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Abstract In the paper, within the background field method,
the structure of renormalizations is studied as for Yang–Mills
fields interacting with a multiplet of spinor fields. By extend-
ing the Faddeev–Popov action with extra fields and parame-
ters, one is allowed to establish the multiplicative character
of the renormalizability. The renormalization of the physical
parameters is shown to be gauge-independent.

1 Introduction

When quantizing non-Abelian gauge field theories [1], whose
gauge transformations form a group, one is naturally based
on the Faddeev–Popov method [2]. It is a characteristic prop-
erty of the Faddeev–Popov gauge-fixed action that the latter
is invariant under global BRST supersymmetry [3,4], which,
in turn, can be expressed in the form of the Zinn-Justin equa-
tion [5] for the Faddeev–Popov action. At the quantum level,
the BRST symmetry as expressed in terms of the effective
action, implies the Slavnov–Taylor identities [6,7] to hold.
Further generalization as to the quantization of gauge the-
ories, including the cases of field-dependent structure coef-
ficients, as well as open and/or reducible gauge algebra, is
described by the field–antifield BV formalism [8,9]. In that
formalism, the effective action is BRST invariant by con-
struction, and thus satisfies the master equation which pro-
vides for the gauge invariance of the physical sector of the
theory [8,9].

An interest to the gauge dependence problem did appear
from the study of the effective potential, which appeared to be
gauge-dependent in Yang–Mills theories with spontaneous
breaking of the symmetry, when calculating physically-
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sensible results (the energy of the ground state, the masses of
the physical particles, and so on) [10,11]. In Refs. [12,13] it
was established that the energy of the ground state was gauge-
independent. Later, it was proved [14,15] that in Yang–Mills
theories the dependence of gauge parameters in the effective
action could be described in terms of gauge-invariant func-
tional whose arguments (fields) were gauge-dependent (see
also recent Refs. [16,17] devoted to that problem as resolved
via the procedure of redefinition of the field variables, found
in [14,15]). Notice that in the general case of gauge theories,
a variation in gauge condition is described in the form of cer-
tain change of the field variables (in terms of anticanonical
transformations) [18,19].

Although there are many papers devoted to various aspects
of renormalizability of Yang–Mills theories, gauge depen-
dence of renormalization constants has been studied explic-
itly only as for the gauge field sector [20]. In the present
paper, within the background field formalism, it is studied a
multiplicative renormalization procedure and gauge depen-
dence as for Yang–Mills fields interacting with a multiplet
of spinor fields. It is shown that renormalizations of physical
parameters of the theory are gauge-independent.

The paper is organized as follows. In Sect. 2, it is dis-
cussed the action of Yang–Mills fields and spinor fields in
the standard approach and in the background field method; it
is also introduced extended action, which leads in the back-
ground field method to a multiplicative renormalizable theory
of the fields considered; it is also studied the symmetry of the
extended action. In Sect. 3, it is established the structure and
the arbitrariness is described as for any local functional with
the quantum numbers of the extended action that satisfies
the same set of equations as the extended action. In Sect. 4,
the equations are derived for the generating functional of
vertexes (effective action), as a consequence at the quantum
level, of the symmetry property of the extended action; and
it is shown that the generating functional of vertexes satis-
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fies the same equations as the extended classical action. In
Sect. 5, it is studied the renormalization procedure of the the-
ory considered when using the loop expansion technique and
the minimal subtraction scheme; and thus the multiplicative
renormalizability of the theory is proved. In Sect. 6, the rela-
tions are found between the parameters of the renormalized
action and the standard renormalization constants of fields
and vertexes of the interaction, and renormalized physical
parameters are shown to be gauge-independent. Concluding
remarks are given in Sect. 7.

Condensed DeWitt’s notations [21] are used through the
paper. Functional derivatives with respect to field variables
are understood as the left. Right derivatives of a quantity f

with respect to the variable ϕ are denoted as f
←−
δ
δϕ

.

2 Extended action for Yang–Mills theories

Let us consider a gauge theory of non-abelian vector fields
Aα

μ = Aα
μ(x) and spinor fields ψ j = ψ j (x), ψ j = ψ j (x)

in the D = 4 Minkowski space-time with the action

SYM (A, �) =
∫

dx

(
− 1

4
Gα

μν(A)Gα
μν(A)

+iψ j γ
μDψμj k(A)ψk − mψ j ψ j

)
, (2.1)

where the notations

Gα
μν(A) = ∂μA

α
ν − ∂ν A

α
μ + g f αβγ Aβ

μA
γ
ν ,

Dψμj k(A) = ∂μδ jk + gtαj k A
α
μ, � = {ψ,ψ} (2.2)

are used. In Eqs. (2.1), (2.2) f αβγ are structure coefficients of
a simple compact gauge Lie group, tα = {tαj k} are generators
of gauge transformations in sector of spinor fields satisfying
the properties,

[tα, tβ ] = f αβγ tγ , (tγ )+ = −tγ , [γ μ, tα] = 0. (2.3)

Here γ μ are the Dirac matrices, g and m are the coupling
constant of gauge interaction and the mass parameter of
spinor field, respectively. The action (2.1) is invariant under
gauge transformations with gauge parameters ωα = ωα(x),
δωSYM (A, �) = 0,

δωA
α
μ = (

∂μδαβ + g f ασβ Aσ
μ

)
ωβ = Dαβ

μ (A)ωβ,

δωψ j = −gtβj kψkωβ, δωψ j = gψk t
β
k j ωβ. (2.4)

The corresponding Faddeev–Popov action [2] S(1)
FP =

S(1)
FP (A, �,C,C, B, ξ) in the Feynman gauge has the form

S(1)
FP = SYM (A, �) +

∫
dx

(
C

α
∂μD

αβ
μ (A)Cβ

+Bα∂μA
α
μ + (ξ/2)BαBα

)
, (2.5)

where ξ is a constant gauge parameter, Cα = Cα(x),C
α =

C
α
(x) represent the Faddeev–Popov ghost fields, Bα =

Bα(x) are auxiliary fields introducing a gauge fixing con-
dition. The action (2.5) is invariant under global supersym-
metry (BRST symmetry) [3,4],

δλA
α
μ = Dαβ

μ (A)Cβλ, δλψ j = −gtαj kψkC
αλ,

δλψ j = gψk t
α
k jC

αλ, (2.6)

δλC
α = g

2
f αβγCβCγ λ, δλC

α = Bαλ, δλB
α = 0,

where λ is a constant anticommuting parameter.
In the background field formalism [22,23] a gauge field

Aα
μ entering the classical action (2.1) is replaced by Aα

μ+Bα
μ,

SYM (A, �) → SYM (A + B, �), (2.7)

where Bα
μ is considered as an external vector field. The

Faddeev–Popov action is constructed by using the modified
Feynman gauge (the background gauge condition), and reads

S(2)
FP =SYM (A+B, �)+

∫
dx

(
C

α
Dαγ

μ (B)Dγβ
μ (A+ B)Cβ

+BαDαβ
μ (B)Aα

μ + (ξ/2)BαBα

)
. (2.8)

This action is invariant under BRST transformations of the
form (2.6) with the following modification of the transfor-
mation law in the gauge field sector,

δλA
α
μ = Dαβ

μ (A + B)Cβλ. (2.9)

The invariance property of Faddeev–Popov actions (2.5)
and (2.8) under BRST transformations can be described in
the form of non-linear functional equations for the extended
action Sext with the help of additional variables (antifields)
A∗α

μ ,ψ∗
j , ψ

∗
j ,C

∗α,C
∗α

, being sources to the generators of
BRST transformations,

S(a)
ext = S(a)

FP +
∫

dx
(
Q∗R(a)

Q + C
∗α
Bα

)
, a = 1, 2,

(2.10)

where Q means the set of the fields {Aα
μ,ψ j , ψ j ,C

α} and the
symbol Q∗ is used to indicate the set of the corresponding
antifields for fields Q, wherein the BRST transformations
(2.4), (2.6) are presented as δλQ = R(a)

Q λ, a = 1, 2. Then,

as a consequence of the BRST symmetry, the actions S(a)
ext

satisfy the master-equation

∫
dx

(
S(a)
ext

←−
δ

δQ

δ

δQ∗ S
(a)
ext+S(a)

ext

←−
δ

δC

δ

δC
∗ S(a)

ext

)
= 0, a = 1, 2.

