between P1,0

and P0,1 (since both subspaces are three-dimensional) but for

future cases there is, so we treat these two cases separately.
Overall, in the α < 0, β < 0 case there are no regimes with
realistic compactifications.

The next case to consider is α < 0, β > 0, μ < 3/2
(Figs. 1b, 2d–f and 4d–f), and there we have: the “outmost”
hyperbolic-like curve (H1 branch) has E1

iso ↔ nS, the “mid-
dle” hyperbolic-like curve (H2 branch) has P1,0 ↔ E2

iso and
P0,1 ↔ E2

iso, while the “innermost” hyperbolic-like curve
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(a) (b) (c)

(d) (e) (f)

(g) (i)(h)

Fig. 3 Ḣ(h) and ḣ(h) graphs for vacuum D = 3 case: ḣ(h) in red and
Ḣ(h) in blue; α > 0, β < 0 on a–c panels: H1 branch on a panel, H2
branch on b panel and H3 branch on c panel; α > 0, β > 0, μ < 0.3 on
d–f panels: H1 branch on d panel, H2 branch on e panel and H3 branch

on f panel; α > 0, β > 0, μ > 0.3 on g–i panels: H1 branch on g panel,
H2 branch on h panel and H3 branch on i panel (see the text for more
details)

(H3 branch) has nS ↔ K1. One can note that neither of the
two considered so far cases has realistic regimes, as the only
non-singular regime has P1,0, P0,1 ↔ Eiso and isotropic
expansion of the entire space is not what we observe.

Let us move to the next case with α < 0, β > 0, μ > 3/2
(Figs. 1c, 2g–i and 4g–i). One cannot miss the moment when
H1 and H2 branches “touch” each other at μ = 3/2; at that
point two isotropic exponential solutions E1,2

iso coincide. For

μ > 3/2 the branches “detach” each other, forming banana-
like curves as presented in Fig. 1c. The isotropic exponen-
tial solutions degrade into anisotropic ones, located on these
banana-like curves. Similar to the previous case, the asymp-
totes for H and h are ±√−α/10β and the corresponding
regimes are nonstandard singularities. Then, combining all
above mentioned with the analysis of the (Ḣ (h), ḣ(h)) curves
allows us to conclude the regimes: P0,1 ↔ E1, P1,0 ↔ E2
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(a) (b) (c)

(d) (e) (f)

(g) (i)(h)

Fig. 4 pH , ph and
∑

pi graphs for vacuum D = 3 case: pH in red,
ph in blue and

∑
pi in green; α < 0, β < 0 on a–c panels: H1 branch

on a panel, H2 branch on b panel and H3 branch on c panel; α < 0,
β > 0, μ < 3/2 on d–f panels: H1 branch on d panel, H2 branch on e

panel and H3 branch on f panel; α < 0, β > 0, μ > 3/2 on g–i panels:
H1 branch on g panel, H2 branch on h panel and H3 branch on i panel
(see the text for more details)

and nS ↔ E1,2 on banana-like curves and nS ↔ K1 on cen-
tral curve. So that in this case we have P1,0, P0,1 ↔ E1,2

as a nonsingular regime, but E1,2 are located in the first
and third quadrants, meaning either (H > 0, h > 0) or
(H < 0, h < 0), so that both three- and extra-dimensional
spaces are expanding or contracting, which contradict our
choice (H > 0, h < 0), so that we discard this regime and
cannot call it realistic.

We go on with α > 0, β < 0 (Fig. 1d, 3a–c and 5a–c) case.
Similar to two previous cases, there are three limiting values
for H as h → ±∞ (as well as for h as H → ±∞) and they
are the same as for the previous case (±√−α/10β), and,
also similar to the previous cases, the corresponding regimes
are nonstandard singularities. The anisotropic exponential
solutions are located on edge-shaped curves in second and
fourth quadrants while isotropic – on hyperbola-like curve
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(a) (b) (c)

(d) (e) (f)

(g) (i)(h)

