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Abstract Inthe paper, within the background field method,
the structure of renormalizations is studied as for Yang—Mills
fields interacting with a multiplet of spinor fields. By extend-
ing the Faddeev—Popov action with extra fields and parame-
ters, one is allowed to establish the multiplicative character
of the renormalizability. The renormalization of the physical
parameters is shown to be gauge-independent.

1 Introduction

When quantizing non-Abelian gauge field theories [ 1], whose
gauge transformations form a group, one is naturally based
on the Faddeev—Popov method [2]. It is a characteristic prop-
erty of the Faddeev—Popov gauge-fixed action that the latter
is invariant under global BRST supersymmetry [3,4], which,
in turn, can be expressed in the form of the Zinn-Justin equa-
tion [5] for the Faddeev—Popov action. At the quantum level,
the BRST symmetry as expressed in terms of the effective
action, implies the Slavnov-Taylor identities [6,7] to hold.
Further generalization as to the quantization of gauge the-
ories, including the cases of field-dependent structure coef-
ficients, as well as open and/or reducible gauge algebra, is
described by the field—antifield BV formalism [8,9]. In that
formalism, the effective action is BRST invariant by con-
struction, and thus satisfies the master equation which pro-
vides for the gauge invariance of the physical sector of the
theory [8,9].

An interest to the gauge dependence problem did appear
from the study of the effective potential, which appeared to be
gauge-dependent in Yang—Mills theories with spontaneous
breaking of the symmetry, when calculating physically-
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sensible results (the energy of the ground state, the masses of
the physical particles, and so on) [10, 11]. In Refs. [12,13] it
was established that the energy of the ground state was gauge-
independent. Later, it was proved [14,15] that in Yang—Mills
theories the dependence of gauge parameters in the effective
action could be described in terms of gauge-invariant func-
tional whose arguments (fields) were gauge-dependent (see
also recent Refs. [16,17] devoted to that problem as resolved
via the procedure of redefinition of the field variables, found
in [14,15]). Notice that in the general case of gauge theories,
a variation in gauge condition is described in the form of cer-
tain change of the field variables (in terms of anticanonical
transformations) [18,19].

Although there are many papers devoted to various aspects
of renormalizability of Yang—Mills theories, gauge depen-
dence of renormalization constants has been studied explic-
itly only as for the gauge field sector [20]. In the present
paper, within the background field formalism, it is studied a
multiplicative renormalization procedure and gauge depen-
dence as for Yang—Mills fields interacting with a multiplet
of spinor fields. It is shown that renormalizations of physical
parameters of the theory are gauge-independent.

The paper is organized as follows. In Sect. 2, it is dis-
cussed the action of Yang—Mills fields and spinor fields in
the standard approach and in the background field method; it
18 also introduced extended action, which leads in the back-
ground field method to a multiplicative renormalizable theory
of the fields considered; it is also studied the symmetry of the
extended action. In Sect. 3, it is established the structure and
the arbitrariness is described as for any local functional with
the quantum numbers of the extended action that satisfies
the same set of equations as the extended action. In Sect. 4,
the equations are derived for the generating functional of
vertexes (effective action), as a consequence at the quantum
level, of the symmetry property of the extended action; and
it is shown that the generating functional of vertexes satis-
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fies the same equations as the extended classical action. In
Sect. 5, it is studied the renormalization procedure of the the-
ory considered when using the loop expansion technique and
the minimal subtraction scheme; and thus the multiplicative
renormalizability of the theory is proved. In Sect. 6, the rela-
tions are found between the parameters of the renormalized
action and the standard renormalization constants of fields
and vertexes of the interaction, and renormalized physical
parameters are shown to be gauge-independent. Concluding
remarks are given in Sect. 7.

Condensed DeWitt’s notations [21] are used through the
paper. Functional derivatives with respect to field variables
are understood as the left. Right derivatives of a quantity f

with respect to the variable ¢ are denoted as f %.

2 Extended action for Yang—Mills theories

Let us consider a gauge theory of non-abelian vector fields
Aj, = A}/ (x) and spinor fields ¥; = V; (x),wj = Wj (x)
in the D = 4 Minkowski space-time with the action

1
Sym(A, V) = /dx( - ZGZU(A)GZU(A)

+i%y“DW,,~k(A)wk—m%wi), Q2.1

where the notations

Gﬁv(A) = 0, AT — avAZ + gfaﬂyAﬁA\]:,
Dy pji(A) = 9,8k + 815, A%, W = (¥, ¥/}
areused. InEgs. (2.1),(2.2) f @BY are structure coefficients of
a simple compact gauge Lie group, t* = {t;?‘k} are generators

of gauge transformations in sector of spinor fields satisfying
the properties,

[, 1P = foP7e7,

2.2)

)t =—17, [y*,t*1=0. (2.3)

Here y# are the Dirac matrices, g and m are the coupling
constant of gauge interaction and the mass parameter of
spinor field, respectively. The action (2.1) is invariant under
gauge transformations with gauge parameters wy = wgy(x),
SwSYM(A, \IJ) = 09

80 A% = (9u8up + gf 7P A%) wp = DI (A)wp,

Sl = —8tl nwp, 8oV = gt wp. 2.4)
The corresponding Faddeev—Popov action [2] Sl(pll)D =
SS},(A, v, C,C, B, &) in the Feynman gauge has the form

SO = Sym(A, W) +/dx<€a3MDZﬂ(A)Cﬁ

+BY9, A% + (s/z)B“Bo‘), 2.5)
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where & is a constant gauge parameter, C* = C%(x), c =
% (x) represent the Faddeev—Popov ghost fields, B =
B“%(x) are auxiliary fields introducing a gauge fixing con-
dition. The action (2.5) is invariant under global supersym-
metry (BRST symmetry) [3,4],

5. A% = DU (A)CPA, 8 = —g1% Y C¥h,
SV = g, Coa,
5.C% = %f‘”ﬁycﬁcm 85.C" = B*%, 8,B* =0,

(2.6)

where A is a constant anticommuting parameter.
In the background field formalism [22,23] a gauge field

Aj, entering the classical action (2.1) is replaced by A, + 5,

Syu(A, V) — Sym(A+ B, V), 2.7

where B} is considered as an external vector field. The
Faddeev—Popov action is constructed by using the modified
Feynman gauge (the background gauge condition), and reads

S =Sym(A+B, \I/)+/dx (E“Dgy B)DIF(A+ B)CF

+B* D (B)A% + (E/Z)B“B"‘). (2.8)
This action is invariant under BRST transformations of the

form (2.6) with the following modification of the transfor-
mation law in the gauge field sector,

85, A% = DY (A + B)CPa. (2.9)

The invariance property of Faddeev—Popov actions (2.5)
and (2.8) under BRST transformations can be described in
the form of non-linear functional equations for the extended
action S,y; with the help of additional variables (antifields)
Al*f‘, ;‘, Wj, c*e, E*a, being sources to the generators of
BRST transformations,

sty =+ [ax(eRG +T5). a=12
(2.10)

where Q means the set of the fields {A% , v/}, E It C%}and the
symbol Q* is used to indicate the set of the corresponding
antifields for fields Q, wherein the BRST transformations
(2.4), (2.6) are presented as §, Q = Rg)k, a = 1, 2. Then,

as a consequence of the BRST symmetry, the actions SE(Q
satisfy the master-equation

P
852556* 552) =0, a=1,2.
@.11)

S s
[ ax(s 55 50t
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To study the structure of renormalizations it is convenient
to extend the original set of the variables with extra fields and
auxiliary quantities. Aninitial action, we proceed from, when
studying the structure of renormalizations and dependence
of renormalization constants on gauge fixing is the extended
action Sey; = Sex/(Q, OF, E, B,B.£,0, x).