(2.11)
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To study the structure of renormalizations it is convenient
to extend the original set of the variables with extra fields and
auxiliary quantities. An initial action, we proceed from, when
studying the structure of renormalizations and dependence
of renormalization constants on gauge fixing is the extended
action Sext = Sext (Q, Q∗,C, B,B, ξ, θ, χ),

Sext = SYM (A + B, �) +
∫

dx Q∗RQ

+
∫

dx

(
C

α
Dαγ

μ (B)Dγβ
μ (A + B)Cβ

+BαDαβ
μ (B)Aβ

μ + (ξ/2)BαBα

)

+
∫

dx

(
θα
μ[Dαβ

μ (A + B)C
β − A∗α

μ ]

+χ [(A∗α
μ − Dαβ

μ (B)C
β
)Aα

μ + C∗αCα + ψ∗
j ψ j

+ψ
∗
jψ j ]

)
, (2.12)

where θα
μ = θα

μ(x) are anticommuting extra fields and χ is a
constant nilpotent parameter.1

The action (2.12) is invariant (δSext = 0) under the fol-
lowing transformations of the quantities entered,

δAα
μ = Dαβ

μ (A + B)Cβ + θα
μ = δ

δA∗α
μ

Sext + χ Aα
μ, (2.13)

δBα = −1

ξ

[
Dαγ

μ (B)Dγβ(A + B)Cβ + Dαβ
μ (A + B)θβ

μ

+χDαβ
μ (B)Aβ

μ

] − χBα

= −1

ξ

δ

δC
α Sext − χBα, (2.14)

δCα = g

2
f αβγCβCγ = δ

δC∗α
Sext − χCα, (2.15)

δC
α = −1

ξ
Dαβ

μ (B)Aβ
μ + χC

α = −1

ξ

δ

δBα
Sext + Bα

+χC
α
, (2.16)

δψ j = −gtαjkψkC
α = δ

δψ∗
j
Sext − χψ j , (2.17)

δψ j = gψk t
α
k jC

α = δ

δψ
∗
j

Sext − χψ j , (2.18)

δA∗α
μ = χ A∗α

μ , δC∗α = −χC∗α, δψ∗
j = −χψ∗

j ,

δψ
∗
j = −χψ

∗
j , (2.19)

δξ = 2ξχ, δBα
μ = −θα

μ, δθα
μ = 0, δχ = 0. (2.20)

1 These extra variables have been used first in Ref. [20].

Due to the variations (2.13)–(2.20), the invariance condition
of the action rewrites

∫
dx

(
Sext

←−
δ

δQ

δ

δQ∗ Sext − B
δ

δC
Sext − θ

δ

δB Sext

)

+χ

∫
dx

[
Q

δ

δQ
− Q∗ δ

δQ∗ − C
δ

δC
− B

δ

δB

]
Sext

+2χξ
∂

∂ξ
Sext = 0. (2.21)

Also, the action (2.12) satisfies the equation

Sext
←−
Hαωα = 0, (2.22)

where the notation

←−
Hαωα =

∫
dx

{[ ←−
δ

δBβ
μ

Dβα
μ (B)

+g f βγα

( ←−
δ

δAβ
μ

Aγ
μ +

←−
δ

δBβ
Bγ

)

+g f βγα

( ←−
δ

δCβ
Cγ +

←−
δ

δC
β
C

γ +
←−
δ

δA∗β
μ

A∗γ
μ

+
←−
δ

δC∗β
C∗γ +

←−
δ

δθ
β
μ

θγ
μ

)

−gtαjk

( ←−
δ

δψ j
ψk +

←−
δ

δψ
∗
j

ψ
∗
k

)

+g

( ←−
δ

δψ j
ψk +

←−
δ

δψ∗
j
ψ∗
k

)
tαk j

]
ωα

}
, (2.23)

is used for the operator describing the gauge transformations
of the variablesBμ, ψ , ψ and simultaneously the tensor trans-
formation of fields and antifields Aμ, C , C , B, θμ, A∗

μ, ψ∗,

ψ
∗
, C∗. Finally, we notice that the action (2.12) satisfies the

two important relations linear in fields Aμ, B and also in
derivatives of variables B,C, A∗

μ,

δ

δBα
Sext = Dαβ

μ (B)Aβ
μ + ξ Bα, (2.24)

Dαβ
μ (B)

δ

δA∗β
μ

Sext − δ

δC
α Sext = −g f αβγ Aβ

μθγ
μ . (2.25)

The Eq. (2.25) means that the action Sext (2.12) depends on

variables A∗α
μ “Z”, “p”C

α
in combination A∗α

μ −Dαβ
μ (B)C

β

only when θ
β
μ = 0.

We give the table of “quantum” numbers of fields, anti-
fields, auxiliary fields and constant quantities which have
been used in constructing Sext :

123
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Quantity A,B ψ,ψ C, C B ξ θ A∗ ψ∗, ψ∗
C∗ dx ∂x χ

ε 0 1 1 0 0 1 1 0 0 0 0 1
gh 0 0 1, −1 0 0 1 −1 −1 −2 0 0 1
dim 1 3/2 1 2 0 2 2 3/2 2 −4 1 1
ε f 0 1, −1 0 0 0 0 0 −1, 1 0 0 0 0

where “ε” describes the Grassmann parity, the symbol “gh”
is used for the ghost number, “dim” denotes the canonical
dimension and “ε f ” means the fermion number. Using this
table of “quantum” numbers it is easy to establish quantum
numbers of any quantities found in the text.

3 General structure of renormalized action

It is to be proved below that the renormalizable action is
a local functional of field variables, carries the quantum
number of the action Sext (2.12), and satisfies the same
Eqs. (2.21)–(2.25) as the action Sext . In that Section we will
find the general solution to the Eqs. (2.21)–(2.25) under the
extra conditions mentioned.

So, let

P =
∫

dx P(x), (3.1)

where P(x) is a local polynomial in all variables Q, Q∗,C,

B,B, ξ, θ, χ with dim(P(x)) = 4. Require the functional P
to satisfy the Eqs. (2.21)–(2.25) with substitution Sext → P ,
and let P be of the form

P = P00 + P(1) + χ P(2), (3.2)

where

P00 =
∫

dx

(
BαDαβ

μ (B)Aβ
μ + ξ

2
BαBα

+gθα
μ f αβγ Aβ

μC
γ
)

, (3.3)

ε(P(1)) = 0, gh(P(1)) = 0,

dim(P(1)) = 0, ε f ((P
(1))) = 0, (3.4)

ε(P(2)) = 1, gh(P(2)) = −1,

dim(P(2)) = −1, ε f ((P
(2))) = 0, (3.5)

and the functionals P(1) and P(2) do not depend on χ . It
follows from the Eq. (2.24) for P , and representation (3.3)
that P(1) and P(2) do not depend on Bα , “Z”, “p”,

P(k) = P(k)(Q, Q∗,C,B, ξ, θ), k = 1, 2, (3.6)

By introducing new variables A∗α
μ (x),

A∗α
μ = A∗α

μ − Dαβ
μ (B)C

β
, Aα

μ = Aα
μ, (3.7)

we define new functionals P̃(k) by the rule

P̃(k) = P̃(k)(�,�∗,B,C, ξ, θ) (3.8)

= P(k)(Q, Q∗,B,C, ξ, θ)|A∗→A∗+D(B)C , k = 1, 2,

to find that P̃(k) do not depend on the fields C
α

,

P̃(k) = P̃(k)(�,�∗,B, ξ, θ). (3.9)

In the relations (3.8) and (3.9) the following notations

� = {A, ψ,ψ,C}, A = A, �∗ = {A∗, ψ ∗, ψ∗
,C∗}

(3.10)

are used.
Independence of functionals P̃(k) of the fields C

α
and

relations

P(k)
∫

dx

[ ←−
δ

δBβ
μ

Dβα
μ (B) + g f βγα

( ←−
δ

δC
β
C

γ +
←−
δ

δA∗β
μ

A∗γ
μ

)]

= P̃(k)
∫

dx

[ ←−
δ

δBβ
μ

Dβα
μ (B) + g f βγα

←−
δ

δA∗β
μ

A∗γ
μ

]
, (3.11)

allow one to write down the following set of equations as for
P̃(k),

∫
dx

[
P̃(1)

←−
δ

δ�

δ

δ�∗ P̃
(1) − θα

μ

δ

δBα
μ

P̃(1)

]
= 0,

2ξ
∂

∂ξ
P̃(1) =

∫
dx

[
P̃(1)

( ←−
δ

δ�

δ

δ�∗ −
←−
δ

δ�∗
δ

δ�

)
P̃(2)

−θα
μ

δ

δBα
μ

P̃(2)

]

+
∫

dx

[(
�∗ δ

δ�∗ − �
δ

δ�

)
P̃(1)

]
, (3.12)

P̃(k)
←−̃
hαωα = 0, k = 1, 2, (3.13)
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where

←−̃
hαωα =

∫
dx

{[ ←−
δ

δBβ
μ

Dβα
μ (B)

+g f βγα

( ←−
δ

δAβ
μ

Aγ
m|μ +

←−
δ

δCβ
Cγ

)

+g f βγα

( ←−
δ

δA∗β
μ

A∗γ
μ +

←−
δ

δC∗β
C∗γ +

←−
δ

δθβ
θγ
μ

)

−gtαjk

( ←−
δ

δψ j
ψk (3.14)

+
←−
δ

δψ
∗
j

ψ
∗
k

)
+ g

( ←−
δ

δψ j
ψk +

←−
δ

δψ∗
j
ψ∗
k

)
tαk j

]
ωα

}
.