Fig. 5 pH , ph and
∑

pi graphs for vacuum D = 3 case: pH in red,
ph in blue and

∑
pi in green; α > 0, β < 0 on a–c panels: H1 branch

on a panel, H2 branch on b panel and H3 branch on c panel; α > 0,
β > 0, μ < 0.3 on d–f panels: H1 branch on d panel, H2 branch on e

panel and H3 branch on f panel; α > 0, β > 0, μ > 0.3 on g–i panels:
H1 branch on g panel, H2 branch on h panel and H3 branch on i panel
(see the text for more details)

in first and third quadrants. Combining all these with the
analysis of the (Ḣ(h), ḣ(h)) curves allows us to draw the
regimes: E2 ↔ P1,0, E1 ↔ P0,1 and E1,2 ↔ nS on the
edge-shaped curves, K1 ↔ nS and nS ↔ nS on central
loop-like curve and nS ↔ Eiso on hyperbola-like curve.

In this case we have two interesting features which worth
mentioning – first, we finally have realistic compactification
– indeed, P1,0, P0,1 → E1,2 are realistic compactifications,

as both E1,2 have different signs for H and h.2 The second
feature is inability to reach Eiso from the standard singularity

2 Actually, only one of them has (H > 0, h < 0) – another has (H <

0, h > 0), but since it is D = 3 case, for us it does not matter which of
three-dimensional subspaces is expanding and which is contracting –
we call the expanding one as “our Universe” and the contracting as extra
dimensions, so that in D = 3 instead of one we have two anisotropic
exponential solutions.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 The dynamics for α < 0, β < 0 restored from gluing differ-
ent branches: the case of (Ḣ(h), ḣ(h)) on a–c panels and the case of
Kasner exponents (pH , ph) on d–f panels. On a panel we presented
(Ḣ(h), ḣ(h)) for H2 branch, on b – for H3 branch while in c – real
physical evolution recovered from gluing proper parts of H2 and H3

branches. On d–f panels – the same but for the Kasner exponents (red
curve corresponds pH , blue – to ph and green to

∑
pi ) – coming from

H2 on d, from H3 on e and their combination on f (see the text for more
details)

– indeed, isotropic exponential solution is connected only to
nonstandard singularity. This feature does not affect realistic
compactification abundance, but we note it for completeness;
also, in the Gauss–Bonnet case [56–59] we never experienced
such situation, neither in vacuum nor in �-term cases.

The two remaining cases are similar – they both have
α > 0, β > 0 but one of them has μ < 0.3 (Figs. 1e, 3d–f
and 5d–f) while another μ > 0.3 (Figs. 1f, 3g–i and 5g–
i). The difference, as one can see from Fig. 1e, f lies in
circle-like curve in the second and fourth quadrants. The
regime which is common for both cases is P1,0 ↔ K1,
and it is another example of the realistic compactification.
The regimes within the circle-like curve in the second and
fourth quadrants are subject to the “fine-structure” (see the
description of the anisotropic exponential solutions abun-
dance above) and are presented in Fig. 7. There we presented
the following α > 0, β > 0 cases: μ < 1/6 on (a) panel,
μ = 1/6 on (b) panel, μ3 > μ > 1/6 on (c) panel, μ = μ3

on (d) panel and 0.3 > μ > μ3 on (e) panel (at μ = 0.3

the circle-like curve disappears). Different colors correspond
to different branches, in accordance with the designation in
Fig. 1) – blue – to H2 and green – to H3. One can see that the
abundance of the anisotropic exponential solutions exactly
coincide with our description provided above.

For visualization purposes we plot all discovered regimes
on H(h) curves, the results are presented in Fig. 8. The panels
layout follow that of Fig. 1: α < 0, β < 0 on (a) panel, α < 0,
β > 0, μ < 3/2 on (b) panel, α < 0, β > 0, μ > 3/2 on (c)
panel, α > 0, β < 0 on (d) panel, α > 0, β > 0 and μ < 0.3
on (e) panel; red curve corresponds to H1, blue – to H2 and
green – to H3. The arrows represent the evolution according
with respect to grow of the cosmic time t .

