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Abstract We study quantum aspects of the galileon dual-
ity, especially in the case of a particular interacting galileon
theory that is said to be dual to a free theory through the
action of a simultaneous field and coordinate transformation.
This would appear to map a theory with multiple vacua to
one with a unique vacuum state. However, by regulating the
duality transformation using external sources, we are able
to preserve the full vacuum structure in the dual frame. By
explicitly calculating the one-particle irreducible effective
action on a maximally symmetric background, we identify
a semi-classical contribution to the Wightman functions that
has not been taken into account in previous analyses due to
the singular point in the duality map. This may affect its spec-
tral properties at high energy scales. These observations cast
doubt on the main evidence in support of a non-local UV
structure for galileons.

1 Introduction

The accelerated expansion of the Universe is now well estab-
lished by a slew of observational data (see e.g. Refs. [1,2]),
yet the exact origin of this acceleration remains an open ques-
tion (for a review, see Ref. [3]). The “simplest” explanation,
in which dark energy corresponds to a very low-scale cosmo-
logical constant, is severely challenged by naturalness con-
siderations [4–7], leading many phenomenologists to explore
alternative mechanisms including infrared modifications of
General Relativity operative on cosmological scales [8,9].
A special class of derivatively coupled scalar theories have
played a significant role in these explorations. These are the
galileons [10–16].

Galileons arise in a specific limit of the DGP braneworld
model [17], where all gravitational degrees of freedom apart
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from the helicity-zero mode are decoupled. It can also be
shown that the same structure emerges from the decoupling
limit of massive gravity [18]. Up to a total derivative, the
galileon Lagrangians are invariant under the galileon symme-
try π → π +c+vμxμ, a fact that gives rise to enhanced soft
limits for scattering amplitudes [19–21]. The most impor-
tant feature of galileon theories, however, is the presence
of derivative interactions that allow for Vainshtein screen-
ing [22–24]. When a phenomenological model deviates sig-
nificantly from General Relativity on cosmological scales,
compatibility with observational constraints at shorter dis-
tances [25] can be achieved thanks to the Vainshtein mech-
anism, exploiting derivative non-linearities to screen fifth
forces in the vicinity of massive sources like the Earth or
the Sun. The potential importance of screening mechanisms
in developing viable models of self-tuningwas recently high-
lighted in Ref. [26].

Despite these interesting properties, the theoretical and
phenomenological consistency of galileon theories remains
an open issue. In particular, the structure of the galileon inter-
actions would indicate a breakdown of perturbative unitarity,
often at an unacceptably low scale. For example, for a dRGT
graviton whose mass is around the Hubble scale H0, perturba-
tive unitarity breaks down at the scale �3 ∼ (MPl H2

0 )1/3 ∼
(1000 km)−1 [18,27] (see, however, Ref. [28], for an inter-
esting recent development). Standard effective field theory
(EFT) methods require us to cut the theory off, eliminating
its predictive power on observationally relevant scales above
this cut off. Worse still, EFT corrections, arising from inte-
grating out whatever new physics is introduced to preserve
perturbative unitarity, can contaminate the dynamics of Vain-
shtein screening even out to larger distances [29]. These con-
siderations make it imperative that we better understand the
UV completion of galileon theories before taking them seri-
ously as a candidate model of nature to be probed by future
experiments.

Doubts have been raised as to whether or not galileon the-
ories can admit a UV completion in the standard Wilsonian
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sense [30]. However, such conclusions, based on S-matrix
analyticity, are a little premature. By gently deforming the
galileon theory in the far infra-red (in a technically natural
way), one can easily evade the analyticity no go results. For
example, we can give the galileon a small mass [31] and/or
introduce a tiny galileon-breaking interaction of the form
g(∂π)4 [32]. Nevertheless, there is no known Wilsonian UV
completion of galileons, fuelling the perception that no such
completion exists and encouraging alternative ideas.

No doubt motivated by these considerations, Keltner and
Tolley [33] have recently argued that galileons proceed
towards a non-standard, i.e. non-Wilsonian UV completion,
in which there is a certain degree of non-locality at high ener-
gies. This unconventional UV picture is inferred from the
high-energy behaviour of the momentum-space Wightman
functions, which are argued to exhibit exponential growth
(rather than polynomial boundedness) above the strong-
coupling scale. To support this claim, the authors perform
explicit calculations in the case of one particular galileon the-
ory, characterized by a remarkable property: it can be mapped
to a free theory by transforming the field and the coordinates
simultaneously [34,35]. This “interacting-to-free” duality is
then the key to accessing the a priori unknown and strongly
coupled UV sector of the interacting theory. The result is then
used to support the notion that UV completion of galileons
should now follow along the lines of the classicalization pro-
posal [36].

In this paper we take a closer look at galileon duality at
the quantum level, and in particular the duality map between
interacting and free galileon theories. Our interest lies in the
implications for the UV sector of galileon theories and the
conclusions we can draw regarding their spectral properties
beyond the perturbative level. Classically, the interacting the-
ory is known to exhibit Vainshtein screening when minimally
coupled to a point source and the only way to retain this
behaviour in the dual free theory is via non-minimal cou-
pling to sources. The importance of keeping track of how
source couplings change via the duality map was emphasized
already in Ref. [37], with superluminal propagation around
non-trivial backgrounds shown to persist in the “free” the-
ory on account of the non-localities in the mapped source
term. At the quantum level, we note that external sources are
also used to support off-shell configurations when computing
the quantum-corrected effective actions. The details of the
external-source couplings are clearly going to be important
in carefully maintaining the equivalence of the two theories
on either side of the duality map beyond tree level. To naively
compare the two, as in Ref. [33], is to compare apples with
oranges.