Seos = Svu(4+ B.9) + [ dx 0'Rg

+ / dx (6" DY (B)D}F (A + B)CF

+BDiF (B) A, + (é/Z)B"B"‘>

+ f dx <9g (DY (A + B)T” — A%

XA — DI (BYCT) A% + C*C + y iy
(2.12)

+W;W;]>,

where 0/‘1‘ = 9,‘1‘ (x) are anticommuting extra fields and y is a
constant nilpotent parameter. !

The action (2.12) is invariant (6S.y; = 0) under the fol-
lowing transformations of the quantities entered,

8A% = DYP(A+ B)CP + 0% = —— Sex + x A%, (2.13)

(SA*Ol

1
85" = —2[ D} (B)DY# (A +B)CP + D (A + B0}

+x D (B)AR] — x B
13
= g 5o e — xBY 2.14)
5CY = %f“ﬁVCﬁCV = g Sewt — X C°. (2.15)
_ 1 B
§C” = —ED‘;‘L'S(B)A‘Z +xC" = ~5 757 — Sext + B
+xC", (2.16)
5%‘ = _gt;lkaCa = &ﬁ* — Sext — ij, (2.17)
"N T o 4 e
8 =gy C° = 8T*Sext - Xv;, (2.18)
j
SAZO[:XA*O[, (SC*‘IZ—XC*O(, 81#7:_)(1#7’
S =—xV, (2.19)
86 =26y, SBY=—0, 80%=0, Sx=0. (2.20)

' These extra variables have been used first in Ref. [20].

Due to the variations (2.13)—(2.20), the invariance condition
of the action rewrites

<«

) 1) 1)
dx SextSQSQ*Sex _Bﬁsext_eﬁsext

— 4 )
/dx[Q—Q -0 5Q* - CE - BE]Sext

ad
+2x§£Sext =0. (2.21)
Also, the action (2.12) satisfies the equation
<«
SextH*wq =0, (2.22)

where the notation

<~ <—

_gt;tk (W’)ﬁk (SE* I#k)

(8_ <—
<81//, Vi + 507 ka)t,‘g‘j}wa}, (2.23)

is used for the operator describing the gauge transformations
of the variables B,,, ¥, J and simultaneously the tensor trans-
formation of fields and antifields A, C, C, B, O, Aﬁ, v,

W*, C*. Finally, we notice that the action (2.12) satisfies the
two important relations linear in fields A, B and also in
derivatives of variables B, C, AZ,

1)
5pa Sext = DY (B)Af + B, (2.24)
1) 1)
Daﬁ(B) Sext 5€a —g Sext = —gf“ﬂ”Aﬁejj. (2.25)

The Eq. (2.25) means that the action S,,; (2.12) depends on
variables A:‘L“ “Z”,“p” C” in combination A:‘f‘ — D,Ojﬁ (B)fﬂ
only when 0f = o.

We give the table of “quantum” numbers of fields, anti-
fields, auxiliary fields and constant quantities which have
been used in constructing Sey;:

@ Springer
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Quantity A B v, c,C B £ 0 A* VA Cc* dx EN X
e 0 1 1 0 0 1 1 0 0 0 0 1
gh 0 0 1,—1 0 0 1 —1 —1 -2 0 0 1
dim 1 3/2 1 2 0 2 2 3/2 2 —4 1 1
£f 0 1,—1 0 0 0 0 0 —-1,1 0 0 0 0
where “e” describes the Grassmann parity, the symbol “gh” we define new functionals P®) by the rule

is used for the ghost number, “dim” denotes the canonical
dimension and “¢ s means the fermion number. Using this
table of “quantum” numbers it is easy to establish quantum
numbers of any quantities found in the text.

3 General structure of renormalized action

It is to be proved below that the renormalizable action is
a local functional of field variables, carries the quantum
number of the action S,..; (2.12), and satisfies the same
Egs. (2.21)—(2.25) as the action Sy;. In that Section we will
find the general solution to the Egs. (2.21)—(2.25) under the
extra conditions mentioned.

So, let

= /de(x),

where P (x) is a local polynomial in all variables Q, Q*, C,
B, B, &,0, x withdim(P(x)) = 4. Require the functional P
to satisfy the Eqgs. (2.21)—(2.25) with substitution S.; — P,
and let P be of the form

3.1)

P="Po+ PV 4+ xP?, (3.2)
where
3
Py = /dx <B“Dgﬂ(B)Aﬁ + EB“B“
By ABEY
+g0), [T A, C > (3.3)
e(PMy =0, gh(PV)=0,
dim(PM) =0, ;P =0, (3.4)
e(PP) =1, gh(P®)=—1,
dim(P?) = —1, e,((PP)) =0, (3.5)

and the functionals P! and P® do not depend on x. It
follows from the Eq. (2.24) for P, and representation (3.3)
that P and P@ do not depend on B*, “Z”, “p”,

PO — p® o 0* C B, E0), k=1,2, (3.6)
By introducing new variables AJ¥ (x),

— A _ peB Ry’ —
A = A — DU (B)C", A% = A, 3.7)

@ Springer

PP = po(Q Q* B,C,£,0) (3.8)
=PY(Q, 0", B,C.£,0) o, g pyer k=12,

to find that P® do not depend on the fields C ‘,
PO = pO(Q, Q% B £,6). (39

In the relations (3.8) and (3.9) the following notations

(A ¥ 9", C%)
(3.10)

={A Y. ¥,C), A=A, Q" =

are used.
Independence of functionals P® of the fields C“ and
relations

<«
8 Ay
SA*ﬁ n

5
{ Dfe(B) + g7 *ﬁA;;V],
A

<«
5 —
P(") Dﬂ“(8)+gfﬂ7“ —C +
58 s
p.

(3.11)

allow one to write down the following set of equations as for
P,

<
dxl PO 8 sy _pe ® |,
5Q 50 " 3B :

<~ <«
Qgiﬁ(l):/dx pn(2 8 8 8 )\
o 5280 597 602
5
@
_egaBaP }

8 5\ ~
dx| | * -Q— | pD 3.12
of (5 - 255) 7] o

=
POy, =0, k=1,2, (3.13)
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where
< B
h*wq = /dx{[—ﬁDga(B)
8B,
+gf/3V<¥ EAV +Ecy
(SA,’i miu " sCB
<~ <« <«
8 ) )
Bya A¥Y ¥+ — 97
<~
—e (O (3.14)
g jk 81#] k .