This concludes our consideration of the first and the sim-
plest D = 3 case. We concluded that there are two sets of
realistic regimes: P1,0, P0,1 → E1,2 for α > 0, β < 0
and P1,0, P0,1 → K1 for α > 0, β > 0; interesting that
both of them require α > 0. Let us note that only half of
these regimes have H > 0, h < 0 – the other half have
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(a)

(d) (e)

(b) (c)

Fig. 7 The fine structure of the solutions in the α > 0, β > 0 case:
μ < 1/6 on a panel, μ = 1/6 on b panel, μ3 > μ > 1/6 on c panel,
μ = μ3 on d panel and 0.3 > μ > μ3 on e panel. Different colors

correspond to the different branches (blue – to H2 and green – to H3, in
accordance with the designation in Fig. 1) (see the text for more details)

H < 0, h > 0, but since this particular case has D = 3 –
the number of extra dimensions coincide with the number
of “our” spatial dimensions, we can “switch” between them,
which effectively doubles the number of regimes. One also
can notice that our description based on the analysis of the
discriminants of the equations provide accurate information
on the regimes’ abundance. Further, the analysis of the H(h)

and (Ḣ(h), ḣ(h)) curves supplement this study with data on
the non-standard singularities as well as findings, which of
the exponential solutions cannot be reached and which can-
not provide realistic compactification (having, for instance,
both H > 0 and h > 0). So that on the particular example
of D = 3 case we demonstrated how our scheme works and
are going to use it further without this much details.

5 D = 4 case

In this case the equations of motion (6)–(8) take form (H -
equation, h-equation, and constraint correspondingly)

4Ḣ + 6H2 + 8ḣ + 20h2 + 16Hh

+ 8α(2Ḣ(4Hh + 6h2) + 4ḣ(H2 + 3h2 + 6Hh)

+ 8H3h + 34H2h2 + 48Hh3 + 15h4)

+ 144β(2(Ḣ + H2)(4Hh3 + h4)

+ 4(ḣ + h2)(3H2h2 + 2Hh3) + 5H2h4) = 0, (15)

6Ḣ + 12H2 + 6ḣ + 12h2 + 18Hh

+ 8α(3Ḣ(H2 + 6Hh + 3h2) + 3ḣ(3H2 + 6Hh

+ h2) + 3H4 + 27Hh3 + 45H2h2 + 27H3h + 3h4)

+ 144β(3(Ḣ + H2)(3H2h2 + 2Hh3)

+ 3(ḣ + h2)(2H3h + 3H2h2) + 5H3h3) = 0, (16)

6H2 + 24Hh + 12h2 + 24α(4H3h + 18H2h2

+ 12Hh3 + h4) + 720β(4H3h3 + 3H2h4) = 0. (17)

First we find the discriminant of (17) with respect to H
and then its discriminant with respect to h. The resulting
equation is 15th order polynomial with respect to μ = β/α2

and it has the following roots: single roots

μ1 = −4 3
√

98/135 + 38/135 ≈ 0.1449
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(a) (b)

(c)

(e)

(d)

Fig. 8 Final compilations of all possible regimes in D = 3 vacuum
cubic Lovelock case, on H(h) evolution curves; different colors corre-
spond to three different branches H1, H2 and H3; panels layout is as

follows: α < 0, β < 0 on a panel, α < 0, β > 0, μ < 3/2 on b panel,
α < 0, β > 0, μ > 3/2 on c panel, α > 0, β < 0 on d panel, α > 0,
β > 0 and μ < 0.3 on e panel (see the text for more details)
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and μ2 = 5/6, as well as double root 0.3 and triple root
≈ 0.4418. We shall see that only first two roots, μ1 and μ2,
affect physical regimes.

To find isotropic exponential solutions, we substitute Ḣ =
ḣ ≡ 0 as well as h = H into (15)–(17), the system is sim-
plified to a single equation

42H2(1 + 20αH2 + 120βH4) = 0

with nontrivial solution

H2 = −5α ± √
25α2 − 30β

60β
. (18)

Analyzing (18) we find out that there is one root if β < 0
(regardless of α) and two roots if α < 0, 5α2/6 � β > 0; in
all other cases there are no isotropic exponential solutions.