The starting point in our analysis is to examine the classi-
cal vacuum structure of the two theories, where we are pre-
sented with an immediate puzzle. Galileons are known to sup-
port “maximally symmetric” field configurations of the form

πκ(x) ∝ κ xμxμ. A generic galileon theory in d dimensions
will admit up to d vacua. Clearly, a free theory has a unique
trivial vacuum. Is the same true for its interacting dual? As it
turns out, the interacting dual theory actually has two vacua:
π0 = 0 and π1 ∝ xμxμ. The latter falls under the class of so-
called self-accelerating vacua, which may have interesting
cosmological applications [12]. The mismatch can be under-
stood by studying the action of the duality map on the space
of maximally symmetric configurations parametrized by κ .
This behaves like a simple stereographic projection, leaving
π0 invariant but mapping π1 to infinity. In other words, π1

corresponds to the projection point and therefore lacks a dual
partner within the physical configuration space. Already, this
simple observation raises the suspicion that the triviality of
the dual theory is an artefact of the singular nature of the
map. The possibility of singular points in the duality map
were mentioned in Ref. [34], although their implications on
the non-perturbative sector were not explored.

The bulk of our analysis is devoted to the calculation
of the one-particle irreducible (1PI) effective action [38],
which is achieved by performing a saddle-point evaluation
about the maximally symmetric “kappa configurations”. This
explicitly illustrates the non-triviality of the theory’s vac-
uum structure, which is argued to affect the high-energy
behaviour of the spectral density (or, equivalently, the Wight-
man functions). Specifically, we show that the one-loop effec-
tive action in d dimensions exhibits a violation of convex-
ity when evaluated by expanding around configurations with
κ > 1/d, signalling the presence of instabilities at energy
densities close to the strong coupling scale. We also show that
the same expression for the effective action can be obtained
by employing the duality transformation in the presence of an
external source. In that case, the non-triviality is maintained
in the source-dependent term in the action.

We finally consider the calculation of the Wightman func-
tions and ask what can be reliably inferred about the high-
energy behaviour of the spectral density. By appropriately
taking into account the non-trivial vacuum structure, which
again is achieved by including an external source, we isolate
an additional saddle-point contribution, corresponding to π1,
which has been missed before. Most importantly, its explicit
cut-off dependence casts doubt on any inference that can be
drawn about the theory’s UV sector from the corresponding
expression for the Wightman functions. Unfortunately, we
conclude that galileon duality is not a particularly useful tool
for inferring the UV behaviour of galileon theories.

2 The galileon duality

We begin by reviewing the details of the galileon duality,
as first described in Ref. [34], in the context of a particular
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interacting galileon theory with classical action

S[π ] = − 1

2

∫
dd x det

(
1 + �(x)

)(
∂π(x)

)2
, (1)

where �(x) ≡ �
μ

μ (x) and �μν(x) = 1
�σ ∂μ∂νπ(x).

Unless otherwise stated, we work in d-dimensional
Minkowski spacetime. We employ the signature convention
(−,+,+,+), and ∂μ ≡ ∂/∂xμ denotes the partial derivative
with respect to the spacetime coordinate xμ.

We can define a dual galileon ρ via the following field-
dependent coordinate transformation [34]:

x̃μ = xμ + 1

�σ
∂μπ(x), (2a)

xμ = x̃μ − 1

�σ
∂̃μρ(x̃), (2b)

where ∂̃μ ≡ ∂/∂ x̃μ is the derivative with respect to the trans-
formed spacetime coordinate x̃μ and σ = (d + 2)/2. The
volume measures transform as follows:

∫
dd x det

(
1 + �(x)

) =
∫

dd x̃, (3a)
∫

dd x =
∫

dd x̃ det
(
1 − 
(x̃)

)
, (3b)

where 
(x̃) ≡ 

μ

μ (x̃) and 
μν(x̃) = 1
�σ ∂̃μ∂̃νρ(x̃).

Applying this transformation, the classical action in Eq. (1)
becomes

S[π ] ≡ S̃[ρ] = − 1

2

∫
dd x̃

(
∂̃ρ(x̃)

)2
, (4)

and we see that the classical galileon duality is extreme for
this particular theory: we map a seemingly non-trivial theory
(Eq. 1) to a free one (Eq. 4). Whilst the equation of motion
in the original π frame is

δS[π ]
δπ

= ∂μ

{
det

(
1 + �

)
∂μ π

}

− 1

2�σ
∂μ∂ν

{
det

(
1 + �

) [(
1 + �

)−1] ν

μ

(
∂π

)2
}
,

(5)

that of the ρ-frame theory is simply

δ S̃[ρ]
δρ

= �̃ ρ = 0. (6)

The former of these equations admits a one-parameter family
of maximally symmetric configurations of the form

πκ(x) = − κ

2
�σ xμx

μ, (7)

with

κ (1 − κ)d−1 = 0. (8)

We therefore have two “kappa vacua” for all d > 1: κ =
0 and κ = 1. These solutions are particularly interesting
in that they correspond to maximally symmetric spacetime
geometries when the galileon π is coupled to the trace of
the energy-momentum tensor (and its back-reaction can be
neglected), cf. the discussion in Ref. [12]. However, it is clear
that the ρ-frame equation of motion is only able to support
the trivial solution ρ = 0, and the κ = 1 vacuum state has
been lost.