<~ <« <~
R
Yk 8\ o Vi 5 Vi Jlkj |@Po (-
8 8Y Sy
When studying the structure of functionals and further inves-

tigating it appears useful a consequence of the Eq. (3.13) at
wy = const,

o =
pOTY —0, k=1,2,

(3.15)
where
- S by S
T% = /dx{fﬂy"‘ (—B{L +—5 AL+ —CV>
5B sAD sch
5 S S
+fﬁy"‘< A+ C* + —9V>
sA;PT T aCH sof
S 3
—14 <—1ﬁk + T$*>
Jjk awj 51//;5 k
<~ <~
+( ) Y+ ) w*)ﬂ} (3.16)
8%1 k (Sw]* k )kj (- .

We refer to equations of the form (3.15) as the ones of the
T-symmetry for the corresponding functional.

Using the properties of the functional P@ (3.5), its local-
ity as well as axial symmetry, Poincare- and 7- symmetries
we find the general representation,

J O fdx[zlA;‘;"Af; + ZoCCY + Z3YT Y,
+ZaV T+ z;A;“Bl‘j}, (3.17)
where Z;,i = 1,2,3,4,“Z2”,“p” Zi are arbitrary constants.

Further, when using the Eq. (3.13) for PP we get that Z| =
0. The final expression for P@ has the form

PP = / dx [ZlAZ‘)‘Aﬁ + Z,C*C®

+Z3y iy, + ZJJ.*EJ}. (3.18)

Notice that the functional P® does not depend on the fields
9,‘1‘. By taking (3.18) into account the Eq. (3.12) reduces to
the following one

0 = 8 8
— p _ _ o _ pra
2& 3§P /dx|:(zl 1)<AM8Aﬁ ‘AM 5./421“)
o« 0 a0
—i—(Zz—l)(C ﬁ—c W)

1) 1)

(3.19)

describing the dependence of renormalization constants on
the gauge parameter £&. We refer to the Eq. (3.12) as an
extended master-equation and to (3.19) as a gauge depen-
dence equation.

3.1 Solution to the extended master-equation

Now we consider a solution to the extended master-equation
(3.12) for the functional P( as presented it in the form

PO =BV + PG + PV + P (3.20)
The functional f’em rewrites as
BV = /dx 0% (x) P (x), 321

and the functionals 13223 f’ll(fl), 135(21*) do not depend on the
fields ¢;. By taking into account the properties dim(ﬁl‘fe) =
2, gh(P%) = —1,8(P%) = 1,67(P%) =0, as well as the
Poincare- and T-symmetries of the functional Pe(l), we find
that

PYy = —Zs A, BV = —Z5/dx 0% (xX) AT (x)

oA (3.22)

= —Z5/dx 0% A**

where Zs is an arbitrary constant.
The functional Pél*) islinear in the antifields * (3.10), and

the functionals f’;% and 131/(/1) do not depend on the antifields

Q*. The functional 135(21*) can be represented in the form

500 _ 3, s, ), (D
Py = P+ PC) + P 4 POY. (3.23)

@ Springer
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By using the arguments analogous to those led us to the struc-
ture of the functional Pe(l) (3.22), we obtain

P = / dx [26,4;;“1)3/3 (B)CP + g7, A Al CY

+gZ/7°/‘3},AZ°‘BI€CV}, (3.24)
. g
Bl = f dx Ezg‘ﬂyc*acf‘cy, (3.25)
By = —/dx 8Z8 Vi C, (3.26)
PY = [ ax gz, ¥y .C* 3.27
il 8Ziowi ¥ j¥iC. (3.27)

Taking into account the gauge symmetry in the external field
B (see the Eq. (3.13)), we find that Z;"}gy = 0. The quantities
“Z” introduced in (3.24)—(3.27) are constants that satisfy the
equations,

oz, — 28 sFe = P25, (3.28)
4 Zhsy — 2o Pl = [P 73, (3.29)
19 Zy — 2oyt = 1 2. (3.30)
020y = Ziowtl; = £ Zy- (3.31)

Notice that if Z5,, = Z7f7*%, Z§ , = Zsf"*", Z§; =

th;?‘k, Z‘I"Ojk = Zlot;?‘k, then the corresponding Eqgs. (3.28)-

(3.31) hold and the functionals Py, PE. Py, PYY (3.24)-
(3.27) satisty the Eq. (3.13) by themselves.

In its turn, taking into account the axial symmetry, the
Poincare- and the T-invariance we determine the general

structure of the functional 151/(/1) R

Py = /dx [izn%y“DW(B)x/fj

igZ 0y B +

HigZ% U Y ALY — mzlﬁ,»wj], (332)
where constants Z{, ik satisfy the equations
B B Y
152 — Ziojilic = faﬂyzlzjk' (3.33)

P
The contribution to the Pll(fl)h“a)a, proportional to 9, w*, has
the form

igV ; Z\1 jur M vdp o, (3.34)

@ Springer

so that it follows from the Eq. (3.13) that the equalities
VA jx =0and

Py = f dx [z’zn%“DmB)w +igZ% W v A

—mZis ¥ j] (3.35)

hold. Notice that in the case Z¢, K= Z 1zl,?j the Eq. (3.33) are
fulfilled and the functional P} (3.35) satisfies the Eq. (3.13).

Insert the representation for the functional 2! in the form
(3.20) into the Eq. (3.12). Then, analysis of the 81 com-
ponents in the extended master-equation (3.12) yields
Zhp = Zuotly, Zn=Zu/Zs, (3.36)

and the possibility to represent the functional ﬁx/(/l) as

5(1 = _

Pyl = fdx i Z1y ;" Dypjxc U —mZi3y ;9]
(3.37)

where the notation

U={U}, UY=2Z;'A%+B% (3.38)

is used. The 6.4*C components in the Eq. (3.12) lead to the
relations

Zs
Z8,, =271, 727 =", 3.39
78y 7f 7 Zs ( )
and to the representation
Py = / dx Zg A D (U)CP. (3.40)

Consideration of the A* ACC components in the Eq. (3.12)
gives the relations

Z8s, = Zs PV, Zy=7Z7=22, (3.41)

and the representation for the functional 138) in the form

~ Z

BY = [ dx EZ8 peby e by (3.42)
2 Zs

Studying the Y dC, ¥ BC and myryy C components in the
Eq. (3.12) lead to the relations

Ze
Z%0jk = Zsji»  Z5ji = Zot5y, Zo= Zs’
Zg
7o = L6 (3.43)
10jk Zs jk
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and, as a consequence, to the representation of the functionals

1552 and pU Z as
v

o Z
a1 _ 6«
B = —/dx 85 VitfCe, (3.44)
~ 726 — —
a 6 —
PE* = /dx gZ—5 I[/j t,‘j;lka“
Z6 —_ —
= /dx 8. vt C°. (3.45)

The functional f’ﬁé depends on the fields A and B only.
The 6 AB components in the Eq. (3.12) allow us to conclude
that the functional Pﬁ‘% depends on the fields .4 and B only
in combination (3.38),
PYA(A, B) = X (U). (3.46)

Finally, consideration of the ABC components in the
Eq. (3.12) leads to equations for the functional X (U) (3.46)

DY (U) X(U)=0. (3.47)

Ul (x)

The required solution to the Eq. (3.47) can be written in the
form

. 1
PYAB) = X(U) = —/dx 7214 G ()G, (U),

(3.48)
where
G, (U) = 9, U — d,U% + gf*Pruliuy. (3.49)

Thus the general solution to the extended master-equation,
PM s constructed. It is defined by fifth independent arbi-
trary constants Zs, Z¢, Z11, Z13, Z14 and has the form

. 1
p — fdx|: - sz G, ()G, (U)

—l—iZnWjV“Dij(U)Ilfk - mZ]3Ejl//j
—ZsOL A + Ze A DYP (U)CP

V4 e
+gz—§(f“f’yc*“cf’cy + V10 C”

—w}‘tj‘kwkca)]. (3.50)

Noticethatat Z) = Zr, = Z3=Z4s =Z5s=Z¢ =711 =
Z13 = Z14 = 1, the equality (the initial condition),
Pz—1 = Sext, (3.51)

holds where S,,; is given by the formula (2.12).