When studying the structure of functionals and further inves-
tigating it appears useful a consequence of the Eq. (3.13) at
ωα = const,

P̃(k)←−T α = 0, k = 1, 2, (3.15)

where

←−
T α =

∫
dx

{
f βγα

( ←−
δ

δBβ
μ

Bγ
μ +

←−
δ

δAβ
μ

Aγ
μ +

←−
δ

δCβ
Cγ

)

+ f βγα

( ←−
δ

δA∗β
μ

A∗γ
μ +

←−
δ

δC∗β
C∗γ +

←−
δ

δθ
β
μ

θγ
μ

)

−tαjk

( ←−
δ

δψ j
ψk +

←−
δ

δψ
∗
j

ψ
∗
k

)

+
( ←−

δ

δψ j
ψk +

←−
δ

δψ∗
j
ψ∗
k

)
tαk j

}
. (3.16)

We refer to equations of the form (3.15) as the ones of the
T -symmetry for the corresponding functional.

Using the properties of the functional P̃(2) (3.5), its local-
ity as well as axial symmetry, Poincare- and T - symmetries
we find the general representation,

P̃(2) =
∫

dx

[
Z1A∗α

μ Aα
μ + Z2C

∗αCα + Z3ψ
∗
j ψ j

+Z4ψ
∗
j ψ j + Z ′

1A∗α
μ Bα

μ

]
, (3.17)

where Zi , i = 1, 2, 3, 4, “Z”, “p” Z ′
1 are arbitrary constants.

Further, when using the Eq. (3.13) for P̃(2) we get that Z ′
1 =

0. The final expression for P̃(2) has the form

P̃(2) =
∫

dx

[
Z1A∗α

μ Aα
μ + Z2C

∗αCα

+Z3ψ
∗
j ψ j + Z4ψ

∗
j ψ j

]
. (3.18)

Notice that the functional P̃(2) does not depend on the fields
θα
μ . By taking (3.18) into account the Eq. (3.12) reduces to

the following one

2ξ
∂

∂ξ
P̃(1) =

∫
dx

[
(Z1 − 1)

(
Aα

μ

δ

δAα
μ

− A∗α
μ

δ

δA∗α
μ

)

+(Z2 − 1)

(
Cα δ

δCα
− C∗α δ

δC∗α

)

+(Z3 − 1)

(
ψ j

δ

δψ j
− ψ ∗

j
δ

δψ ∗
j

)

+(Z4 − 1)

(
ψ j

δ

δψ j
− ψ

∗
j

δ

δψ
∗
j

)]
P̃(1),

(3.19)

describing the dependence of renormalization constants on
the gauge parameter ξ . We refer to the Eq. (3.12) as an
extended master-equation and to (3.19) as a gauge depen-
dence equation.

3.1 Solution to the extended master-equation

Now we consider a solution to the extended master-equation
(3.12) for the functional P̃(1) as presented it in the form

P̃(1) = P̃(1)
θ + P̃(1)

�∗ + P̃(1)
ψ + P̃(1)

AB. (3.20)

The functional P̃(1)
θ rewrites as

P̃(1)
θ =

∫
dx θα

μ(x)P̃α
μθ (x), (3.21)

and the functionals P̃(1)

AB, P̃(1)
ψ , P̃(1)

�∗ do not depend on the

fields θα
μ . By taking into account the properties dim(P̃α

μθ ) =
2, gh(P̃α

μθ ) = −1, ε(P̃α
μθ ) = 1, ε f (P̃α

μθ ) = 0, as well as the

Poincare- and T -symmetries of the functional P̃(1)
θ , we find

that

P̃α
μθ = −Z5A∗α

μ , P̃(1)
θ = −Z5

∫
dx θα

μ(x)A∗α
μ (x)

= −Z5

∫
dx θα

μA∗α
μ , (3.22)

where Z5 is an arbitrary constant.
The functional P̃(1)

�∗ is linear in the antifields�∗ (3.10), and

the functionals P̃(1)

AB and P̃(1)
ψ do not depend on the antifields

�∗. The functional P̃(1)
�∗ can be represented in the form

P̃(1)
�∗ = P̃(1)

A∗ + P̃(1)
C∗ + P̃(1)

ψ∗ + P̃(1)

ψ
∗ . (3.23)
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By using the arguments analogous to those led us to the struc-
ture of the functional P̃(1)

θ (3.22), we obtain

P̃(1)

A∗ =
∫

dx

[
Z6A∗α

μ Dαβ
μ (B)Cβ + gZα

7βγA∗α
μ Aβ

μC
γ

+gZ
′α
7βγA∗α

μ Bβ
μC

γ

]
, (3.24)

P̃(1)
C∗ =

∫
dx

g

2
Zα

8βγC
∗αCβCγ , (3.25)

P̃(1)
ψ∗ = −

∫
dx gZα

9 jkψ
∗
j ψkC

α, (3.26)

P̃(1)

ψ
∗ =

∫
dx gZα

10k jψ
∗
jψkC

α. (3.27)

Taking into account the gauge symmetry in the external field
B (see the Eq. (3.13)), we find that Z

′α
7βγ = 0. The quantities

“Z” introduced in (3.24)–(3.27) are constants that satisfy the
equations,

Fα
γ δZ

β
7δσ − Zβ

7γ δF
α
δσ = f αβλZλ

7γ σ , (3.28)

Fα
γ δZ

β
8δσ − Zβ

8γ δF
α
δσ = f αβδZ δ

8γ σ , (3.29)

tαjl Z
β
9lk − Zβ

9 jl t
α
lk = f αβγ Zγ

9 jk, (3.30)

tαkl Z
β
10l j − Zβ

10kl t
α
l j = f αβγ Zγ

10k j . (3.31)

Notice that if Zλ
7γ σ = Z7 f γ λσ , Zλ

8γ σ = Z8 f γ λσ , Zα
9 jk =

Z9tαjk , Zα
10 jk = Z10tαjk , then the corresponding Eqs. (3.28)–

(3.31) hold and the functionals P̃(1)

A∗ , P̃(1)
C∗ , P̃(1)

ψ∗ , P̃(1)

ψ
∗ (3.24)–

(3.27) satisfy the Eq. (3.13) by themselves.
In its turn, taking into account the axial symmetry, the

Poincare- and the T -invariance we determine the general
structure of the functional P̃(1)

ψ ,

P̃(1)
ψ =

∫
dx

[
i Z11ψ jγ

μDψμ(B)ψ j

+igZ ′α
11 jkψ jγ

μBα
μψk +

+igZα
12 jkψ jγ

μAα
μψk − mZ13ψ jψ j

]
, (3.32)

where constants Zα
12 jk satisfy the equations

tαjl Z
β
12lk − Zβ

12 jl t
α
lk = f αβγ Zγ

12 jk . (3.33)

The contribution to the P̃(1)
ψ

←−̃
hαωα , proportional to ∂μωα , has

the form

igψ j Z
′α
11 jkγ

μψk∂μωα, (3.34)

so that it follows from the Eq. (3.13) that the equalities
Z ′α

11 jk = 0 and

P̃(1)
ψ =

∫
dx

[
i Z11ψγ μDψμ(B)ψ + igZα

12 jkψ jγ
μAα

μψk

−mZ13ψ jψ j

]
(3.35)

hold. Notice that in the case Zα
12 jk = Z12tαk j the Eq. (3.33) are

fulfilled and the functional P̃(1)
ψ (3.35) satisfies the Eq. (3.13).

Insert the representation for the functional P̃(1) in the form
(3.20) into the Eq. (3.12). Then, analysis of the θψψ com-
ponents in the extended master-equation (3.12) yields

Zα
12 jk = Z12t

α
jk, Z12 = Z11/Z5, (3.36)

and the possibility to represent the functional P̃(1)
ψ as

P̃(1)
ψ =

∫
dx

[
i Z11ψ jγ

μDψμjk(U )ψk − mZ13ψ jψ j
]
,

(3.37)

where the notation

U = {Uα
μ}, Uα

μ = Z−1
5 Aα

μ + Bα
μ (3.38)

is used. The θA∗C components in the Eq. (3.12) lead to the
relations

Zα
7βγ = Z7 f

αβγ , Z7 = Z6

Z5
, (3.39)

and to the representation

P̃(1)

A∗ =
∫

dx Z6A∗α
μ Dαβ

μ (U )Cβ. (3.40)

Consideration of the A∗ACC components in the Eq. (3.12)
gives the relations

Zα
8βγ = Z8 f

αβγ , Z8 = Z7 = Z6

Z5
, (3.41)

and the representation for the functional P̃(1)
C∗ in the form

P̃(1)
C∗ =

∫
dx

g

2

Z6

Z5
f αβγC∗αCβCγ . (3.42)

Studying the ψψ∂C , ψψBC and mψψC components in the
Eq. (3.12) lead to the relations

Zα
10 jk = Zα

9 jk, Zα
9 jk = Z9t

α
jk, Z9 = Z6

Z5
,

Zα
10 jk = Z6

Z5
tαjk, (3.43)
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and, as a consequence, to the representation of the functionals
P̃(1)

ψ∗ and P̃(1)

ψ
∗ as

P̃(1)
ψ∗ = −

∫
dx g

Z6

Z5
ψ∗

j t
α
jkψkC

α, (3.44)

P̃(1)

ψ
∗ =

∫
dx g

Z6

Z5
ψ

∗
j t

α
k jψkC

α

=
∫

dx g
Z6

Z5
ψ j t

α
jkψ

∗
k C

α. (3.45)

The functional P̃(1)

AB depends on the fields A and B only.
The θAB components in the Eq. (3.12) allow us to conclude
that the functional P̃(1)