In order to see how vacuum solutions may have been lost,
it is instructive to consider the relationship between the dual
galileons themselves [34]:

ρ[π ](x̃) = π(x̃ − ∂̃ρ[π ](x̃)/�σ )

+ 1

2�σ
∂̃ρ[π ](x̃) · ∂̃ρ[π ](x̃). (9)

Taking the functional ρ derivative of Eq. (9) and making use
of the fact that

∂μ π(x) = ∂̃μ ρ(x̃), (10)

we find

δρ[π ](ỹ)
δπ(x)

= δ(ỹ − ∂̃ρ[π ](ỹ)/�σ − x)

− 1

�σ

[
∂π(y) · δ∂̃ρ[π ](ỹ)

δπ(x)

− ∂̃ρ[π ](ỹ) · δ∂̃ρ[π ](ỹ)
δπ(x)

]

= δ(ỹ − ∂̃ρ[π ](ỹ)/�σ − x). (11)

It is important to keep in mind when performing the func-
tional derivatives that x and ỹ are variables of integration and
therefore do not posses implicit dependence on either ρ or
π . Using the functional chain rule, we can now write

δS[π ]
δπ(x)

=
∫

dd ỹ
δS[π ]
δρ(ỹ)

δρ[π ](ỹ)
δπ(x)

=
∫

dd ỹ δ(ỹ − ∂̃ρ[π ](ỹ)/�σ − x)
δ S̃[ρ]
δρ(ỹ)

, (12)

from which it is clear that the vanishing of δS[π ]/δπ(x)
does not imply the vanishing of δ S̃[ρ]/δρ(ỹ), except when
∂̃μ ρ = 0 (when tilded and untilded coordinates coincide).

The focus of the remainder of this article will be to study
the behaviour of these distinct vacua under the galileon dual-
ity in more detail. Ultimately, however, we will be led to
conclude that the naive application of the galileon duality
can dramatically alter the vacuum structure of the theory.
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2.1 The action polynomial and vacuum diagnostics

In order to understand better the impact of the galileon dual-
ity on the kappa configurations, it is instructive to consider
the action polynomial U (κ). The action polynomial is readily
obtained by Wick rotating to Euclidean signature and eval-
uating the Euclidean action for Eq. (1) on O(d)-symmetric
configurations π(r), where r = √

τ 2 + x2 and τ = i t is
Euclidean time. Provided we include the boundary terms
required for a well-defined variational principle under Dirich-
let boundary conditions [39], the result can be written explic-
itly in first-order form as

SE[π ] = d−1

d2

∫
dr rd+1U (ψ), (13)

where d−1 is the volume of the unit (d − 1) sphere, ψ ≡
−π ′/(r�σ ) and

U (ψ) = d

(d + 1)
�2σ

[
1 − (1 + d ψ)(1 − ψ)d

]
. (14)

On the kappa configurations, in Euclidean signature, we have
πκ(r) = − κ �σ r2/2, upon which ψ evaluates to κ , and
we recover the action polynomial U (κ). As demonstrated
explicitly in Ref. [13], this polynomial provides a very simple
way to classify vacua. For example, comparing with Eq. (8),
we see that the first derivative of U (κ) is proportional to the
equation of motion evaluated at πκ :

δ

δπx
(S[π ] + boundary terms)

∣∣∣
π =πκ

= − d κ(1 − κ)d−1�σ

= 1

d �σ

dU (κ)

dκ
.

(15)

It follows that the stationary points of U (κ) correspond to
solutions of the classical equations of motion. Similarly, the
second derivative of U (κ) is related to the second variation
of the action:

δ2

δπx δπy
(S[π ] + boundary terms)

∣∣∣
π =πκ

= (1 − κ)d−2(1 − dκ)� δd(x − y)

=
(

1

d �σ

)2 d2U (κ)

dκ2 � δd(x − y), (16)

and its sign determines whether fluctuations about the respec-
tive classical configuration exhibit a ghost instability (nega-
tive sign), are strongly coupled (zero) or stable (positive sign).
The second variation evaluates to � δ4(x−y) for κ = 0, but it
vanishes for κ = 1 and d > 2, signalling a strongly-coupled
point. For d ≥ 2 and κ = 1, the first non-vanishing variation
of the action then arises at dth order.