To find anisotropic exponential solutions abundance, we
substitute Ḣ = ḣ ≡ 0 into (15)–(17) and solve the resulting
system with respect to H and h. The resulting equation on h is
bi-eight-power and its discriminant is 16th order polynomial
in μ with roots: single roots μ3 = 841/5184 ≈ 0.16223,
μ4 = 1/6 ≈ 0.16667 and μ5 = 5/6 ≈ 0.8333, as well as
double roots μ6,7 = 34/25 ± 8

√
14/25 ≈ 0.16267, 2.557

and μ8,9 = 1/3±√
21/27 ≈ 0.1636, 0.503, as well as triple

set of imaginary roots of fourth order equation. One can see
that in the vicinity of μ ≈ 0.16÷0.17 there is a fine structure
based on the rapid change of root number with change of μ.
Further analysis of the equations reveals the following: for
α < 0 and μ < 0 we have two roots for ζ = αh2 and
so for h we have totally four roots (two positive and two
negative) ±h1,2; for α < 0 and μ > 0 there are no roots
for μ < μ5 = 5/6, for μ = 5/6 there is a double root and
for μ > 5/6 there are two distinct roots ±h1,2. So that for
α < 0 there are two stable exponential solutions for μ < 0
and μ � 5/6; for other μ there are no anisotropic exponential
solutions.

For α > 0 the situation is more complicated: for μ < 0,
as in the α < 0 case, there are two solutions, while for μ > 0
it is much more complex. For μ < μ3 there are four, μ = μ3

five, μ8 > μ > μ3 six, μ = μ8 again four, μ4 > μ > μ8

two and for μ = μ4 = 1/6 only one. For μ > 1/6 there
are no stable exponential solutions for α > 0. So that for
α > 0 there are anisotropic exponential solutions iff μ � 1/6
(including μ < 0 domain).

Now it is time to explore H(h) curves. They are presented
in Fig. 9. There red curve corresponds to H1, blue to H2 and
green to H3. The panels layout is as follows: α < 0, β < 0 on
(a) panel, α < 0, β > 0, μ < 5/6 on (b) panel, α < 0, β > 0,
μ > 5/6 on (c) panel, α > 0, β < 0 on (d) panel, α > 0,
β > 0, μ < μ1 on (e) panel, and α > 0, β > 0, μ > μ4

on (f) panel. The situations on (b) and (c) panels coincide at
μ = 5/6 – in that case the two isotropic exponential solutions

coincide and the “banana”-shaped areas “touch” each other
at the point of double isotropic solution.

To proceed, we skip the intermediate steps (description
of the individual Ḣ(h), ḣ(h), pH , ph curves) and present
the resulting regimes on the H(h) curves (see Fig. 9). Their
analysis suggest the following: for α < 0, μ < 0 case (see
Fig. 9a), we have two nonsingular regimes: K5 ↔ E1 regime
on H1 branch (red curve), and P1,0 ↔ Eiso on H2 (blue
curve) as h → 0 and H → ±∞. One can see that in D =
4 case, unlike D = 3, we have “proper” cubic-Lovelock
Kasner regime with

∑
p = 5, as predicted. But as E1 is

located along H1, it has either (H < 0, h > 0) or (H > 0,
h < 0). Only one of them is of interest to us (H > 0, h < 0),
but this regime is reachable only as past asymptote: E1 →
K5; the E1 from K5 → E1 has (H < 0, h > 0). So that
the regime which could give us realistic compactification,
cannot be reached from K5, despite it exists (but unstable).
Singular regimes for α < 0, μ < 0 case include Eiso ↔
nS, E2 ↔ nS, nS ↔ nS and K1 ↔ nS along H2 − H3

curve and nS ↔ E1, nS ↔ nS and K1 ↔ nS along H1

curve. So that another anisotropic exponential solution E2

is located between nonstandard singularities and cannot be
reached from the initial cosmological singularity.