3.2 Solution to the gauge dependence equation

Consider now a solution to the Eq. (3.19) describing the
gauge dependence of the constants entering the general
solution constructed, 13(1), to the extended master-equation
(3.50). By studying the A*0, AD(U)G(U), A* f AC and
Yyt Ay structures in the Eq. (3.19), we derive the following
relation

) Z
2%7s=—(Z1—1Zs = Z1 =1~ 252—5. (3.52)
5
Henceforth we use the notation
. B
1=—1, (3.53)
23
for any quantity I = [I(&,...) depending on the gauge
parameter &.

Analysis of the A*D(U)C components in the Eq. (3.19)
gives the relation
: Zs Zs
286726 =(Zr —Z1)26 = Zo=1+4+2&| — — =— ).
Ze Zs
(3.54)
Considering the ¥y Dy (U)y components in the Eq. (3.19),

we obtain
26711 = (Z3+ Zy — ) Z11. (3.55)

Analyzing the my components in the Eq. (3.19), we find

26213 = (Z3+ Z4 — 2)Z13. (3.56)
By making use of the change of constants “Z”
Ziz=72ZnuZis, Zz—Zs=2Zs, (3.57)

the Egs. (3.55), (3.56) rewrite in the form

. Zn Zn
Zi5=0, Z3y=14+E—+Zi5, Zs=14+E——Zs.
Z1 Z11
(3.58)

Finally, consideration of the G(U)G(U) components in the
Eq. (3.19) leads to the important statement that,

Zia = 0. (3.59)

Analysis of the Y*1C, ¥ ' C and C* fCC components
in the Eq. (3.19) gives no new information.

Below, in Sect. 5 find that all constants “Z” can be
interpreted as renormalization constants which are uniquely
defined from the conditions of divergence elimination.

Let us formulate the results obtained in that Section in the
form of a lemma.

Lemma Ler

P = /de(Q, 0*,C,B,B,&,6, x), (3.60)

@ Springer
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be a local functional of all variables, obey the quantum num-
bers of the action Sex; and satisfy all Egs. (2.21)—(2.25) as
well as extra symmetries (Poincare-invariance and so on)
which have been used in solving the Egs. (2.21)—(2.25) with
substitution Sex; — P.

Then the functional P has the form

P=Py+ PV 4 xP?, (3.61)

where Py is given by the formula (3.3), PD and PP do
not depend on B* and y and are functionals of arguments €2,
Q*s 87 69 €9 93

P® =pPN(Q, 0*.C.B.§.6)=PY

= PP, Q" B,C,£0), k=12, (3.62)
Q={A V.V, C}, Q ={A*y* Y, C*  (3.63)
A = A% — DU (B)C’ | A% = A% (3.64)
The functionals P® read
PV = |4 1z G% (U)G* (U
= | dx| = 7Zu w6, (U)
+iZ11Y jy" Dy uji(U) Y —mZi3y
—Zs0% AR + +Ze A2 DSF (U)CP
Z6 (japyrachor L G e
85 (r#r crecter + i
- wj»‘t;?‘kmC"‘) } (3.65)
p@ — /a’x [ZlAZaAZ + Z,C*C* + Z31,h;-<1/fj
+z4wj7,~]. (3.66)
—1
U={U}}. U=2z;'"A%+B2, (3.67)
Zs Ze ZS)
Z=1—2—,Z:1+2 — - — ],
1 $Z5 2 $<Z6 2
VAT Z1
Zy3=1+&E——+Zi6, Z4=1+&E-——Z15, (3.68)
Z11 Z
Ziz3=721uZis, Zis=0, Z;5=0, (3.69)

where Zs, Z¢, Z11, Z16 are arbitrary constants depending
perhaps on &, and Zj4, Z15 are arbitrary constants not
depending on .

The inverse statement, being perhaps trivial but neverthe-
less important, is true: if the functional P has the form (3.61),
(3.62), (3.65), (3.66) and the relations (3.67), (3.68), (3.69)
are fulfilled then this functional satisfies the Eqs. (2.21)-
(2.25).

@ Springer

4 Generating functional of vertex functions

It is convenient to define the generating functional of Green
functions by making use of the action functional P con-
structed in the previous Section as the action yields then
a finite theory certainly. In what follows we re-denote the
functional P, P = Sg, and, respectively, P®) = Sg‘),
PO =30 k=12

The generating functional of Green functions is given by
the functional integral,

Z(Jo,L) = /dCDexp <%|:SR+J<[>CD:|)

exp {%W(JCD, L)},

“.1)

with 7 standing for a parameter of a loop expansion as to
the expression in the exponential in (4.1), W(Jg, L) that
is the generating functional of connected Green functions,
and the notations are introduced ® = {Q, C, B} “Z”, “p”
L = {LA) = {B, 0*,&,0, x}, and Jp as for the sources
to the fields ®. Also, we assume that all the constants “Z”
are functions of n, “Z”’=“Z"(n), expandable in Taylor power
series, Z;(0) =1, Z; = O(n), i =5,6,11,14,15, Z1g =
O (n). In that case the functional Sk becomes a function of
n,

oo k
Sk =Sk =Y u'Sks. Skl =Y n'Sku. 4.2)
=0 =0

so that all the functionals Sg; are linear combination of a
single set of monomials,

1
Sri1 = Z aiSi,
i=1

where {S;,i = 1, ..., I}is asub-set of monomials which the
action Sy, is expanded in, and a; ; are constant coefficients
for [-loop order.