WhilstU (κ) can be used as a tool to diagnose ghost insta-
bilities (and violations of the convexity of the effective action,
as we will see later), it is not directly related to the energy
of a given configuration. Instead, the total energy Eκ of the
Lorentzian kappa configurations (within a (d − 2)-sphere of
radius R) is given by

Eκ

Vd−2 �2σ
= 1

2
κ2t2 + 1 − (1 − κ)d−1 [1 + (d − 1) κ]

d (d + 1)
R2 ,

(17)

where Vd−1 = Rd−1 d−2/(d − 1) is the volume of the
sphere (see Ref. [40] for an evaluation of galileon Hamilto-
nians). The first term is the kinetic energy of a free theory
and the second is proportional to the action polynomial in
(d − 1) dimensions, i.e. in one dimension lower. Evaluating
the energy on-shell, we have Eκ=0 = 0 for the trivial vacuum
and

Eκ=1 =
(

1

2
t2 + 1

d(d + 1)
R2

)
Vd−1 �2σ (18)

for the one at κ = 1. The κ = 1 vacuum can therefore be
considered as an excited state, whose energy scales with the
cut-off �.

2.2 The galileon duality as a stereographic projection

We are now interested in how the π -frame action polynomial
is deformed under the duality transformation. From Eq. (2),
we obtain, in Euclidean signature,

πκ(r) −→ ρκ̃ (r̃) = − κ̃

2
�σ r̃2 , (19)

where we have defined κ̃ = κ/(1−κ) and r̃ = r + 1
�σ

dπ(r)
dr .

We see that the κ = 1 vacuum is mapped to infinity and is
therefore removed from the solution space in the ρ frame.
This is visualized in Fig. 1, which depicts the action polyno-
mial as a function of κ (solid line) and κ̃ (dashed line) for
d = 4.

The profile for U (κ) clearly indicates two stationary
points: a trivial stable one at κ = 0 and a strongly-coupled
ghost-like vacuum at κ = 1. For an even number of dimen-
sions, off-shell configurations include an abyssal region
beyond κ = 1. In contrast, as a function of κ̃ , the action
polynomial U (κ̃/(1 + κ̃)) only has a single stationary point
at κ̃ = 0, corresponding to the trivial vacuum, and seem-
ingly no abyssal region. The transformation κ → κ̃ is a
simple example of the stereographic projection implemented
by a Möbius transformation, with κ = 1 being the projec-
tion point. As a consequence, the abyssal region for values
κ ∈ (1,∞) is not lost in the ρ frame. Rather, it is mapped
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Fig. 1 Plot of the normalized π -frame action polynomial U (κ) as
a function of the π -frame parameter κ (solid line) and the ρ-frame
variable κ̃ = κ/(1 − κ) (dashed line) in d = 4. The blue dotted line
depicts the ρ-frame action polynomial Ũ (κ̃)/�6

Fig. 2 Logarithmic plot of the normalized action polynomial as a
function of theπ -frame parameterκ (solid line) and theρ-frame variable
κ̃ = κ/(1 − κ) (dashed line) in d = 4. Black lines indicate the region
preserved by the duality transformation, and red lines indicate those
regions mapped to the left of an infinite barrier in the ρ frame

Fig. 3 Schematic representation of the Möbius transformation κ̃ =
κ/(1 − κ), illustrating that the κ = 1 vacuum is mapped to positive
infinity in the ρ frame. The abyssal region (grey shading) is mapped
from right to left, placing it behind the infinite barrier at κ̃ = −1 (see
Figs. 1, 2)

to values κ̃ ∈ (−∞,−1), which reside behind an infinite
“barrier”, as demonstrated in Fig. 2. A more schematic rep-
resentation of the transformation is provided in Fig. 3.

It is very important to realise that U (κ̃/(1 + κ̃)) is not
the action polynomial Ũ (κ̃) derived in the ρ frame for a free
theory. The latter can be calculated very easily along the lines

described above and is given by

Ũ (κ̃) = 1

2
d2�2σ κ̃2. (20)

This is also depicted in Fig. 1 (dotted line) and differs deci-
sively from U as a function of κ̃ . In particular, its second
derivative is always positive, suggesting that none of the
off-shell configurations support ghost instabilities. We will
see that this seeming triviality of the ρ-frame polynomial Ũ
(compared to U ) represents a potential pitfall when inferring
the stability of the theory in the presence of external sources
(which can support the off-shell configurations).

3 1PI effective action

A powerful tool for studying non-perturbative aspects of field
theories is the effective action. In this section, we will eval-
uate the 1PI effective action of the model in Eq. (1) at order
h̄. Taking into account only one saddle point of the classical
action at a time, viz. expanding around one of the two kappa
vacua, we will show that the effective action obtains a spuri-
ous imaginary part away from theκ = 0 vacuum that is symp-
tomatic of the non-trivial vacuum structure of this galileon
theory. Such an imaginary part can often be associated with
the decay rate of an unstable state (see Ref. [41]) that corre-
sponds to some non-perturbative semi-classical solution of
the theory.

Before considering the galileon theory directly, it is
instructive to work first with a more general theory of a real
scalar field �. Working in Euclidean signature (where the
path integral is well defined), the generating functional of
disconnected n-point functions has the familiar form

Z[J ] =
∫
D� exp

[
− 1

h̄

(
SE [�] − Jx�x

)]
, (21)

where Jx ≡ J (x) is an external source and SE = − i S is
the Euclidean action. Throughout, we employ the DeWitt
notation in which repeated continuous indices are integrated
over, i.e.