Next case is α < 0, β > 0, μ < 5/6, which is presented
in Fig. 9b. There the only nonsingular regimes are K5 ↔ K1

(along H3, green line) and P1,0 ↔ E1
iso. Similar to D =

3, H1 and H2 branches have fixed limit at h → ±∞, the
corresponding regime is nonstandard singularity. This makes
E2
iso to be connected only with nS; apart from these regimes

there is also K1 ↔ nS. So that in this case we have K5 →
K1 which is the transition from high-energy to low-energy
Kasner, similar to the situation described in the Einstein–
Gauss–Bonnet case [56]. But similar to the just described
above the situation with the anisotropic exponential solution,
K1 in this case has either (H < 0, h > 0) or (H > 0,
h < 0). And again, similar to the previously described case,
for K5 → K1 we have (H < 0, h > 0) while for K1 →
K5 we have (H > 0, h < 0). So that the Kasner regime
which is suitable for us (three expanding and D contracting
dimensions) is unstable as t → ∞. We shall discuss it more
in the proper section of the manuscript. Let us also note that
μ = 5/6 is the limiting case of (b) panel where the isotropic
exponential solutions coincide.

The nonstandard singularities in this case have power-law
behavior, that is why they are denoted as nS/P – they have
singularity at H = ±√−10α/β/30 and they approach it in
a power-law manner in a finite time. So that the singularity
remains nonstandard, yet, unlike other appearances, in this
particular case its behavior is know, so that we specify it and
denote as nS/P .

Now let us consider α < 0, β > 0, μ > 5/6 case, which is
depicted in Fig. 9c. Similar to the previous case, as h → ±∞
the values of H tend to the same constants and the corre-
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 9 Final compilations of all possible regimes in D = 4 vacuum
cubic Lovelock case, on H(h) evolution curves; different colors corre-
spond to three different branches H1, H2 and H3; panels layout is as
follows: α < 0, β < 0 on a panel, α < 0, β > 0, μ < 5/6 on b panel,

α < 0, β > 0, μ > 5/6 on c panel, α > 0, β < 0 on d panel, α > 0,
β > 0, μ < μ1 on e panel, and α > 0, β > 0, μ > μ4 on f panel (see
the text for more details)
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sponding regimes are again nS/P for the same reasons as in
the previous μ < 5/6 case. Again, similar to the previous
case, we have K5 along H3 (green line), but now isotropic
exponential solutions “turned” into anisotropic, located on
“banana”-shaped curves. So, similar to the previous case, the
we have K5 ↔ K1 nonsingular regime and it is, again, have
H < 0 for K1 so it is invalid for our purpose of finding proper
compactification. But unlike the previous case, we also have
P1,0 ↔ E2 – transition to the anisotropic exponential solu-
tion – another nonsingular regime. But this anisotropic solu-
tion is located in the first and third quadrants and so it has
either (H > 0, h > 0) or (H < 0, h < 0) – so both three and
extra dimensions are either expanding or contracting and so
we cannot explain compactification with this regime. The sin-
gular regimes for this case include E1 ↔ nS/P , E2 ↔ nS
and K1 ↔ nS.

So that in these three cases which combine entire α < 0
domain there is no realistic compactification. Let us continue
with α > 0 regimes. First one to consider is α > 0, β < 0,
presented in Fig. 9d. There we have isotropic exponential
solution on H2 (blue hyperbola-like curve) and K5 on H1

(red line), but unlike previous cases there is no K5 ↔ K1

transition, as there is anisotropic exponential solution on H1

as well, so we have K5 ↔ E1 instead. And again, similar
to one of the previous cases, this exponential solution has
H < 0 on K5 → E1 and H > 0 on E1 → K5, so that we
cannot describe realistic compactification with this regime.
Similar to D = 3 case the isotropic exponential solution
is “surrounded” by nonstandard singularities – the regimes
involve Eiso are Eiso ↔ nS and Eiso ↔ nS/P . Another
non-singular regime is P1,0 ↔ E2 which takes place on H3

“edge”-shaped part, and in this case E2 has H > 0, h < 0
and is stable past-time asymptote, so that it could describe the
compactification. The singular regimes in this case include
E1 ↔ nS, E2 ↔ nS, K1 ↔ nS/P and K1 ↔ nS. To
conclude, this case provides us with P1,0 → E2 which could
describe realistic compactification.