The generating functional of vertex Green functions
(effective action) is defined by the Legendre transformation

4.3)

1)
Dy = —W(o, L),

(@), L) = W(Je, L)=Jo Py, 57

4.4

has the quantum numbers ¢(I") = 0, gh(I") = 0, dim(I") =
0, e7(I') = 0, and satisfies the relations

<«

)
I'(®,,, L = —Jo (D, L),
(D) )SCDm‘ o (P, L)

<« <«

8 8
L(Dy, L)SL_A = W(Jo, L)(SL_A . 4.5)
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Functional average of the Egs. (2.21)—(2.25) with substi-
tution S,y — Sg yields the corresponding equations for the
functional I' = I'(®,,|, L), copying the equations for Sg,

35 5 5
/dx<r——r—3m| 2 r-e-r)
50m 50 5Co 3B
8 *
+2X$?F+X/dx[<Q’”'an e aQ*
_6;7,‘_——

) )
By — |I'| =0,

%
FHZla)a =0,

(4.6)
A7

<«
where Hg‘wa is given by the expression (2.23) with the
replacement ® — @,

8

SBE r= D""s(B)AmIM + By, (4.8)
8
D% (B) — — T =—gf*val or 4.9)
|
5A*ﬂ 5C,, i
Represent the functional I' in the following form
[ =Tg+ TP+ xr®, (4.10)

where

mlu
4.11)

Foozfdx< m‘D(B)A,M—}—iB ‘+g9afaﬁyAﬁ C )

and the functionals I'") and I'® do not depend on the param-
eter x. Due to the structure chosen for the functional (4.11)
it follows from the Egs. (4.8) and (4.9) that the functionals
I'D and '@ do not depend on the fields B

m\’

1) —
MF(“ =0, I'® =1®(Q,, Cy, B, 0%, 5. 6).
k=1,2, (4.12)
and satisfy the equations
b 3 S \rw
D (B)—_7 r'“'=0, k=1,2, (4.13)
5A*ﬂ sco

In its turn, the Eq. (4.6) splits in the two, one of which is
closed as for the functional 'V,

<
5 8 5 &
de|l T2 % pM) _ gge paby r®
/x[ 8Qm| 8O $0ut "sATY
b
93550! 1“(1)} =0, (4.14)

and the second includes both the functionals and describes
their dependence on the gauge parameter &,

<«

e
zgir(l)zfdx rof 88 8 5 \o
8‘5 SQm\ SQ* SQ* SQmI

_ pyh O § \r@
<g9afa yc’”‘aA*V +9388a>r }

+/dx|:<f  _ 0 5
m‘86m| MISQmI

(1)
o SQ*) }

The Eq. (4.7) rewrites now in the form of the two equations
as for the functionals ' and I'®,

(4.15)

*) Fa
r®nt wy =0, k=1,2, (4.16)
where
- 5
he oy = fdxi[—ﬁDﬁa(B)
8By,
B s
+gfﬂ”(—ﬁ A+ —F CL.)
8Ami 8Chy

by s 5
A Doy g )
sAif T sC *’5 sof "

5

+gfﬂya( —5 6;\ +
3 m|

<~ <—

1)
_gt;(k((sw ’ﬁmlk + é‘@* Wk>

B B
oy o )i

As for the Eq. (4.13), it is convenient to introduce the

4.17)

variables A7 = A7% (x), Amm = ;“n"“ﬂ(x)
A*Ol _ A*C{ _ Daﬁ (B)E'B A*Ol Daﬂ(B)C
W " ’ mlu - m|>
(4.18)
and to use the following convention
Afj = AZ, (4.19)

as for the sake of uniformity. Also, introduce the new func-
tionals ' by the rule,
OB, Cpy, A

m|»

Aml)

(3!
=T (B, Cm\y A* , Am\) A*”AfnﬁDzﬁ(B)fﬁ,\’ (420)
where the notation
A={0.¥* ¥ , C* & 0),
A = { Q. ¥*, ¥, C*, &, 0) 4.21)
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is used. With the definitions (4.18)—(4.20) taken into account,
we have

b s -
——TW = —T®, (4.22)
A SAX

§ ~_ b rw pasiry_ S Rmm
— T = — T+ DI (B)— T, (4.23)
8Cm\ m| mp

) 5 - _ 5 -

k) _ *) By P )
s = s T - e e T,
I " m|
k=1,2. (4.24)

Then, we find from the Eqgs. (4.13), (4.20), (4.22), (4.23) that

Lp(m 0.
5C

(4.25)

the functionals f‘(k), k = 1,2, do not depend on the fields
(04

C

ml>
0 =1®Q,, . B.£,0). (4.26)
Henceforth we use the notations
Q) = {Amls Ymls Ymps Ct)s A = A,
Qb ={AN VYL CY k=12 4.27)

Now, with (4.20), (4.26), (4.27) taken into account, the ones
(4.14), (4.15) rewrite in the form

1 o~y = 5\ ~
E(F(l),r‘(l))—/dx<9%)1"(]) =0, (4.28)

26 0P — (RO, FO)
0

+ [ ax(2 5 - iz JEO
’"'59;;‘ 8|

5§\ ~
— [ dx(6— |T?, 4.29
fax(73%) @2
where the notation for the antibracket [8,9] is used,
<« P
1 ) 8 8 )
(F,G)==F | dx — G
2 3y 89;‘” BQ;“M 3y
(4.30)
Further, with the relations (4.20), (4.26) and
&
r® / dx[ e (B)
86
S S
+gfﬁw< —CI + A*”)] (4.31)
5C51| m| SA*ﬁ "
s s
= f(k)fdx[ DE(B) + g fFre AT }
B mlu
88# ‘A:ﬂu

@ Springer

we find that

<~ NP
FrOne w, = O 0y =0, k=1,2, (4.32)

—
where the operator h(rxn|“)a is defined in the equality (3.14)

with the replacement Q — Q,,), Q" — Q:;u'

Then, when studying the tensor structure of divergence
parts of the generating functional of vertexes, it is convenient
to use a consequence of the Eq. (4.32) in particular case
wy (x) = const, i.e. as to a global 7,,,-symmetry:
(k) Yo
8T, =0, k=12, (4.33)
where the operators T°‘ are defined by the Eq. (3.16) with
the replacement Q — Qm‘ Q* — Q*

5 Renormalization

In that section we study the structure of renormalizations, and
show the multiplicative character of the renormalizabiliuty
of the model considered. The main role in that study is given
to resolving the extended master-equation (3.12) and the one
(3.19) describing the gauge dependence. We show that the
renormalized quantum action and the effective action satisfy
exactly their master equations to each subsequent order in
loops. In this resolving, the structure of the renormalized
quantum action is determined by the same monomials in
fields and antifields as it does for the non-renormalized quan-
tum action with constants determined by the divergencies of
the effective action. For the sake of notational simplicity, we
omit lower case m| of any arguments of any functionals.

5.1 Tree approximation (n = 0)

Consider the tree approximation for the functional I', 'y =
Sext, Written in new variables as

Fo = oo + I + x T, (5.1
r = f0, r® =2, 5.2)
where

& —_
o= f dx (B“Df;ﬁ (B)A[i+ 2 BYB*+ g0 fer ALCT )
(5.3)

Represent the functional f‘(()l) in the form
~(1
F(() ) = Tgg + Fogs + Loy +Touas,
Coy = Toyi + Toyp,  Togr = Foax

+Tocx + Loy + F()E*’ 5.4
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where the following notations being further useful

Top = / dx A%0°, (5.5)
Fo = / dx A% PP (A + B)CP, (5.6)
Toer = f dx% by crachey, (5.7)
Loy = —/dxgl//}(f?[kwkca,
oy = / dx gy 0, C°, (5.8)
Coy1 = /dx [(Vy"Dyu(A+ By],

Foy = —m / Gy, (5.9)
Foas = — / dx — G},,(A+B)G},,(A+ B), (5.10)

are introduced. In its turn, the functional 1:‘(()2) has the form

I = /dx [AZ“A;‘j + CHC + YTy +E;"E}-] :
(.11

Remind that the functional 'y satisfies the Eqs. (2.21)—(2.25).