AB depends on the fields A and B only
in combination (3.38),

P̃(1)

AB(A,B) = X (U ). (3.46)

Finally, consideration of the ABC components in the
Eq. (3.12) leads to equations for the functional X (U ) (3.46)

Dαβ
μ (U )

δ

δUβ
μ(x)

X (U ) = 0. (3.47)

The required solution to the Eq. (3.47) can be written in the
form

P̃(1)

AB(A,B) = X (U ) = −
∫

dx
1

4
Z14 Gα

μν(U )Gα
μν(U ),

(3.48)

where

Gα
μν(U ) = ∂μU

α
ν − ∂νU

α
μ + g f αβγUβ

μU
γ
ν . (3.49)

Thus the general solution to the extended master-equation,
P̃(1), is constructed. It is defined by fifth independent arbi-
trary constants Z5, Z6, Z11, Z13, Z14 and has the form

P̃(1) =
∫

dx

[
− 1

4
Z14 Gα

μν(U )Gα
μν(U )

+i Z11ψ jγ
μDψμjk(U )ψk − mZ13ψ jψ j

−Z5θ
α
μA∗α

μ + Z6A∗α
μ Dαβ

μ (U )Cβ

+g
Z6

Z5

(
f αβγC∗αCβCγ + ψ

∗
j t

α
k jψkC

α

−ψ∗
j t

α
jkψkC

α

)]
. (3.50)

Notice that at Z1 = Z2 = Z3 = Z4 = Z5 = Z6 = Z11 =
Z13 = Z14 = 1, the equality (the initial condition),

PZ=1 = Sext , (3.51)

holds where Sext is given by the formula (2.12).

3.2 Solution to the gauge dependence equation

Consider now a solution to the Eq. (3.19) describing the
gauge dependence of the constants entering the general
solution constructed, P̃(1), to the extended master-equation
(3.50). By studying the A∗θ , AD(U )G(U ), A∗ fAC and
ψγ tAψ structures in the Eq. (3.19), we derive the following
relation

2ξ Ż5 = −(Z1 − 1)Z5 ⇒ Z1 = 1 − 2ξ
Ż5

Z5
. (3.52)

Henceforth we use the notation

İ ≡ ∂

∂ξ
I, (3.53)

for any quantity I = I (ξ, . . .) depending on the gauge
parameter ξ .

Analysis of the A∗D(U )C components in the Eq. (3.19)
gives the relation

2ξ Ż6 = (Z2 − Z1)Z6 ⇒ Z2 = 1 + 2ξ

(
Ż6

Z6
− Ż5

Z5

)
.

(3.54)

Considering the ψγ Dψ(U )ψ components in the Eq. (3.19),
we obtain

2ξ Ż11 = (Z3 + Z4 − 2)Z11. (3.55)

Analyzing the mψψ components in the Eq. (3.19), we find

2ξ Ż13 = (Z3 + Z4 − 2)Z13. (3.56)

By making use of the change of constants “Z”

Z13 = Z11Z15, Z3 − Z4 = 2Z16, (3.57)

the Eqs. (3.55), (3.56) rewrite in the form

Ż15 = 0, Z3 = 1+ ξ
Ż11

Z11
+ Z16, Z4 = 1+ ξ

Ż11

Z11
− Z16.

(3.58)

Finally, consideration of the G(U )G(U ) components in the
Eq. (3.19) leads to the important statement that,

Ż14 = 0. (3.59)

Analysis of the ψ∗tψC , ψ
∗
t tψC and C∗ f CC components

in the Eq. (3.19) gives no new information.
Below, in Sect. 5 find that all constants “Z” can be

interpreted as renormalization constants which are uniquely
defined from the conditions of divergence elimination.

Let us formulate the results obtained in that Section in the
form of a lemma.

Lemma Let

P =
∫

dx P(Q, Q∗,C, B,B, ξ, θ, χ), (3.60)
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be a local functional of all variables, obey the quantum num-
bers of the action Sext and satisfy all Eqs. (2.21)–(2.25) as
well as extra symmetries (Poincare-invariance and so on)
which have been used in solving the Eqs. (2.21)–(2.25) with
substitution Sext → P .

Then the functional P has the form

P = P00 + P(1) + χ P(2), (3.61)

where P00 is given by the formula (3.3), P(1) and P(2) do
not depend on Bα and χ and are functionals of arguments �,
�∗, B, C , ξ , θ ,

P(k) = P(k)(Q, Q∗,C,B, ξ, θ) = P̃(k)

= P̃(k)(�,�∗,B,C, ξ, θ), k = 1, 2, (3.62)

� = {A, ψ,ψ,C}, �∗ = {A∗, ψ ∗, ψ∗
,C∗}, (3.63)

A∗α
μ = A∗α

μ − Dαβ
μ (B)C

β
, Aα

μ = Aα
μ. (3.64)

The functionals P̃(k) read

P̃(1) =
∫

dx

[
− 1

4
Z14 Gα

μν(U )Gα
μν(U )

+i Z11ψ jγ
μDψμjk(U )ψk − mZ13ψ jψ j

−Z5θ
α
μA∗α

μ + +Z6A∗α
μ Dαβ

μ (U )Cβ

+g
Z6

Z5

(
f αβγC∗αCβCγ + ψ

∗
j t

α
k jψkC

α

− ψ∗
j t

α
jkψkC

α
) ]

, (3.65)

P̃(2) =
∫

dx

[
Z1A∗α

μ Aα
μ + Z2C

∗αCα + Z3ψ
∗
j ψ j

+Z4ψ
∗
j ψ j

]
. (3.66)

U = {Uα
μ}, Uα

μ = Z−1
5 Aα

μ + Bα
μ, (3.67)

Z1 =1 − 2ξ
Ż5

Z5
, Z2 =1 + 2ξ

(
Ż6

Z6
− Ż5

Z5

)
,

Z3 =1 + ξ
Ż11

Z11
+ Z16, Z4 =1 + ξ

Ż11

Z11
− Z16, (3.68)

Z13 = Z11Z15, Ż14 = 0, Ż15 = 0, (3.69)

where Z5, Z6, Z11, Z16 are arbitrary constants depending
perhaps on ξ , and Z14, Z15 are arbitrary constants not
depending on ξ .

The inverse statement, being perhaps trivial but neverthe-
less important, is true: if the functional P has the form (3.61),
(3.62), (3.65), (3.66) and the relations (3.67), (3.68), (3.69)
are fulfilled then this functional satisfies the Eqs. (2.21)–
(2.25).

4 Generating functional of vertex functions

It is convenient to define the generating functional of Green
functions by making use of the action functional P con-
structed in the previous Section as the action yields then
a finite theory certainly. In what follows we re-denote the
functional P , P ≡ SR , and, respectively, P(k) ≡ S(k)

R ,

P̃(k) ≡ S̃(k)
R , k = 1, 2.

The generating functional of Green functions is given by
the functional integral,

Z(J�, L) =
∫

d� exp

(
i

η

[
SR + J��

])

= exp

{
i

η
W (J�, L)

}
, (4.1)

with η standing for a parameter of a loop expansion as to
the expression in the exponential in (4.1), W (J�, L) that
is the generating functional of connected Green functions,
and the notations are introduced � = {Q,C, B} “Z”, “p”
L = {L A} = {B, Q∗, ξ, θ, χ}, and J� as for the sources
to the fields �. Also, we assume that all the constants “Z”
are functions of η, “Z”=“Z”(η), expandable in Taylor power
series, Zi (0) = 1, Żi = O(η), i = 5, 6, 11, 14, 15, Z16 =
O(η). In that case the functional SR becomes a function of
η,

SR = SR(η) =
∞∑
l=0

ηl SR,l , S[k]
R =

k∑
l=0

ηl SR,l , (4.2)

so that all the functionals SR,l are linear combination of a
single set of monomials,

SR,l =
I∑

i=1

al,i Si , (4.3)

where {Si , i = 1, . . . , I } is a sub-set of monomials which the
action Sext is expanded in, and al,i are constant coefficients
for l-loop order.