The last case to consider is α > 0, β > 0, and it has wide
variety of the regimes, as well as fine structure, similar to the
previous D = 3 case. But unlike it, now all the regimes from
the fine structure are connected with the initial singularity,
making them more physical. We presented two representative
cases – μ < μ1 and μ > μ4 = 1/6 in Fig. 9e, f respectively,
while all cases inbetween – in Fig. 10.

Let us start the description with growth of μ. The first case
is μ < μ1, presented in Fig. 9e. The regimes along H3 (green
curve) in the second quadrant are: K5 ← E1 → nS ←
nS → E2 ← P1,0; the regimes in the fourth quadrant are
time-reverse of the described. So that E1 there is past asymp-
tote and cannot describe compactification, while E2 case, and
P1,0 → E2 is an example of the compactification regime.
The regimes along eight-like figure formed from H1 and H2

branches in the center are (starting from red H1 branch):

K1 → nS ← E3 → nS ← E4 → nS ← nS → K1,
where first K1 belong to H1 branch while the last – to H2.
One can see that there are two anisotropic exponential solu-
tions along this curve, but both of them are unstable. So that
in this case only P1,0 → E2 is compactification regime.
The next case is μ = μ1 – in that case H2 (blue curve)
and H3 (green curve) “touch” each other, but the regimes
remain unchanged. With further increase of μ the H2 and
H3 branches “detouch” each other but in a way presented
in Fig. 10a, where we presented fine-structure (and so only
the second quadrant) for μ3 > μ > μ1. One can see
that now H3 is “cut” into two physical branches – one of
them together with a piece from H2 is forming P1,0 → K1

regime (see also Fig. 9f where it seen clearly). Another part
of H3 is forming with remaining parts of H2 and H1 the
second physical branch with the regimes (starting from K1

on H1): K1 → nS ← E1 → nS ← E2 → nS ←
nS → E3 ← nS → nS ← E4 → K5. One can see
there four different anisotropic exponential solution (simi-
lar as in D = 3 case, see Fig. 7c) but now located along
the same physical branch. Three out of them are unsta-
ble (E1, E2 and E4) and the remaining stable E3 is “sur-
rounded” by nS and cannot be a part of compactification
scenario. To conclude, the only compactification regime here
is P1,0 → K1.

The further growth of μ to μ = μ3 is presented in Fig. 10b
– the situation and the regimes are almost the same with
the difference that now an additional exponential solution
(E4 by designations on Fig. 10b) emerged “between” two
nonstandard singularities on the upper part of H3. Since it
emerged between nS, no new physically significant regimes
are formed. With increase of μ this exponential solution,
which has

∑
Hi = 0 (constant-volume exponential solution,

see [49]) at μ = μ3, is split into two for μ8 > μ > μ3 –
one of them (E2) is stable while another (E3) is unstable
(see Fig. 10c for illustration). But again, both of them are
surrounded by nonstandard singularities so no new physically
sensitive regimes appear.

The next qualitative change of the situation happening at
μ = μ8, displayed in Fig. 10d. At this point two changes
happening: at H2 (blue segment) two exponential solutions
emerged with nonstandard singularity forming single expo-
nential solution E1; similar situation happened at H3 (green
segment). But still, all these changes are within nS bounds,
so, similar to the previous cases, no changes of the realistic
regimes occur. With further growth of μ to μ4 > μ > μ8