5.2 (1+1)-loop approximation

We carry out the proof of the multiplicative renormalizability
via the mathematical induction method in the framework of
loop expansion of the effective action with the use of the
minimal subtraction scheme. To this end we suppose that we
managed to find such parameters Z l.[l],

zI = Zn Zin, i=5,6,11,14,15,16,
n=0
Zyi =23 =0,
[l]
1—2g—
5

(7] 5[1]
Z Zs
14 2¢& ——m
Z Zs
5]
Z 1
1+e= 4 70—
[ 16
Zy

Z[1[] + 0(],’l+1)7
I+ o,

!
g] + 0(771-0-1)7

[l]

1+§ AT

l
[,] z{' + o',

(5.12)

that the /-loop approximation for I', T/ = Y _ T, isa
finite functional. We are to show that it is possible to pick up

the [ 4 1-loop approximation for Z;,

Z = Z,!” +zi41 + O,

214,141 = 215,1+1 = 0,

i=5,6,11,14, 15, 16,
(5.13)

which does compensate the divergences of [ 4 1-loop approx-
imation for the functional I
Represent the action Sg in the form

Sg=SW 44+l + 0D, (5.14)

[

where S5’ is the action Sg with independent parameters Z;

replaced by Zi[l], and satisfying the Eqs. (2.21)—(2.25), and
the functional s;41 reads

2
Si+1 = S1+1 + xsl(+)1 (5.15)

For the functional sl +1 we use the representation

Sl(i)l = $,0+1 T 5Q* i+1 + Sy i+1 T SABI+1 (5.16)
where

sg.1+1 = 25,1+10 00, (5.17)
SA* 141 = 26,0+10 04 — 25141404 04, (5.18)
scxi+1 = (z6,1+1 — 25,1+ 1) 0c*, (5.19)
Sy i1 = (26,141 — 25,1+1) Doy,
Sy i1 = @61 — 254D g+, (5.20)

sy 1 = 211041 Doy — 25,4149 4T oy 1

+ (11041 + 2150+ D oy 2, (5.21)

sAB+1 = 214141048 — 2514149 4T 0 4B- (5.22)

In its turn, the functional s, +)1 has the form

Sz(i)l = /dx[2525,1+1v4*¢4+ 28(26,141 — 25041)C*C
+ECi1141 + 2161+ DV Y +

+e G — 26V T | (5.23)

Here (and below in this section) we use the abbreviation to
denote the variational derivatives of the kind

LI (5.24)

8 8

when it does not cause an ambiguity.

Let us study the structure of the functional I" with the accu-
racy including the (/ 4 1)-loop approximation. It is described
by the diagrams with vertexes from the action Sg with param-
eters zj n, i = 5,6, 11,14, 15,16,0 < n <[+1, or, in other
words, by vertexes from the action S %] and from the summand
s;+1- As we are interested in diagrams of the loop order not
higher than /41, the vertexes from s;4.1 cannot appear in loop
diagrams, i.e. vertexes from s;41 give the “tree” contribution
to I', equal to nl+1sm|,1+1. Other diagrams are generated by
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the action S%]. Let F(S%]) be the contribution of those dia-
grams into the functional I, i.e.

T =TSE) + 0 s + 0. (5.25)

As the functional S%] satisfies the Eqgs. (2.12)—(2.15), the
functional F(S%]) satisfies the same equations with the
replacement Q, C, B — Qp, Cyy, B

Represent the functional F(S%]) in the form

I(Skh = oo + T (SEh + ¥ @ (sgh, (5.26)
By repeating the calculations of Sect. 3 we find that
r® (YO Ty B. Q*, By, £.0) = D
(W9, Q% BLE,O), k=1,2, (5.27)

and the functionals ['® (SU)) satisty the Eqs. (4.28), (4.29)
and (4.32).

Represent the functionals r® (S%]) in the form of sums of
divergent and finite (after removing a regularization) parts.
Taking into account that the functionals f‘(k)(S%]) are, by
assumption, finite to the n-loop approximations, 0 <n </,
we obtain

f(k)(S%]) _ f(k)(S%])ﬁn i Ul+lf(k)(sg])l+1,div
+0(n'*?), (5.28)
L = DS + 1 [TSan + 5041
+0(n'*?), (5.29)
TS rnav = FO S 1 aiv
+xT SR 141.aivs (5.30)

so that the functionals ['®) (S%])H] div are local ones of argu-
ments with the quantum numbers of the action S,; and con-
tain divergent terms only (the minimal subtraction scheme).
Then, as a consequence of the Egs. (4.28), (4.29) (4.32), they
satisfy the following equations,

(Fo, TSUH®D )

[+1,div
S\ -
Jalesg)rsbitn = sa
TN (D) =) =l (2)
2$—§F(S )l+1,div == (F() ) F(SR )l+1,div)
(F(z) F(S%])ﬁ-)l,div) (5.32)
4 [11,(2)
/dx(G%)F(S )H—l,div
S 8 SN
/dx( msQr _Q’”'m)r(SR L
<
F(S l])l(i)l div h*we =0, (5-33)
Fesh®  Fa_ o r—12 5.34
SgisranT" =0, k=1,2. (5-34)

@ Springer

Notice that the form of the Egs. (5.31)—(5.34) does not depend
on the label /.

By taking into account the quantum numbers, axial-,
Poincare-, T-symmetries, the general expression for local

functional I (S%])l(i)l giv- reads

1:(5%])1(«231,&\/ Z/dx<f11,z+1«4*«4+612,1+1C*C

+ @301V Y +qa 410 *W+41,1+1A*B)’
(5.35)

where g 11,1 = 1,2,3,4, “Z”, “p” g} /41 are arbitrary

constants. Then, by using the Eq. (5.33) for NS [l])[(i)l div> W€

2

find that q1 41 = = 0. The final expression for F(S )I—H div

has the form

= 2
F(S%])l(—i-)l,div = /dx(t11,z+1¢4*«4+612,1+1c*c

+q3,1419* Y + qa i1V >7> (5.36)

2

Notice that the functional l:‘(S%]) Ir1.div

the fields 6 and B.
With the expression (5.36) for I' (S%] )1(-21-)1,div’
reduces to the following one,

—/dx [41,1+1 <«4a -A 8A*>
Ci Cc* 5 —
oo | C5a—Crs o ) Tasa W{W o 51#*

— 4
— 5.37
+q4,141 (Vf(w 57 (5.37)

does not depend on

the Eq. (5.32)

NG
2’5%1_‘(5 )1+1 div

5.2.1 Solution to equation (5.31) for f‘(S%])l(-li—)l,div

Consider a solution to the Eq. (5.31) for the functional
FI(BI div = r(sgl),“ﬁl’ giv> represented in the form,

1
F1(+)1 div = Mo i+1+ Mo 141 + My 141 + MAB 141,
= Mg« 141+ Mcx 141 + My 141

+M$*J+1'

Mo« 111 =
(5.38)

With this aim, we find first the general form of the functional
Fl( +1.div? using the locality, the quantum numbers, axial-,
Poincare-, T-symmetries and partially the gauge symmetry
in the external field B. In fact, all required calculations do
copy ones performed in Sect. 3 when constructing the gen-
eral form of the functional P! [see formulas (3.21)—(3.35)
with the obvious replacements like f’gl) — Mpy]. Here, we
reproduce the final results only. The functional My ;41 has

the form
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Mo 141 = g5.1+1 /dxAZ"(x)@l‘j(x) =qs5.141 /dxA*@.