Jx�x ≡
∫

dd x J (x)�(x). (22)

The generating functional of connected n-point functions is

W[J ] = − h̄ lnZ[J ]. (23)

Taking functional derivatives with respect to the external
source, it follows that

δ2W[J ]
δ Jx δ Jy

= − 1

h̄

[
〈�x �y〉J − 〈�x 〉J 〈�y〉J

]
. (24)
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The content of the brackets on the right-hand side is the vari-
ance of a distribution, i.e. a positive semi-definite quantity,
and we conclude therefore that

δ2W[J ]
δ Jx δ Jy

< 0, (25)

that is, W[J ] is a concave functional of the source J .
The one-particle irreducible effective action [38] is defined

via the Legendre transformation

�[φ] = max
J

[
W[J ] + Jxφx

]
, (26)

which, given Eq. (25), is a convex functional of φ. After
performing the extremization, the external source Jx is a fixed
functional of φ, i.e. Jx → Jx ≡ Jx [φ], and we have

φx ≡ 〈�x 〉J = − δW[J ]
δJx

, (27)

with the 1PI effective action taking the form

�[φ] = W[J ] + Jx [φx ]φx . (28)

The 1PI effective action yields the source-dependent quan-
tum equation of motion

δ�[φ]
δφx

= Jx [φ]. (29)

When evaluated at the extremal field configuration, which
we denote by ϕ, this yields the more familiar expression

δ�[φ]
δφ

∣∣∣∣
φ =ϕ

= Jx [ϕ] = 0. (30)

Note that the source vanishes at the extremal field configu-
ration, but it is non-zero for classically off-shell field config-
urations. We will see this explicitly later. For further details
of this point, see Ref. [42].

It is known that perturbative evaluations of the effective
action can violate the above-mentioned convexity, and such
non-convexity is a signal of non-trivial vacuum structure or
instabilities of the theory. An archetypal example is the scalar
theory with a non-convex classical potential

U (�) = − 1

2! μ2 �2 + 1

4! λ �4. (31)

If we evaluate the effective action of this theory by expanding
perturbatively around only one vacuum, assuming a homoge-
neous background field configuration 〈�x 〉 = φ = const, the
effective potential has a non-convex region where it obtains
a non-zero imaginary part. Instead, if we were to sum over

all saddle points of the classical action (see e.g. Ref. [43]),
we would find that the effective potential is convex, with the
Maxwell construction arising as a result of the homogeneous
superposition of both vacuum states (see e.g. Refs. [44,45]).

In what follows, we will show that the 1PI effective action
for the galileon theory in Eq. (1) exhibits such a violation of
convexity, indicating non-trivial vacuum structure. The 1PI
effective action has the form

�[π] = W[J ] + Jx [π]πx , (32)

where

W[J ] = − h̄ lnZ[J ],
Z[J ] =

∫
Dπ exp

[
− 1

h̄

(
SE [π ] − Jxπx

)]
, (33)

and

πx = − δW[J ]
δJx

. (34)

It will prove illustrative to evaluate the effective action
by means of the duality transformation. Up to a choice of
normalization, the same result is obtained by evaluating the
effective action directly in terms of the π variable. This will
illustrate the importance of the source in keeping track of
both vacua. In order to apply the duality transformation at
the level of the path integral, we insert unity in the form

1 =
∫

Dρ δ(π − π [ρ])
∣∣∣∣det

δπ [ρ]
δρ

∣∣∣∣. (35)

In order to avoid proliferation of symbolic variants of π ,
we disambiguate the explicit configuration π [ρ] from the
functional variable π only by the presence of the functional
argument. The functional determinant is unity (see Ref. [46]),
and we obtain

Z[J ] =
∫
Dρ exp

[
− 1

h̄

(
S̃E [ρ] − Jx [π] πx [ρ]

)]
. (36)

This expression merits further comment. Although the dual
action S̃E [ρ] does indeed correspond to a trivial theory, there
is a highly non-trivial coupling between the dual field vari-
able ρ and the source. As observed in Ref. [46], ρx and πx [ρ]
share the same one particle poles at p2 = 0, up to a rescaling
of the residues. This guarantees the equivalence of on-shell
S-matrices, even at the loop level, provided we treat the sys-
tem perturbatively about the trivial vacuum, which is present
in both frames. However, our interest here, and indeed in
Ref. [33], lies in the deep UV behaviour of the theory above
and beyond the scale of strong coupling, when perturbative
unitarity breaks down and the non-trivial vacuum structure of
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the π frame begins to emerge. As we will see, the source cou-
pling in the ρ frame allows us to keep track of that non-trivial
vacuum structure.

To this end, we now perform a saddle-point evaluation of
the path integral, expanding ρ around the solution � of

δ S̃E [ρ]
δρx̃

∣∣∣∣
ρ = �

= Jy[π] δπy[ρ]
δρx̃

∣∣∣∣
ρ = �

, (37)

writing ρ = � + h̄1/2ρ̂. Note that there is an implicit integral
over y on the right-hand side of Eq. (37). Expanding to order
h̄, we have

Z[J ] = exp

[
− 1

h̄

(
S̃E [�] − Jx [π] πx [�]

)]

×
∫
Dρ̂ exp

[
− 1

2
ρ̂x̃ G

−1
x̃ ỹ (J , �) ρ̂ỹ + · · ·

]
,

(38)

where we have defined

G−1
x̃ ỹ (J , �) ≡ δ2 S̃E [ρ]

δρx̃δρỹ

∣∣∣∣
ρ = �

−Jz[π]
[
δ2πz[ρ]
δρx̃δρỹ

]
ρ = �

. (39)

We see that the non-triviality of the original theory has been
maintained in the source-dependent term. Naively, we might
expect that the source-dependent term in Eq. (39) vanishes
for on-shell configurations and we are left with a trivial free-
theory propagator. This is indeed true for the trivial vacuum,
κ = 0. However, as we approach the non-trivial vacuum,
κ → 1, we will see that the divergence in the duality map in
this limit compensates for the vanishing of the source, and
there remains a residual contribution. The resulting effective
action obtains a spurious imaginary part.