these newly formed exponential solutions turn to nonstandard
singularities (see Fig. 10e); the remaining two exponential
solutions (E1 and E2 on the H3) merge with nonstandard
singularity between them into new exponential solution at
μ = μ4 (see Fig. 10f). Finally, at μ > μ4 (Fig. 9f) no expo-
nential solution remains and there are only nS ↔ nS and
K5 ↔ nS along H2 − H3 physical branch. So that for the
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 The fine structure of the solutions in the α > 0, β > 0
D = 4 vacuum case: μ1 < μ < μ3 on a panel, μ = μ3 on b panel,
μ8 > μ > μ3 on c panel, μ = μ8 on d panel, 1/6 > μ > μ8 on e

panel and μ = μ4 = 1/6 on f panel. Different colors correspond to
the different branches (red – to H1, blue – to H2 and green – to H3, in
accordance with the designation in Fig. 9) (see the text for more details)

entire μ > μ1 we have only P1,0 → K1 as realistic com-
pactification regime; all the regimes within fine structure are
non-realistic.

To conclude, in D = 4 we encounter proper cubic Love-
lock Kasner regime K5 with

∑
p = 5, but there are no real-

istic compactification regimes originating from K5. Instead,
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there are P1,0 → E3+4 for α > 0, μ � μ1 and P1,0 → K1

for α > 0, μ > μ1. So that for entire α > 0 we have either
of these regimes, and, similar to the previous cases, have no
realistic regimes for α < 0.

6 Discussions

In the current paper we have analyzed the cosmological
dynamics of the cubic Lovelock gravity, with Einstein–
Hilbert and Gauss–Bonnet terms present as well. We have
chosen a setup with a topology being a product of two
isotropic subspaces – three-dimensions, representing our
Universe, and D-dimensional, representing extra dimen-
sions. Both subspaces are flat, which simplifies our equa-
tions of motion and makes it possible to analyze them ana-
lytically. In a sense, it is a logical continuation of [56–59],
where we considered the same problem but in EGB grav-
ity – vacuum case in [56,57] and �-term case in [57–59].
In [57] we reviewed all the results for EGB from [56,58,59]
and changed the visualization of the regimes – in the origi-
nal papers [56,58,59] we use tables to list of all the regimes,
and this way sometimes is not easy to read. On the contrary,
in [57] we put all the regimes on H(h) curves and added
arrows to demonstrate t → ∞ directed evolution. In the
current paper we decided to keep visualization from [57].

First of all, let us summarize the results, as they are scat-
tered over mini-conclusions in each particular section. The
fist one is D = 3 and it has interesting feature – since the
equations of motion are cubic in both H and h, there could
be up to three branches of the solutions. On the other hand, it
is the lowest possible dimension for cubic Lovelock gravity,
so there are no Kasner solutions (see [46]). Then the only
possibility is what we call “generalized Taub” solution – the
situation when the expansion in each direction is character-
ized by Kasner exponent pi = −H2

i /Ḣi equal to either 1 or
0; so that for our topology it is either P1,0 (pH = 1, ph = 0
– expansion of the three-dimensional subspace and “static”
extra dimensions) or P0,1 (pH = 0, ph = 1 – expansion
of the extra-dimensional subspace and “static” three dimen-
sions). Then the remaining branches – which cannot be con-
nected to either P1,0 or P0,1, form closed evolution curves
for (α < 0, β < 0) (see Fig. 8a) or (α > 0, β > 0) (see
Figs. 7 and 8e); for (α < 0, β > 0) and (α > 0, β < 0)
they encounter nonstandard singularities (see Fig. 8b–d). The
realistic compactification regimes are P1,0/P0,1 → E3+3 for
(α > 0, β < 0) and P1,0/P0,1 → K1 for (α > 0, β > 0); let
us note that both of the regimes exist only for α > 0.

The D = 4 case has one cubic Lovelock Kasner solution
K5 but it is still not enough for all branches, so we still non-
standard singularities at (α < 0, β > 0) and (α > 0, β < 0)
(see Fig. 9b–d) while for (α < 0, β < 0) and (α > 0, β > 0)
the evolution curves have complicated shapes (see Figs. 9a,

e, f and 10). In D = 4 we still have P1,0 regime, but not P0,1,
and some of the nonstandard singularities have power-law
behavior and so designated as nS/P . Unlike D = 3, where
the regimes within the fine structure existed on an isolated
H(h) curve (see Fig. 7), in D = 4 they are located on one of
the physical branches connected with K1. The realistic com-
pactification regimes are P1,0 → E3+4 for α > 0, μ < μ1

(including entire β < 0) and P1,0 → K1, for α > 0, μ > μ1

– exactly the same as in D = 3 case, and again both of the
regimes exist only for α > 0.