(5.39)
For the functionals linear in antifields we find
M 141 = / dx [qﬁ,HlAz“D,‘iﬂ(B)cﬂ
+847 141 ﬂVAj;“AijV], (5.40)
Moy = /dxgqg,ﬂﬁyc*“cﬂcy, (5.41)
My 141 = —/dxgq8‘,1+1,-k1/f7wkC“,
Mg 14y = /dxg‘lixo,szjajakca, (5.42)

[Tt}

where the constants “q
lower case [ + 1)

satisfy the equations (we omit the

Fesaqhse — ab s Fio = % qh,,. (5.43)
Fsafs, — abys Fso = 1P ad,0, (5.44)
B B 4
(o — dojitie = SV a3 (5.45)
B B Y
tadio; — Dowtly = faﬂyqukj' (5.46)
For the functionals My, ;1 we obtain
My 1 = /dX[iqu,zHWV”Dw(B)l//
+ngIa2,l+l,jk$jVM~AZ1/’k - mCI13,1+1W1/f], (5.47)
B B Y
t;?(rqlll-&-l,rk - q12,l+l,rlt;?(k = faﬁyq12,1+1,jk~ (5.48)

As the coefficient of the 9;1‘ term should be zero, it follows
that the equation

45.0+19A(T04 + Loy + ToaB) + 04(Max 141 + My 141
+MaB.i+1)

—0B(Max 141 + My 141+ Mapi+1) =0, (5.49)
holds. As the coefficient of the ¥y vertex of the Eq. (5.49)
should be zero, it follows that
402041,k = Q2041855 q120+1 = qi1i+1 — gsi+1- (5.50)
In turn, as the coefficient of the A*C vertex of the Eq. (5.49)
should be zero, it follows that
a5 11py = 1001 S @1 = qerv1 —gsir1. (5.51)

When inserting the expressions found for the g ; 1 jk and
a5, +1.8y coefficients into the Eq. (5.49), it reduces to the
following one

g5.1+19.48 Toas + 842 MAB,1+1 — I8s MaB.1+1 = 0.
(5.52)

The general solution to the Eq. (5.52) reads

M B 1+1=—45141A0ATo48(V)+M1 1 11(V), V=A+B,
(5.53)

where M| ;11(V) stands for an arbitrary functional of V, at
the moment.

In addition, insertion of the expression (5.51) for the
97 141, By coefficient into the relation (5.40) yields

Mg 141 = g6,1+1T04+(V) — 514140 4T 0.4+ (V),  (5.54)

and insertion (5.50) for the q?2,l+1, ik coefficient into (5.47)
gives the expression for My 41,

My 1v1 = qiri+10oyn — q5.041 A0 4T oy 1 + q13.041 0y 2-

(5.55)
At 0 = 0 the Eq. (5.31) is reduced to the one
<~ <«
/dX(FOQ* + Loy + Toan) ( 0 @dgx — 0 o* 39)
(Mo 141+ My 141+ Magi+1) =0, (5.56)

which is not more than linear in antifields.
As the coefficient of the A*D(B)CC vertex of the
Eq. (5.56) should be zero, it follows that

4511y = a80+1fPY ) Gsiv1 =qri41 = qert1—5.041.
(5.57)

Next, we consider the equations which follow from (5.56)
for zero-valued antifields. They splitinto the two sets of equa-
tions. In the first set of equations,

<~ <~
Loy 0 @doxMax 11 — Dogr 0 «daMy 1+1 =0,  (5.58)

all vertexes contain the spinor fields. In the second ones,

<« <«
CoaB 0 A04+Mpx 11 — Toax 0 4x04M B 141 =0,
(5.59)

vertexes are constructed of the fields A, B and their
coordinate-derivatives only.

As the coefficient of the ¥y 9, C vertex of the Eq. (5.58)
should be zero, it follows

45141, jk = 9904115, 4o.01+1 = G141 — G51+1.  (5.60)

As the coefficient of the ¥y C vertex of the Eq. (5.58) should
be zero, it follows the relation,

o —_ U — o
910,141, jk = 99,141, jk = 99,1411 j- (.61
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When inserting the expressions (5.53) and (5.54) for
M pp.1+1 and M 4+ 141, respectively, into the Eq. (5.59), it
reduces to the following equation,

DV)oyMy j1 (V) =0 = My j11(V) =qia1+1T048-
(5.62)

Thus, the functional F(S%]) I+1,div describing the “Z”, “p”
(I + 1)-loop divergences of the functional I" (S%]), has the
form

! = ! = !
F(SEQ])H-],diV = F(l)(SEq])l-H,div + XF(Z)(SEQ])I-H,diVa
(5.63)

where the functional ['® (S%])I_H,div is given by the expres-

sion (5.36). As for the functional ro (S%])H—l,div we use the
representation

SING
F(S,[q])l(ﬁ],div = Mg 11+ Mg 141+ My 141+ MaBi+1,

(5.64)
where the functionals “M”,

Mo i1+1 = g5,1+1T 00, (5.65)
M as 141 = qe,1+1T0.4+ (V) — q5,141.A404T0 4+ (V), (5.66)
Mc+ 141 = (6,141 — g5+ T 0c*, (5.67)
My 111 = (g6,0+1 — g5.0+1)Toy+, (5.68)
Mg 1 = (G6+1 = g5.0+D) g, (5.69)

My 141 = quii+100y 1 — g5.041.A3 4 oy

+q13,1+1 oy 2, (5.70)
MaB+1 = q1a1+10048 — 45,1+140 4T 048, (5.71)

are represented in terms of the tree loop functionals “T’y”
(5.5)—(5.10).

5.2.2 Solution to equation (5.37) for f‘(S%])I(—]i-)l,div

When inserting the representation for the functional
ro (S%]),H,div given by (5.64)—(5.71) into the Eq. (5.37), it
takes the form of zero value for some linear combinations of
structures appeared in the right-hand side of formulas (5.65)—
(5.71).