To see this, we perform the integral over the quadratic
fluctuations to obtain the following effective action1

�[π] = S̃E [�] + Jx [π](πx − πx [�])
+ h̄

2
tr ln G−1(J , �) ∗ G(0, 0) + O(h̄2), (40)

where ∗ denotes a convolution and Gxy(0, 0) appears for
normalization. We can now proceed by eliminating π and
J in favour of π. Since S̃E [�] = SE [π ] (π ≡ π [�]) and
π − π = O(h̄) (formally), we write

SE [π ] = SE [π]− δSE [π]
δπx

∣∣∣∣
π=π

(
πx −πx [�])+O(h̄2) (41)

1 Of course, in the presence of non-convex regions, careful treatment of
the non-Gaussian functional integral is required, for instance by appro-
priate analytic continuation (see e.g. Ref. [47]). For our purposes, how-
ever, the perturbative analysis suffices to diagnose non-trivial behaviour
of the theory.

and use the stationarity condition

δSE [π]
δπx

∣∣∣∣
πx

= Jx [π] (42)

to eliminate the second term on the right-hand side of
Eq. (40). Note that Eq. (42) is consistent with Eq. (37). At
order h̄, we then have

�[π] = SE [π] + h̄

2
tr ln G−1(J , �) ∗ G(0, 0). (43)

If we choose to perform the saddle-point evaluation of the
path integral around the maximally symmetric solutions
πκ(x) and by comparing Eqs. (5) and (42), we see that the
explicit form of the source is

Jx [π] = d κ(1 − κ)d−1 �σ , (44)

vanishing on-shell, i.e. when κ = 0 or 1, as we would expect.
We shall now show, however, that the source-dependent term

Jz[π]
[
δ2πz[ρ]
δρx̃δρỹ

]
ρ = �

(45)

in Eq. (39) does not vanish in the limit κ → 1.
Since we know from Eq. (44) that Jx [π] is a constant for

off-shell, maximally symmetric solutions, we need to evalu-
ate∫

dd z

[
δ2π [ρ](z)
δρ(x̃)δρ(ỹ)

]
ρ = �

=
[ ∫

dd z
δ

δρ(ỹ)
δd(z + ∂π [ρ](z)/�σ − x̃)

]
ρ = �

.(46)

cf. Eq. (11). After performing the remaining functional
derivative, we have

∫
dd z

[
δ2π [ρ](z)
δρ(x̃)δρ(ỹ)

]
ρ = �

=
[ ∫

dd z
∂

∂aμ

δd(a)

�σ

∣∣∣∣
a = z+ ∂π [ρ](z)

�σ −x̃

× ∂

∂zμ
δd(z + ∂π [ρ](z)/�σ − ỹ)

]
ρ = �

, (47)

which, when evaluated on the set of maximally symmetric
solutions, yields
∫

dd z

[
δ2π [ρ](z)
δρ(x̃)δρ(ỹ)

]
ρ = �

= 1

�σ

∫
dd z

∂

∂aμ

δd(a)

∣∣∣∣
a = z(1−κ)−x̃

× ∂

∂zμ
δd(z(1 − κ) − ỹ). (48)
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This can be re-written in the form∫
dd z

[
δ2π [ρ](z)
δρ(x̃)δρ(ỹ)

]
ρ = �

= 1

�σ (1 − κ)

∫
dd z

∂

∂zμ
δd(z(1 − κ) − x̃)

× ∂

∂zμ
δd(z(1 − κ) − ỹ). (49)

Making the change of variables z̃ = (1−κ)z and integrating
by parts, we can show that

∫
dd z

[
δ2π [ρ](z)
δρ(x̃)δρ(ỹ)

]
ρ = �

= − 1

�σ (1 − κ)d−1 �̃δdx̃ ỹ . (50)

As anticipated, this is singular as κ → 1, with the degree
of divergence exactly compensating for the vanishing of the
source in the same limit, as per Eq. (44). The corresponding
poles and zeroes cancel, and we are left with

G−1
x̃ ỹ (J , �) ≡ δ2 S̃E [ρ]

δρx̃δρỹ

∣∣∣∣
ρ = �

− Jz[π]
[
δ2πz[ρ]
δρx̃δρỹ

]
ρ = �

= − (1 − dκ)�̃δdx̃ ỹ . (51)

We might worry that this differs from [see Eq. (16)]

G−1
xy (J ,π) ≡ δ2SE [π ]

δπxδπy

∣∣∣∣
π =π

= −(1−κ)d−2(1−dκ)�δdxy,

(52)

as obtained directly in terms of π variables, by a factor of
(1 − κ)d−2. However, returning to the original functional
integral over the quadratic fluctuations about the kappa con-
figurations, we have∫

dd x̃ dd ỹ ρ̂(x̃)(1 − dκ)[�̃δd(x̃ − ỹ)]ρ̂(ỹ)