The above-mentioned “generalized Taub” solution deserves
some additional comments. Formally it fits “generalized
Milne” solution – the second branch of the power-law solu-
tions in Lovelock gravity (see [20] for details), but it is only
formal – it fits only because it is degenerative. As it was
demonstrated in [46], strict “generalized Milne” cannot exist
in pure highest-order Lovelock gravity, as it leads to degener-
acy in the equations of motion. But if additional (lower-order)
Lovelock contributions are involved, it could restore this
branch of solutions, but it was never demonstrated exactly
before. So that on the particular example of [3 + D] spa-
tial splitting we demonstrated this possibility. Still, a little is
known about this regime and it deserves additional investi-
gation in the separate papers.

When we consider this “generalized Taub” solution as a
past asymptote – and this is the case for all possible realistic
compactification models in D = 3, 4 – it feels a bit unnatu-
ral. Indeed – the P1,0 regime imply H → ∞ and h → 0 as
t → 0 (by “0” we mean here initial cosmological singular-
ity), so that we initially have “burst”-like expansion of three-
dimensional subspace while the extra-dimensional subspace
is almost static. In addition to the feeling of unnaturalness,
it is a question if this regime could be reached from totally
anisotropic space, in a manner it was done in [60] for EGB
case. So that it gives additional reason to deeply investigate
this regime and we are going to do it in the nearest time.

The results of our analysis suggest that the variety and
abundance of the regimes is closer to �-term EGB, rather
then vacuum EGB models. The reasons for that are not clear,
but we expect that number of the free parameters plays a
role here. Indeed, for vacuum EGB model there is only one
parameter – α, Gauss–Bonnet coupling, while for �-term
EGB and vacuum cubic Lovelock there are two – α and �

for the former and α and β (cubic Lovelock coupling) for the
latter. In that case the dynamics of the �-term cubic Lovelock
gravity would be even more interesting and we are going to
consider this case shortly.

7 Conclusions

This concludes our study of the cosmological models in vac-
uum cubic Lovelock gravity with D = 3, 4 extra dimensions.
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We have found that in both cases there are regimes with suc-
cessful compactification, but all of them originate from “gen-
eralized Taub” solution; for the future asymptote we have
either Kasner regime or anisotropic exponential solution.

Apart from the regimes with successful compactification,
we described and plotted on H(h) curves all possible regimes
for all initial conditions and all structurally different cases.
The variety and abundance of the regimes exceed even �-
term EGB case, featuring transition between two anisotropic
exponential solutions and transition between two different
“generalized Taub” solutions.

There are two interesting observations which require addi-
tional investigation, as both are quite unexpected. First of
them is that all of the regimes with realistic compactification
have α > 0 requirement. This is totally unexpected, as in
both vacuum and �-term EGB cases we have viable com-
pactifications for both signs of α. For the �-term case the
joint analysis of our cosmological bounds and those coming
from AdS/CFT and other considerations allows us to con-
clude α > 0 (see [57,58]), but for that we involved external
(to our results) analysis. In this case without any external
bounds we already have realistic compactification only for
α > 0.

The second observation is that there is no K5 → K1

transition with realistic compactification. In EGB vacuum
case [56,57] we have the transitions of this kind, so it was
natural to assume that in higher-order Lovelock gravity they
also present, but our investigation reveals that they are not.
There is K5 → K1 transition, but with contracting three and
expanding extra dimensions, so it formally exist, but with no
compactification scenario. As both of these observations are
unexpected and in disagreement with what we have learned
from study of EGB case, this is a good direction for further
improvement of our understanding of Lovelock gravity.
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