The generating functional of vertex Green functions
(effective action) is defined by the Legendre transformation

�(�m|, L) = W (J�, L)−J��m|, �m| = δ

δ J�
W (J�, L),

(4.4)

has the quantum numbers ε(�) = 0, gh(�) = 0, dim(�) =
0, ε f (�) = 0, and satisfies the relations

�(�m|, L)

←−
δ

δ�m|
= −J�(�m|, L),

�(�m|, L)

←−
δ

δL A
= W (J�, L)

←−
δ

δL A
. (4.5)
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Functional average of the Eqs. (2.21)–(2.25) with substi-
tution Sext → SR yields the corresponding equations for the
functional � = �(�m|, L), copying the equations for SR ,

∫
dx

(
�

←−
δ

δQm|
δ

δQ∗ � − Bm|
δ

δCm|
� − θ

δ

δB�

)

+2χξ
∂

∂ξ
� + χ

∫
dx

[(
Qm|

δ

δQm|
− Q∗ δ

δQ∗

−Cm|
δ

δCm|
− Bm|

δ

δBm|

)
�

]
= 0, (4.6)

�
←−
Hα
m|ωα = 0, (4.7)

where
←−
Hα
m|ωα is given by the expression (2.23) with the

replacement � → �m|,

δ

δBα
m|

� = Dαβ
μ (B)Aβ

m|μ + ξ Bα
m|, (4.8)

Dαβ
μ (B)

δ

δA∗β
μ

� − δ

δC
α

m|
� = −g f αβγ Aβ

m|μθγ
μ (4.9)

Represent the functional � in the following form

� = �00 + �(1) + χ�(2), (4.10)

where

�00 =
∫

dx
(
Bm|D(B)Am| + ξ

2
B2
m| + gθα

μ f αβγ Aβ
m|μC

γ

m|
)
,

(4.11)

and the functionals �(1) and �(2) do not depend on the param-
eter χ . Due to the structure chosen for the functional (4.11)
it follows from the Eqs. (4.8) and (4.9) that the functionals
�(1) and �(2) do not depend on the fields Bα

m|,

δ

δBm|
�(k) = 0, �(k) = �(k)(Qm|,Cm|,B, Q∗, ξ, θ),

k = 1, 2, (4.12)

and satisfy the equations

(
Dαβ

μ (B)
δ

δA∗β
μ

− δ

δC
α

m|

)
�(k) = 0, k = 1, 2, (4.13)

In its turn, the Eq. (4.6) splits in the two, one of which is
closed as for the functional �(1),

∫
dx

[
�(1)

←−
δ

δQm|
δ

δQ∗ �(1) − gθα
μ f αβγC

β

m|
δ

δA∗γ
μ

�(1)

−θα
μ

δ

δBα
μ

�(1)

]
= 0, (4.14)

and the second includes both the functionals and describes
their dependence on the gauge parameter ξ ,

2ξ
∂

∂ξ
�(1) =

∫
dx

[
�(1)

( ←−
δ

δQm|
δ

δQ∗ −
←−
δ

δQ∗
δ

δQm|

)
�(2)

−
(
gθα

μ f αβγC
β

m|
δ

δA∗γ
μ

+ θα
μ

δ

δBα
μ

)
�(2)

]

+
∫

dx

[(
Cm|

δ

δCm|
− Qm|

δ

δQm|

+Q∗ δ

δQ∗

)
�(1)

]
. (4.15)

The Eq. (4.7) rewrites now in the form of the two equations
as for the functionals �(1) and �(2),

�(k)←−
hα
m|ωα = 0, k = 1, 2, (4.16)

where

←−
hα
m|ωα =

∫
dx

{[ ←−
δ

δBβ
μ

Dβα
μ (B)

+g f βγα

( ←−
δ

δAβ
m|μ

Aγ
m|μ +

←−
δ

δCβ
m|

Cγ
m|

)

+g f βγα

( ←−
δ

δC
β

m|
C

γ

m| +
←−
δ

δA∗β
μ

A∗γ
μ +

←−
δ

δC∗β
C∗γ +

←−
δ

δθ
β
μ

θγ
μ

)

−gtαjk

( ←−
δ

δψm| j
ψm|k +

←−
δ

δψ
∗
j

ψ
∗
k

)

+g

( ←−
δ

δψm| j
ψm|k +

←−
δ

δψ∗
j
ψ∗
k

)
tαk j

]
ωα

}
. (4.17)

As for the Eq. (4.13), it is convenient to introduce the
variables A∗α

μ = A∗α
μ (x), A∗α

m|μ = A∗α
m|μ(x)

A∗α
μ = A∗α

μ − Dαβ
μ (B)C

β
, A∗α

m|μ = A∗α
μ − Dαβ

μ (B)C
β

m|,
(4.18)

and to use the following convention

Aα
μ = Aα

μ, (4.19)

as for the sake of uniformity. Also, introduce the new func-
tionals �̃(k) by the rule,

�̃(k)(B,Cm|,A∗
m|,�m|)

= �(k)(B,Cm|, A∗,�m|)
∣∣
A∗→A∗

m|+Dαβ
μ (B)C

β
m|

, (4.20)

where the notation

� = {Q, ψ∗, ψ∗
,C∗, ξ, θ},

�m| = {Qm|, ψ∗, ψ∗
,C∗, ξ, θ} (4.21)
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is used. With the definitions (4.18)–(4.20) taken into account,
we have

δ

δA∗α
μ

�(k) = δ

δA∗α
m|μ

�̃(k), (4.22)

δ

δC
α

m|
�(k) = δ

δC
α

m|
�̃(k) + Dαβ

μ (B)
δ

δA∗β
m|μ

�̃(k), (4.23)

δ

δBα
μ

�(k) = δ

δBα
μ

�̃(k) − g f αβγC
β

m|
δ

δA∗γ
m|μ

�̃(k),

k = 1, 2. (4.24)

Then, we find from the Eqs. (4.13), (4.20), (4.22), (4.23) that

δ

δC
α

m|
�̃(k) = 0, (4.25)

the functionals �̃(k), k = 1, 2, do not depend on the fields
C

α

m|,

�̃(k) = �̃(k)(�m|,�∗
m|,B, ξ, θ). (4.26)

Henceforth we use the notations

�m| = {Am|, ψm|, ψm|,Cm|}, A = A,

�∗
m| = {A∗

m|, ψ∗, ψ∗
,C∗}, k = 1, 2. (4.27)

Now, with (4.20), (4.26), (4.27) taken into account, the ones
(4.14), (4.15) rewrite in the form

1

2
(�̃(1), �̃(1)) −

∫
dx

(
θ

δ

δB
)

�̃(1) = 0, (4.28)

2ξ
∂

∂ξ
�̃(1) = (�̃(1), �̃(2))

+
∫

dx

(
�∗

m|
δ

δ�∗
m|

− �m|
δ

δ�m|

)
�̃(1)

−
∫

dx

(
θ

δ

δB
)

�̃(2), (4.29)

where the notation for the antibracket [8,9] is used,

(F,G) = 1

2
F

∫
dx

( ←−
δ

δ�m|
δ

δ�∗
m|

−
←−
δ

δ�∗
m|

δ

δ�m|

)
G.

(4.30)

Further, with the relations (4.20), (4.26) and

�(k)
∫

dx

[ ←−
δ

δBβ
μ

Dβα
μ (B)

+g f βγα

( ←−
δ

δC
β

m|
C

γ

m| +
←−
δ

δA∗β
μ

A∗γ
μ

)]
(4.31)

= �̃(k)
∫

dx

[ ←−
δ

δBβ
μ

Dβα
μ (B) + g f βγα

←−
δ

δA∗β
m|μ

A∗γ
m|μ

]

we find that

�(k)←−
hα
m|ωα = �̃(k)

←−
h̃α
m|ωα = 0, k = 1, 2, (4.32)

where the operator
←−
h̃α
m|ωα is defined in the equality (3.14)

with the replacement � → �m|, �∗ → �∗
m|.

Then, when studying the tensor structure of divergence
parts of the generating functional of vertexes, it is convenient
to use a consequence of the Eq. (4.32) in particular case
ωα(x) = const, i.e. as to a global Tm|-symmetry:

�̃(k)←−
T α
m| = 0, k = 1, 2, (4.33)

where the operators
←−
T α
m| are defined by the Eq. (3.16) with

the replacement � → �m|, �∗ → �∗
m|.

5 Renormalization

In that section we study the structure of renormalizations, and
show the multiplicative character of the renormalizabiliuty
of the model considered. The main role in that study is given
to resolving the extended master-equation (3.12) and the one
(3.19) describing the gauge dependence. We show that the
renormalized quantum action and the effective action satisfy
exactly their master equations to each subsequent order in
loops. In this resolving, the structure of the renormalized
quantum action is determined by the same monomials in
fields and antifields as it does for the non-renormalized quan-
tum action with constants determined by the divergencies of
the effective action. For the sake of notational simplicity, we
omit lower case m| of any arguments of any functionals.

5.1 Tree approximation (η = 0)

Consider the tree approximation for the functional �, �0 =
Sext, written in new variables as

�0 = �00 + �
(1)
0 + χ�

(2)
0 , (5.1)

�
(1)
0 = �̃

(1)
0 , �

(2)
0 = �̃

(2)
0 , (5.2)

where

�00 =
∫

dx

(
BαDαβ

μ (B)Aβ
μ+ ξ

2
BαBα+ gθα

μ f αβγ Aβ
μC

γ
)

.

(5.3)

Represent the functional �̃
(1)
0 in the form

�̃
(1)
0 = �0θ + �0�∗ + �0ψ + �0AB,

�0ψ = �0ψ |1 + �0ψ |2, �0�∗ = �0A∗

+�0C∗ + �0ψ∗ + �0ψ
∗ , (5.4)
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where the following notations being further useful

�0θ =
∫

dxA∗α
μ θα

μ, (5.5)

�0A∗ =
∫

dxA∗α
μ Dαβ

μ (A + B)Cβ, (5.6)

�0C∗ =
∫

dx
g

2
f αβγC∗αCβCγ , (5.7)

�0ψ∗ = −
∫

dxgψ∗
j t

α
j kψkC

α,

�0ψ
∗ =

∫
dxgψ

∗
j t

α
k jψkC

α, (5.8)

�0ψ |1 =
∫

dx
[
iψγ μDψμ(A + B)ψ

]
,

�0ψ |2 = −m
∫

dxψ ψ, (5.9)

�0AB = −
∫

dx
1

4
Gα

μν(A + B)Gα
μν(A + B), (5.10)

are introduced. In its turn, the functional �̃
(2)
0 has the form

�̃
(2)
0 =

∫
dx

[
A∗α

μ Aα
μ + C∗αCα + ψ∗

j ψ j + ψ
∗
j ψ j

]
.