=
∫

dd x dd y π̂(x)(1 − κ)d−2

×(1 − dκ)[�δd(x − y)]π̂ (y), (53)

where π̂(x) = ρ̂(x̃). We see, then, that the calculation of the
1PI effective action is frame independent, as it should be, so
long as we choose the correct normalization and keep track
of all the appropriate source-dependent terms. Therefore,
choosing a consistent normalization relative to the κ = 0
vacuum, we arrive at the following result for the 1PI effec-
tive action at order h̄:

�[π] = SE [π] + h̄

2
 ln

[
(1 − κ)d−2(1 − dκ)

]
, (54)

where  is a real-valued phase-space volume factor that com-
prises a d-dimensional coordinate-space integral and a d-

dimensional momentum-space integral.2 For κ = 0 or d = 1,
we therefore have

�[π] = SE [π] + O(h̄2). (55)

This result is consistent with the observation that there are
no one-loop corrections about the κ = 0 vacuum [15,46,48].
For κ = 1 and d ≥ 2, the effective action is ill-defined
at order h̄, and this is indicating that we must work to
higher order, i.e. proceeding via the 4PI effective action (see
e.g. Ref. [49]), so as to resum conveniently the non-trivial
behaviour that is arising at fourth order. For κ < 1/d, the one-
loop 1PI effective action remains real. Instead, for κ > 1/d,
the one-loop 1PI effective action obtains a spurious imagi-
nary part that is symptomatic of the violation of convexity:

�[π] = SE [π] + h̄

2
 ln

∣∣∣(1 − κ)d−2(1 − dκ)

∣∣∣

+ iπ h̄

2


⎧⎪⎨
⎪⎩

1, 1/d < κ < 1, d > 1,

1, κ > 1, d > 1, d even,

0, otherwise,

(56)

where we have restricted to the principal branch of the loga-
rithm. This observed violation of convexity should be antic-
ipated from our analysis of the action polynomial, and we
certainly should not trust our naive calculation of the effec-
tive action in the non-convex region. The result, however, is
useful for diagnosing (tachyonic or ghost) instabilities and/or
signalling the possibility of non-perturbative semi-classical
contributions to the path integral, arising for instance from
instantons or sphalerons. In fact, one might be tempted to
interpret the κ = 1 solution – sitting at a maximum of
the action polynomial between the local minimum and the
abyssal region (for even d) – as such a sphaleron. (For dis-
cussions of solitons in the context of galileon theories, see
Ref. [50] and references therein.) Nevertheless, this aspect
requires significant further study beyond the scope of the
present article, and we will not comment on it further. The
most important observation is that any such solutions (or
vacua) will become relevant at scales of order �, and, in the
next section, we will discuss the implications of this for the
spectral density of the theory.

2 The phase-space volume factor  depends on the choice of regular-
ization and renormalization scheme, being non-vanishing and real in
dimensional regularization. Its precise value, however, is unimportant
for our discussions, and the effective action serves only as a powerful
diagnostic tool, wherein a finite (or infinite) imaginary part is indicative
of non-trivial vacuum structure.
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4 Wightman functions

One important lesson from the effective-action analysis of the
preceding section is that we have to include external sources
in order to keep track of the non-trivial vacuum structure of
the theory when we employ the duality. Here, we demonstrate
how this affects the calculation of the Wightman functions,
studied in Ref. [33].

Our starting point is the Euclidean Wightman function in
the presence of an external source J :

〈πx πy〉J = 1

Z[J ]
∫

Dπ πx πy

× exp

[
− 1

h̄
(SE [π ] − Jz πz)

]
, (57)

where x0 ≥ y0. In the π frame, this object can only be
calculated perturbatively without referring to a particular UV
completion. In Ref. [33], it was therefore suggested to use
the duality to express the right-hand side entirely in terms of
ρ. After all, the source-free ρ-frame theory is UV complete
in a trivial way. The corresponding path integral expression
in the ρ frame reads

〈πx πy〉J = 1

Z[J ]
∫

Dρ πx [ρ] πy[ρ]

× exp

[
− 1

h̄

(
S̃E [ρ] − Jz πz[ρ]

)]
. (58)

As before, we perform a saddle-point evaluation of the path
integral, expanding around solutions � of the classical equa-
tion of motion in Eq. (37). At order h̄, we find

〈πx πy〉J = 1

Z[J ]
∑

saddles

exp

[
− 1

h̄

(
S̃E [�] − Jz πz[�]

)]

×
∫
Dρ̂ πx [ρ] πy[ρ]

× exp

[
− 1

2
ρ̂x̃ G

−1
x̃ ỹ (J , �) ρ̂ỹ + · · ·

]
, (59)

where G−1
x̃ ỹ (J , �) was defined in Eq. (39). When evaluated

on the set of maximally symmetric solutions we have, accord-
ing to Eq. (51), that

G−1
x̃ ỹ (J , �) = −

[
1 − Jκ

(1 − κ)d−1 �σ

]
�̃ δdx̃ ỹ, (60)

where the sourceJκ is given in Eq. (44) and supports the cor-
responding kappa configuration. We recall that Jκ vanishes
for the on-shell configurationsκ = 0 andκ = 1, as one would
expect. Nevertheless, both saddle points must contribute to
limJ→0 〈πx πy〉J in both frames.