As the coefficient of the 03 term should be zero, it follows
that

q11+1 = —28q51+41- (5.72)

Then, as the coefficient of any antifield term should be
zero, it follows

q2,1+1 = 28(g6,141 — G5,1+1)- (5.73)

@ Springer

When the relations (5.72) and (5.73) hold, then the
Eq. (5.37) reduces to the two equations having obvious solu-
tions

25q14141T0AB =0 = qia141 =0, (5.74)
28411141 oy 1 + 2641114100y 2

—(g3,04+1 + g41+1) (Toyn +Toy2) =0 = (5.75)
285q11,141 = 2613141 = g3,141 + q4,141- (5.76)

It is convenient to introduce new parameters ¢is;+1 and
q16,1+15

q15,1+1 = q13,1+1 — 411,141 2q16,l+1 =q3,+1 — 44,1+1;

(5.77)
in terms of which the Eq. (5.76) rewrites as
q150+1 =0, g31+1 =&q11.0+1 + q16,1+1,
qa1+1 = EGQ1,1+1 — 416,1+1- (5.78)

5.3 Finiteness of I to (I+1)-loop approximation

Now,let us prove that one can chose the renormalization con-
stants in such a way as to make the effective action finite to
the (I + 1)-loop approximation. To this end, we consider the
divergent part of the effective action I, I';41 giv, described
by the Eq. (5.29),

1 1 2
Cry1,div = F(S%])l+1,div + 5141 = Fl(Jr)],diV + XF1(+)1,d,'V-
(5.79)

r®

: ()
For the functionals T’ 151.div

I41.dive we have the represen-
tations

) _ [15(1) ()
Faw = TR aiw T 5141
= Toi+1.div + Foxi+1.div

+Ty 141,div + T AB 141 divs (5.80)
Lo.141,div = (5,041 + z5,1+1) 0, (5.81)
T a#0.141.div = (g6,1+1 + 26,1+1)T0.4+ (V)
—(g5.1+1 + 25141) A AT 04(V), (5.82)
Lexiq1,div = (g6,041 + Z6,1+1 — g5,141 — 25,1+1)Toc*, (5.83)
Cy*i+1,div = g6,0+1 + 26,0+1 — q5,0+1 — Z50+1)Toy>, (5.84)
o htdi = 96.0+1 T 26,041 = g5.041 — 25+ g, (5.85)
Cyi+1.dv = (qui+1 + 2110+ Doyt
—(g5.041 + 25,041 A 4Toy 1 +
(11,041 + 211,041
+4q15,0+1 + z15.0+1) Coy |2, (5.86)
CaB.i+1.div = (q14.+1 + 214040 T04B
—(gs,1+1 + 25141 Ad4T0 4B, (5.87)
Fl(i)l,div = F(S%])l(i)l,div + sl(i)l

= /dx[25(45,1+] + 25041 A A+
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+2&(g6,1+1 + 26041 — 45,041 — 25041)C*C
+Eqi1+1 +E211041 + Q16041 +
+z1604 D)V Y + Eqriist +E2114

—q16,+1 — 216,141V *W]

It follows from the formulas (5.79)—(5.88), that the choice
of the parameters z; ;41 in the form “Z”, “p”

(5.88)

Zi,l+1 = Zi,l+1,fins  Zil+1.fin = —4il+1,

i =5,6,11, 14,15, 16, (5.89)

provides for zero-valued coefficients to the (/+1)-loop diver-
gences,

=0,

2il+1=2i,l+1,fin

g1, div

|| = 141 fin- (5.90)

Zi 1+1=2%i, 141, fin

Notice that the choice of parameters z; ;41 fin 1S unique
within the minimal subtraction scheme.

5.4 (14+2)-loop approximation

The renormalization of Sk to the (I + 1)-loop approxima-
tion allows one to construct the effective action I', finite to
that approximation; however it does not satisfy exactly the
extended master-equation and the gauge dependence equa-
tion, by itself. We show the possibility to complete the renor-
malization constants of the action Sk with the help of the
(I + 2)-loop approximation, so that it will satisfy the equa-
tions mentioned to the (/ + 1)-loop approximation and, in its
turn, the corresponding effective action, finite to the (/ 4 1)-
loop approximation, will satisfy the set of Egs. (2.21)—(2.25)
to that approximation.
Indeed, we represent the action Sg as

S =Sk + 0 s + 00", (5.91)

[[+1]

where S " is the actionSg with independent parameters

“Z”,“p” Z; replaced by Zi[lH], and s74- is equal to

S142 = S)1h + X5 7h. (5.92)
where
Sz(Jlr)z = 5g,i+2 + 5@+ i+2 + Sy i+2 + SAB 1425 (5.93)
sg.0+2 = z5,1+2006 (5.94)
sAx 142 = 26.1+20 04 — 25142404 0.4, (5.95)
scxi+2 = (26,1+1 — 250+2)Loc, (5.96)
sy* 142 = (26,142 — 25,14+2) Loy,
Sg*iva = @642 — 25.042) T+, (5.97)
sya+2 = 211042 oy 1 — 25,4249 4oy 1
+@i142 + z15.042) Doy (2, (5.98)
sAB1+2 = 2141420048 — 25142494 0 4B, (5.99)

sith = /dx [2“325,1+2A*A
+26 (26,142 — 25.142)C"C +
+EQZ11042 + 216042V Y +
+EG11142 — 216,42) Y *E]

Z141+2 = 2151+2 = 0.

(5.100)
(5.101)

Notice that the action S%'H] satisfies the Eqgs. (2.21)—
(2.25).

Further calculations and consequences from them do copy
exactly the results of the previous subsection with the natural
replacement/ +1 — [+ 2.

Also, it is obvious that the procedure of divergence com-
pensations discussed can be applied to the case [ = 0 so that
by using the loop induction method in Feynman diagrams
for the functional I', we arrive at the following statement: for
the I-loop approximation I'!l, where [ is arbitrary positive
integer,

[
o= 3,
n=0

of the functional I'" defined by the relations (4.1), (4.4),
there exists the uniquely defined parameters Z;-, i
5,6,11, 14, 15, 16,

ZW =0, Zll=0,vi>o,

(5.102)

(5.103)

such that the functional I'"J does not contain divergences and
I" satisfies the Egs. (4.6)—(4.9).

6 Relations between parameters of Sk and standard
renormalization constants

In that section we find relations between some parameters
of the action Sk and the standard renormalization constants.
Within the expression for Sg, we restrict ourselves only by
desired vertexes in symbolic notation

Sk = /dx (ZI4Z;28A8A +8Z1uZAPIA + Z1Yay

+mZiyy+...), 6.1)

where the ellipsis means the rest vertexes. As the propagators
of fields A and v are finite, they should be considered as
renormalized fields. Then, we find:

1/2 172

Za=2,,"25" Zy =2, (6.2)

where Z4 and Zy, are the renormalization constants of the
bare fields Ag and . The coefficient of the second vertex
in the expression (6.1) gives the renormalization for vertex
A3,

— — —1/2
Zps=Z1uZ5° = go=Ze8 Zg=ZpZ; =2,

(6.3)

@ Springer
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The coefficient of the forth vertex in the expression (6.1)
gives the renormalization for vertex ¥ v,
ZEW =713 = mog=Z,m,

Zn = Zgy 2" = 23/ Zn = Zis.

It follows from the Eq. (5.103) that the renormalization con-
stants of physical parameters g and m do not depend on

gauge,

0:Z, =0,

(6.4)

% Zm = 0. (6.5)

7 Summary

In the present paper, within the background field formalism,
it is studied the renormalization procedure and the gauge
dependence of the theory of Yang—Mills fields interacting
with a multiplet of massive spinor fields. It is shown that the
extension of the Faddeev—Popov action with extra fields and
parameters allows one to establish the multiplicative charac-
ter of the renormalizability. The proofs given above are based
on the possibility to expand the effective action in loops, as
well as to use the minimal subtraction scheme as to elim-
inate divergences. It is a new and important result that the
renormalization constant of the mass parameter is shown to
be gauge-independent.
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