(5.11)

Remind that the functional�0 satisfies the Eqs. (2.21)–(2.25).

5.2 (l+1)-loop approximation

We carry out the proof of the multiplicative renormalizability
via the mathematical induction method in the framework of
loop expansion of the effective action with the use of the
minimal subtraction scheme. To this end we suppose that we
managed to find such parameters Z [l]

i ,

Z [l]
i =

l∑
n=0

ηnzi,n, i = 5, 6, 11, 14, 15, 16,

Ż [l]
14 = Ż [l]

15 = 0,

1 − 2ξ
Ż [l]

5

Z [l]
5

= Z [l]
1 + O(ηl+1),

1 + 2ξ

(
Ż [l]

6

Z [l]
6

− Ż [l]
5

Z [l]
5

)
= Z [l]

2 + O(ηl+1),

1 + ξ
Ż [l]

11

Z [l]
11

+ Z [l]
16 = Z [l]

3 + O(ηl+1),

1 + ξ
Ż [l]

11

Z [l]
11

− Z [l]
16 = Z [l]

4 + O(ηl+1), (5.12)

that the l-loop approximation for �, �[l] = ∑l
n=0 ηn�n , is a

finite functional. We are to show that it is possible to pick up

the l + 1-loop approximation for Zi ,

Zi = Z [l]
i + zi,l+1 + O(ηl+2), i = 5, 6, 11, 14, 15, 16,

ż14,l+1 = ż15,l+1 = 0, (5.13)

which does compensate the divergences of l+1-loop approx-
imation for the functional �.

Represent the action SR in the form

SR = S[l]
R + ηl+1sl+1 + O(ηl+2), (5.14)

where S[l]
R is the action SR with independent parameters Zi

replaced by Z [l]
i , and satisfying the Eqs. (2.21)–(2.25), and

the functional sl+1 reads

sl+1 = s(1)
l+1 + χs(2)

l+1. (5.15)

For the functional s(1)
l+1 we use the representation

s(1)
l+1 = sθ,l+1 + s�∗,l+1 + sψ,l+1 + sAB,l+1, (5.16)

where

sθ,l+1 = z5,l+1�0θ , (5.17)

sA∗,l+1 = z6,l+1�0A∗ − z5,l+1A∂A�0A∗ , (5.18)

sC∗,l+1 = (z6,l+1 − z5,l+1)�0C∗ , (5.19)

sψ∗,l+1 = (z6,l+1 − z5,l+1)�0ψ∗ ,

s
ψ

∗
,l+1 = (z6,l+1 − z5,l+1)�0ψ

∗ , (5.20)

sψ,l+1 = z11,l+1�0ψ |1 − z5,l+1A∂A�0ψ |1
+(z11,l+1 + z15,l+1)�0ψ |2, (5.21)

sAB,l+1 = z14,l+1�0AB − z5,l+1A∂A�0AB. (5.22)

In its turn, the functional s(2)
l+1 has the form

s(2)
l+1 =

∫
dx

[
2ξ ż5,l+1A∗A + 2ξ(ż6,l+1 − ż5,l+1)C

∗C

+ξ(ż11,l+1 + z16,l+1)ψ
∗ψ +

+ξ(ż11,l+1 − z16,l+1)ψ
∗
ψ

]
. (5.23)

Here (and below in this section) we use the abbreviation to
denote the variational derivatives of the kind

δ

δA → ∂A, A∂A =
∫

dx A δ

δA , (5.24)

when it does not cause an ambiguity.
Let us study the structure of the functional � with the accu-

racy including the (l+1)-loop approximation. It is described
by the diagrams with vertexes from the action SR with param-
eters zi,n , i = 5, 6, 11, 14, 15, 16, 0 ≤ n ≤ l+1, or, in other
words, by vertexes from the action S[l]

R and from the summand
sl+1. As we are interested in diagrams of the loop order not
higher than l+1, the vertexes from sl+1 cannot appear in loop
diagrams, i.e. vertexes from sl+1 give the “tree” contribution
to �, equal to ηl+1sm|,l+1. Other diagrams are generated by

123



570 Page 12 of 16 Eur. Phys. J. C (2018) 78 :570

the action S[l]
R . Let �(S[l]

R ) be the contribution of those dia-
grams into the functional �, i.e.

� = �(S[l]
R ) + ηl+1sm|,l+1 + O(ηl+2). (5.25)

As the functional S[l]
R satisfies the Eqs. (2.12)–(2.15), the

functional �(S[l]
R ) satisfies the same equations with the

replacement Q,C, B → Qm|,Cm|, Bm|.
Represent the functional �(S[l]

R ) in the form

�(S[l]
R ) = �00 + �(1)(S[l]

R ) + χ�(2)(S[l]
R ), (5.26)

By repeating the calculations of Sect. 3 we find that

�(k)(S[l]
R |Qm|,Cm|,B, Q∗, Bm|, ξ, θ) = �̃(k)

(S[l]
R |�m|,�∗

m|,B, ξ, θ), k = 1, 2, (5.27)

and the functionals �̃(k)(S[l]
R ) satisfy the Eqs. (4.28), (4.29)

and (4.32).
Represent the functionals �̃(k)(S[l]

R ) in the form of sums of
divergent and finite (after removing a regularization) parts.
Taking into account that the functionals �̃(k)(S[l]

R ) are, by
assumption, finite to the n-loop approximations, 0 ≤ n ≤ l,
we obtain

�̃(k)(S[l]
R ) = �̃(k)(S[l]

R )fin + ηl+1�̃(k)(S[l]
R )l+1,div

+O(ηl+2), (5.28)

� = �(S[l]
R )fin + ηl+1

[
�(S[l]

R )l+1,div + sl+1

]

+O(ηl+2), (5.29)

�(S[l]
R )l+1,div = �̃(1)(S[l]

R )l+1,div

+χ�̃(2)(S[l]
R )l+1,div, (5.30)

so that the functionals �̃(k)(S[l]
R )l+1,div are local ones of argu-

ments with the quantum numbers of the action Sext and con-
tain divergent terms only (the minimal subtraction scheme).
Then, as a consequence of the Eqs. (4.28), (4.29) (4.32), they
satisfy the following equations,

(�̃0, �̃(S[l]
R )

(1)
l+1,div)

−
∫

dx

(
θ

δ

δB
)

�̃(S[l]
R )

(1)
l+1,div = 0, (5.31)

2ξ
∂

∂ξ
�̃(S[l]

R )
(1)
l+1,div = (�̃

(1)
0 , �̃(S[l]

R )
(2)
l+1,div)

−(�̃
(2)
0 , �̃(S[l]

R )
(1)
l+1,div) (5.32)

−
∫

dx

(
θ

δ

δB
)

�̃(S[l]
R )

(2)
l+1,div

+
∫

dx

(
�∗

m|
δ

δ�∗
m|

− �m|
δ

δ�m|

)
�̃(S[l]

R )
(1)
l+1,div,

�̃(S[l]
R )

(k)
l+1,div

←−
hαωα = 0, (5.33)

�̃(S[l]
R )

(k)
l+1,div

←−
T α = 0, k = 1, 2. (5.34)

Notice that the form of the Eqs. (5.31)–(5.34) does not depend
on the label l.

By taking into account the quantum numbers, axial-,
Poincare-, T -symmetries, the general expression for local
functional �̃(S[l]

R )
(2)
l+1,div, reads

�̃(S[l]
R )

(2)
l+1,div =

∫
dx

(
q1,l+1A∗A + q2,l+1C

∗C

+q3,l+1ψ
∗ψ+q4,l+1ψ

∗
ψ+q ′

1,l+1A∗B
)
,

(5.35)

where qi,l+1, i = 1, 2, 3, 4, “Z”, “p” q ′
1,l+1 are arbitrary

constants. Then, by using the Eq. (5.33) for �̃(S[l]
R )

(2)
l+1,div, we

find that q ′
1,l+1 = 0. The final expression for �̃(S[l]

R )
(2)
l+1,div

has the form

�̃(S[l]
R )

(2)
l+1,div =

∫
dx

(
q1,l+1A∗A + q2,l+1C

∗C

+q3,l+1ψ
∗ψ + q4,l+1ψ

∗
ψ

)
, (5.36)

Notice that the functional �̃(S[l]
R )

(2)
l+1,div does not depend on

the fields θ and B.
With the expression (5.36) for �̃(S[l]

R )
(2)
l+1,div, the Eq. (5.32)

reduces to the following one,

2ξ
∂

∂ξ
�̃(S[l]

R )
(1)
l+1,div −

∫
dx

[
q1,l+1

(
A δ

δA − A∗ δ

δA∗

)