In the case of the trivial vacuum (κ = 0), S̃E [�] = 0, and
the relevant contribution reads

lim
J→0

〈πx πy〉J ⊃ 1

Z[0]
∫
Dρ̂ πx [ρ̂] πy[ρ̂]

× exp

[
1

2
ρ̂x̃ �̃ρ̂x̃

]
, (61)

which matches the free-theory expression evaluated in
Ref. [33] (after rotating back to real time). Since all higher-
order terms in the expansion vanish, it is tempting to trust it
for energies above the strong-coupling scale�. However, that
reasoning ignores the presence of at least one further highly
non-trivial vacuum.3 To be specific, in the limit κ → 1, the
second term in square brackets in Eq. (60) gives a finite con-
tribution (despite the vanishing of Jκ ), which changes the
sign of the kinetic operator for d > 1. Correspondingly, this
second saddle point contributes

lim
J→0

〈πx πy〉J ⊃ 1

Z[0] exp

[
− 1

h̄
S̃E [�]

]

×
∫
Dρ̂ πx [ρ̂] πy[ρ̂]

× exp

[
− d − 1

2
ρ̂x̃ �̃ ρ̂x̃ + · · ·

]
. (62)

Apart from the pathological sign, which signals a ghost insta-
bility around that vacuum (in accordance with the effective-
action calculation), the higher-order terms in the saddle-point
expansion (indicated by the dots and suppressed by additional
powers of �σ ) are generically non-vanishing. In fact, they re-
introduce the complexity of the original π -frame expression.
This can be seen by taking higher functional ρ-derivatives of
Jz πz[ρ] in Eq. (58).

We therefore conclude that the free-theory expression in
Eq. (61) is not sufficient to infer the high-energy behavior of
the Wightman functions. Rather, we have to take into account
the non-trivial vacuum structure, which, at least in principle,
can be preserved by including external sources, but is lost by
naive application of the duality and careless treatment of the
limit J → 0.

5 Conclusion

Due to the non-renormalizable nature of their interactions,
galileons are only properly understood as effective field the-
ories with a cut-off. Further, to be phenomenologically inter-
esting, galileon interactions must operate on macroscopic
scales, forcing the cut-off to be unacceptably low and elimin-
inating the predictive power even at the scale of experimental

3 We have restricted the discussion to the subspace of maximally sym-
metric configurations. It is possible though that further saddle points
have been mapped out by the duality.
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probes. This demands a better understanding of the UV prop-
erties of galileons, a task that has been pioneered by Keltner
and Tolley [33]. In a very thoughtful piece of work, they have
argued that galileons fall into a class of non-localizable field
theories, whose UV completion should be non-Wilsonian,
possibly along the lines of classicalization [36].

In this paper, we have studied galileon duality from a
quantum perspective and asked what inferences can really
be drawn regarding the UV sector of galileon theories. Mir-
roring the classical analysis of Ref. [37], we emphasize the
importance of keeping proper track of the source dependence.
In doing so, we reveal that the calculation of spectral den-
sities on the “free” theory side is sensitive to a non-trivial
vacuum structure that is easily missed if source terms are not
carefully tracked. The non-trivial vacuum structure can, of
course, be anticipated by considering the original interacting
galileon theory. This has two “kappa vacua”: one with κ = 0
and a second with κ = 1. It turns out that the galileon dual-
ity acts as a simple stereographic projection on the space of
these “kappa configurations”, with the κ = 1 solution being
the projection point that is mapped out of the physical con-
figuration space. The best way to avoid this is to couple π to
an external source, thereby maintaining the vacuum structure
of the original theory.

When we perform the effective action calculation on the
“free” theory side, it turns out that the κ → 1 limit is highly
non-trivial. Although the source vanishes in this limit, as of
course it should for an on-shell configuration, the map itself
diverges, and the two effects compensate to leave a resid-
ual contribution. A saddle-point evaluation around a generic
kappa configuration of the 1PI effective action signals a vio-
lation of convexity for κ > 1/d (d > 1). This is indicative
of non-trivial vacuum structure, potentially supporting non-
perturbative classical solutions that may contribute to the
spectral density.

With a view to asking what we can really understand about
the UV sector of galileon theories, we have evaluated contri-
butions to the position-space Wightman functions explicitly
by expanding about various saddle points. We can compare
this with Ref. [33], where they compute the contribution from
the trivial saddle point, corresponding to the κ = 0 vacuum,
but do not include the contribution from a second saddle,
corresponding to the κ = 1 vacuum. The latter contribu-
tion is non-trivial and cannot be neglected. Furthermore, its
explicit cut-off dependence significantly complicates a direct
calculation of the high-energy scaling. The result is that one
cannot reliably calculate the scaling behaviour of the spec-
tral density beyond the cut-off of the low-energy effective
theory. As this was the main piece of concrete evidence in
support of the idea that galileons must UV complete via a
non-Wilsonian mechanism, we conclude that such conclu-
sions are premature. More generally, our analysis suggests

that galileon duality is not a useful tool for understanding the
UV properties of galileons.
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