+q2,l+1

(
C

δ

δC
−C∗ δ

δC∗

)
+q3,l+1

(
ψ

δ

δψ
−ψ∗ δ

δψ∗

)

+q4,l+1

(
ψ

δ

δψ
− ψ

∗ δ

δψ
∗
)]

�̃
(1)
0 = 0. (5.37)

5.2.1 Solution to equation (5.31) for �̃(S[l]
R )

(1)
l+1,div

Consider a solution to the Eq. (5.31) for the functional
�̃

(1)
l+1,div = �̃(S[l]

R )
(1)
l+1,div, represented in the form,

�̃
(1)
l+1,div = Mθ,l+1 + M�∗,l+1 + Mψ,l+1 + MAB,l+1,

M�∗,l+1 = MA∗,l+1 + MC∗,l+1 + Mψ∗,l+1

+M
ψ

∗
,l+1. (5.38)

With this aim, we find first the general form of the functional
�̃

(1)
l+1,div, using the locality, the quantum numbers, axial-,

Poincare-, T -symmetries and partially the gauge symmetry
in the external field B. In fact, all required calculations do
copy ones performed in Sect. 3 when constructing the gen-
eral form of the functional P̃(1) [see formulas (3.21)–(3.35)
with the obvious replacements like P̃(1)

θ → Mθ ]. Here, we
reproduce the final results only. The functional Mθ,l+1 has
the form
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Mθ,l+1 = q5,l+1

∫
dxA∗α

μ (x)θα
μ(x) = q5,l+1

∫
dxA∗θ.

(5.39)

For the functionals linear in antifields we find

MA∗,l+1 =
∫

dx

[
q6,l+1A∗α

μ Dαβ
μ (B)Cβ

+gqα
7,l+1βγA∗α

μ Aβ
μC

γ

]
, (5.40)

MC∗,l+1 =
∫

dx
g

2
qα

8,l+1βγC
∗αCβCγ , (5.41)

Mψ∗,l+1 = −
∫

dxgqα
9,l+1 jkψ

∗
j ψkC

α,

M
ψ

∗
,l+1 =

∫
dxgqα

10,l+1k jψ
∗
jψkC

α, (5.42)

where the constants “q” satisfy the equations (we omit the
lower case l + 1)

Fα
γ δq

β
7δσ − qβ

7γ δF
α
δσ = f αβλqλ

7γ σ , (5.43)

Fα
γ δq

β
8δσ − qβ

8γ δF
α
δσ = f αβδqδ

8γ σ , (5.44)

tαjlq
β
9lk − qβ

9 jl t
α
lk = f αβγ qγ

9 jk, (5.45)

tαklq
β
10l j − qβ

10kl t
α
l j = f αβγ qγ

10k j . (5.46)

For the functionals Mψ,l+1 we obtain

Mψ,l+1 =
∫

dx

[
iq11,l+1ψγ μDψμ(B)ψ

+igqα
12,l+1, jkψ jγ

μAα
μψk − mq13,l+1ψ ψ

]
, (5.47)

tαjr q
β
12,l+1,rk − qβ

12,l+1,rl t
α
rk = f αβγ qγ

12,l+1, jk . (5.48)

As the coefficient of the θα
μ term should be zero, it follows

that the equation

q5,l+1∂A(�0A∗ + �0ψ + �0AB) + ∂A(MA∗,l+1 + Mψ,l+1

+MAB,l+1)

−∂B(MA∗,l+1 + Mψ,l+1 + MAB,l+1) = 0, (5.49)

holds. As the coefficient of the ψψ vertex of the Eq. (5.49)
should be zero, it follows that

qα
12,l+1, jk = q12,l+1t

α
jk, q12,l+1 = q11,l+1 − q5,l+1. (5.50)

In turn, as the coefficient of the A∗C vertex of the Eq. (5.49)
should be zero, it follows that

qα
7,l+1,βγ = q7,l+1 f

αβγ , q7,l+1 = q6,l+1 − q5,l+1. (5.51)

When inserting the expressions found for the qα
12,l+1, jk and

qα
7,l+1,βγ coefficients into the Eq. (5.49), it reduces to the

following one

q5,l+1∂Aα
μ
�0AB + ∂Aα

μ
MAB,l+1 − ∂Bα

μ
MAB,l+1 = 0.

(5.52)

The general solution to the Eq. (5.52) reads

MAB,l+1 =−q5,l+1A∂A�0AB(V )+M1,l+1(V ), V =A+B,

(5.53)

where M1,l+1(V ) stands for an arbitrary functional of V , at
the moment.

In addition, insertion of the expression (5.51) for the
qα

7,l+1,βγ coefficient into the relation (5.40) yields

MA∗,l+1 = q6,l+1�0A∗(V ) − q5,l+1A∂A�0A∗(V ), (5.54)

and insertion (5.50) for the qα
12,l+1, jk coefficient into (5.47)

gives the expression for Mψ,l+1,

Mψ,l+1 = q11,l+1�0ψ |1 − q5,l+1A∂A�0ψ |1 + q13,l+1�0ψ |2.
(5.55)

At θ = 0 the Eq. (5.31) is reduced to the one∫
dx(�0�∗ + �0ψ + �0AB)

(←−
∂ �∂�∗ − ←−

∂ �∗∂�

)

(M�∗,l+1 + Mψ,l+1 + MAB,l+1) = 0, (5.56)

which is not more than linear in antifields.
As the coefficient of the A∗D(B)CC vertex of the

Eq. (5.56) should be zero, it follows that

qα
8,l+1,βγ = q8,l+1 f

αβγ , q8,l+1 = q7,l+1 = q6,l+1−q5,l+1.

(5.57)

Next, we consider the equations which follow from (5.56)
for zero-valued antifields. They split into the two sets of equa-
tions. In the first set of equations,

�0ψ
←−
∂ �∂�∗M�∗,l+1 − �0�∗

←−
∂ �∗∂�Mψ,l+1 = 0, (5.58)

all vertexes contain the spinor fields. In the second ones,

�0AB
←−
∂ A∂A∗MA∗,l+1 − �0A∗

←−
∂ A∗∂AMAB,l+1 = 0,

(5.59)

vertexes are constructed of the fields A, B and their
coordinate-derivatives only.

As the coefficient of the ψψ∂μC vertex of the Eq. (5.58)
should be zero, it follows

qα
9,l+1, jk = q9,l+1t

α
jk, q9,l+1 = q6,l+1 − q5,l+1. (5.60)

As the coefficient of the ψψC vertex of the Eq. (5.58) should
be zero, it follows the relation,

qα
10,l+1, jk = qα

9,l+1, jk = q9,l+1t
α
jk . (5.61)
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When inserting the expressions (5.53) and (5.54) for
MAB,l+1 and MA∗,l+1, respectively, into the Eq. (5.59), it
reduces to the following equation,

D(V )∂V M1, j+1(V ) = 0 ⇒ M1, j+1(V ) = q14,l+1�0AB.

(5.62)

Thus, the functional �(S[l]
R )l+1,div describing the “Z”, “p”

(l + 1)-loop divergences of the functional �(S[l]
R ), has the

form

�(S[l]
R )l+1,div = �̃(1)(S[l]

R )l+1,div + χ�̃(2)(S[l]
R )l+1,div,

(5.63)

where the functional �̃(2)(S[l]
R )l+1,div is given by the expres-

sion (5.36). As for the functional �̃(1)(S[l]
R )l+1,div we use the

representation

�̃(S[l]
R )

(1)
l+1,div = Mθ,l+1 + M�∗,l+1 + Mψ,l+1 + MAB,l+1,

(5.64)

where the functionals “M”,

Mθ,l+1 = q5,l+1�0θ , (5.65)

MA∗,l+1 = q6,l+1�0A∗(V ) − q5,l+1A∂A�0A∗(V ), (5.66)

MC∗,l+1 = (q6,l+1 − q5,l+1)�0C∗ , (5.67)

Mψ∗,l+1 = (q6,l+1 − q5,l+1)�0ψ∗ , (5.68)

M
ψ

∗
,l+1 = (q6,l+1 − q5,l+1)�0ψ

∗ , (5.69)

Mψ,l+1 = q11,l+1�0ψ |1 − q5,l+1A∂A�0ψ |1
+q13,l+1�0ψ |2, (5.70)

MAB,l+1 = q14,l+1�0AB − q5,l+1A∂A�0AB, (5.71)

are represented in terms of the tree loop functionals “�0”
(5.5)–(5.10).

5.2.2 Solution to equation (5.37) for �̃(S[l]
R )

(1)
l+1,div

When inserting the representation for the functional
�̃(1)(S[l]

R )l+1,div given by (5.64)–(5.71) into the Eq. (5.37), it
takes the form of zero value for some linear combinations of
structures appeared in the right-hand side of formulas (5.65)–
(5.71).

As the coefficient of the θα
μ term should be zero, it follows

that

q1,l+1 = −2ξ q̇5,l+1. (5.72)

Then, as the coefficient of any antifield term should be
zero, it follows

q2,l+1 = 2ξ(q̇6,l+1 − q̇5,l+1). (5.73)

When the relations (5.72) and (5.73) hold, then the
Eq. (5.37) reduces to the two equations having obvious solu-
tions

2ξ q̇14,l+1�0AB = 0 ⇒ q̇14,l+1 = 0, (5.74)

2ξ q̇11,l+1�0ψ |1 + 2ξ q̇11,l+1�0ψ |2
−(q3,l+1 + q4,l+1)

(
�0ψ |1 + �0ψ |2

) = 0 ⇒ (5.75)

2ξ q̇11,l+1 = 2ξ q̇13,l+1 = q3,l+1 + q4,l+1. (5.76)

It is convenient to introduce new parameters q15,l+1 and
q16,l+1,

q15,l+1 = q13,l+1 − q11,l+1, 2q16,l+1 = q3,l+1 − q4,l+1,

(5.77)

in terms of which the Eq. (5.76) rewrites as

q̇15,l+1 = 0, q3,l+1 = ξ q̇11,l+1 + q16,l+1,

q4,l+1 = ξ q̇11,l+1 − q16,l+1. (5.78)

5.3 Finiteness of � to (l+1)-loop approximation

Now,let us prove that one can chose the renormalization con-
stants in such a way as to make the effective action finite to
the (l + 1)-loop approximation. To this end, we consider the
divergent part of the effective action �, �l+1,div, described
by the Eq. (5.29),

�l+1,div = �(S[l]
R )l+1,div + sl+1 = �

(1)
l+1,div + χ�

(2)
l+1,div.

(5.79)

For the functionals �
(1)
l+1,div, �

(2)
l+1,div we have the represen-

tations

�
(1)
l+1,div = �(S[l]

R )
(1)
l+1,div + s(1)

l+1

= �θ,l+1,div + ��∗,l+1,div

+�ψ,l+1,div + �AB,l+1,div, (5.80)
�θ,l+1,div = (q5,l+1 + z5,l+1)�0θ , (5.81)

�A∗θ,l+1,div = (q6,l+1 + z6,l+1)�0A∗ (V )

−(q5,l+1 + z5,l+1)A∂A�0A∗ (V ), (5.82)
�C∗,l+1,div = (q6,l+1 + z6,l+1 − q5,l+1 − z5,l+1)�0C∗ , (5.83)
�ψ∗,l+1,div = q6,l+1 + z6,l+1 − q5,l+1 − z5,l+1)�0ψ∗ , (5.84)
�

ψ
∗
,l+1,div = q6,l+1 + z6,l+1 − q5,l+1 − z5,l+1)�0ψ

∗ , (5.85)
�ψ,l+1,div = (q11,l+1 + z11,l+1)�0ψ |1

−(q5,l+1 + z5,l+1)A∂A�0ψ |1 +
+(q11,l+1 + z11,l+1

+q15,l+1 + z15,l+1)�0ψ |2, (5.86)
�AB,l+1,div = (q14,l+1 + z14,l+1)�0AB

−(q5,l+1 + z5,l+1)A∂A�0AB, (5.87)

�
(2)
l+1,div = �(S[l]

R )
(2)
l+1,div + s(2)

l+1

=
∫

dx
[
2ξ(q̇5,l+1 + ż5,l+1)A∗A +
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+2ξ(q̇6,l+1 + ż6,l+1 − q̇5,l+1 − ż5,l+1)C
∗C

+(ξ q̇11,l+1 + ξ ż11,l+1 + q16,l+1 +
+z16,l+1)ψ

∗ψ + (ξ q̇11,l+1 + ξ ż11,l+1

−q16,l+1 − z16,l+1)ψ
∗
ψ

]
. (5.88)

It follows from the formulas (5.79)–(5.88), that the choice
of the parameters zi,l+1 in the form “Z”, “p”

zi,l+1 = zi,l+1,fin, zi,l+1,fin = −qi,l+1,

i = 5, 6, 11, 14, 15, 16, (5.89)

provides for zero-valued coefficients to the (l+1)-loop diver-
gences,

�l+1,div

∣∣∣
zi,l+1=zi,l+1,fin

= 0,

�l+1

∣∣∣
zi,l+1=zi,l+1,fin

= �l+1,fin. (5.90)

Notice that the choice of parameters zi,l+1,fin is unique
within the minimal subtraction scheme.

5.4 (l+2)-loop approximation

The renormalization of SR to the (l + 1)-loop approxima-
tion allows one to construct the effective action �, finite to
that approximation; however it does not satisfy exactly the
extended master-equation and the gauge dependence equa-
tion, by itself. We show the possibility to complete the renor-
malization constants of the action SR with the help of the
(l + 2)-loop approximation, so that it will satisfy the equa-
tions mentioned to the (l + 1)-loop approximation and, in its
turn, the corresponding effective action, finite to the (l + 1)-
loop approximation, will satisfy the set of Eqs. (2.21)–(2.25)
to that approximation.

Indeed, we represent the action SR as

SR = S[l+1]
R + ηl+2sl+2 + O(ηl+3), (5.91)

where S[l+1]
R is the actionSR with independent parameters

“Z”, “p” Zi replaced by Z [l+1]
i , and sl+2 is equal to

sl+2 = s(1)
l+2 + χs(2)

l+2, (5.92)

where

s(1)
l+2 = sθ,l+2 + s�∗,l+2 + sψ,l+2 + sAB,l+2, (5.93)

sθ,l+2 = z5,l+2�0θ , (5.94)

sA∗,l+2 = z6,l+2�0A∗ − z5,l+2A∂A�0A∗ , (5.95)

sC∗,l+2 = (z6,l+1 − z5,l+2)�0C∗ , (5.96)

sψ∗,l+2 = (z6,l+2 − z5,l+2)�0ψ∗ ,

s
ψ

∗
,l+2 = (z6,l+2 − z5,l+2)�0ψ

∗ , (5.97)

sψ,l+2 = z11,l+2�0ψ |1 − z5,l+2A∂A�0ψ |1
+(z11,l+2 + z15,l+2)�0ψ |2, (5.98)

sAB,l+2 = z14,l+2�0AB − z5,l+2A∂A�0AB, (5.99)

s(2)
l+2 =

∫
dx

[
2ξ ż5,l+2A∗A

+2ξ(ż6,l+2 − ż5,l+2)C
∗C +

+ξ(ż11,l+2 + z16,l+2)ψ
∗ψ +

+ξ(ż11,l+2 − z16,l+2)ψ
∗
ψ

]
, (5.100)

ż14,l+2 = ż15,l+2 = 0. (5.101)

Notice that the action S[l+1]
R satisfies the Eqs. (2.21)–

(2.25).
Further calculations and consequences from them do copy

exactly the results of the previous subsection with the natural
replacement l + 1 → l + 2.

Also, it is obvious that the procedure of divergence com-
pensations discussed can be applied to the case l = 0 so that
by using the loop induction method in Feynman diagrams
for the functional �, we arrive at the following statement: for
the l-loop approximation �[l], where l is arbitrary positive
integer,

�[l] =
l∑

n=0

ηn�n, (5.102)

of the functional � defined by the relations (4.1), (4.4),
there exists the uniquely defined parameters Z [l]

i , i =
5, 6, 11, 14, 15, 16,

Ż [l]
14 = 0, Ż [l]

15 = 0, ∀l ≥ 0, (5.103)

such that the functional �[l] does not contain divergences and
� satisfies the Eqs. (4.6)–(4.9).

6 Relations between parameters of SR and standard
renormalization constants

In that section we find relations between some parameters
of the action SR and the standard renormalization constants.
Within the expression for SR , we restrict ourselves only by
desired vertexes in symbolic notation

SR =
∫

dx
(
Z14Z

−2
5 ∂A∂A + gZ14Z

−3
5 A2∂A + Z11ψ∂ψ

+ mZ13ψψ + . . .
)
, (6.1)

where the ellipsis means the rest vertexes. As the propagators
of fields A and ψ are finite, they should be considered as
renormalized fields. Then, we find:

ZA = Z1/2
14 Z−1

5 , Zψ = Z1/2
11 , (6.2)

where ZA and Zψ are the renormalization constants of the
bare fields A0 and ψ0. The coefficient of the second vertex
in the expression (6.1) gives the renormalization for vertex
A3,

ZA3 = Z14Z
−3
5 ⇒ g0 = Zgg, Zg = ZA3 Z−3

A = Z−1/2
14 .

(6.3)
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The coefficient of the forth vertex in the expression (6.1)
gives the renormalization for vertex ψψ ,

Zψψ = Z13 ⇒ m0 = Zmm,

Zm = Zψψ Z−2
ψ = Z13/Z11 = Z15. (6.4)

It follows from the Eq. (5.103) that the renormalization con-
stants of physical parameters g and m do not depend on
gauge,

∂ξ Zg = 0, ∂ξ Zm = 0. (6.5)

7 Summary

In the present paper, within the background field formalism,
it is studied the renormalization procedure and the gauge
dependence of the theory of Yang–Mills fields interacting
with a multiplet of massive spinor fields. It is shown that the
extension of the Faddeev–Popov action with extra fields and
parameters allows one to establish the multiplicative charac-
ter of the renormalizability. The proofs given above are based
on the possibility to expand the effective action in loops, as
well as to use the minimal subtraction scheme as to elim-
inate divergences. It is a new and important result that the
renormalization constant of the mass parameter is shown to
be gauge-independent.
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