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Abstract Tensor currents are the only quark bilinear oper-
ators lacking a non-perturbative determination of their renor-
malisation group (RG) running between hadronic and elec-
troweak scales. We develop the setup to carry out the compu-
tation in lattice QCD via standard recursive finite-size scaling
techniques, and provide results for the RG running of tensor
currents in N f = 0 and N f = 2 QCD in the continuum
for various Schrödinger Functional schemes. The matching
factors between bare and renormalisation group invariant cur-
rents are also determined for a range of values of the lattice
spacing relevant for large-volume simulations, thus enabling
a fully non-perturbative renormalization of physical ampli-
tudes mediated by tensor currents.

1 Introduction

Hadronic matrix elements of tensor currents play an impor-
tant rôle in several relevant problems in particle physics.
Some prominent examples are rare heavy meson decays that
allow to probe the consistency of the Standard Model (SM)
flavour sector (see, e.g., [1–3] for an overview), or precision
measurements of β-decay and limits on the neutron electric
dipole moment (see, e.g., [4–6] for an up-to-date lattice-QCD
perspective).

One of the key ingredients in these computations is the
renormalization of the current. Indeed, partial current con-
servation ensures that non-singlet vector and axial currents
require at worst finite normalizations, and fixes the anoma-
lous dimension of scalar and pseudoscalar densities to be

D. Preti: address since December 2017: INFN Sezione di Torino, Via
Pietro Giuria 1, I-10125 Turin, Italy.

a e-mail: david.preti@to.infn.it

minus the quark mass anomalous dimension. They however
do not constrain the tensor current, which runs with the only
other independent anomalous dimension among quark bilin-
ears. Controlling the current renormalization and running at
the non-perturbative level, in the same fashion achieved for
quark masses [7–10], is therefore necessary in order to con-
trol systematic uncertainties, and allow for solid conclusions
in new physics searches. To make a specific example, the
precision of the isovector nucleon tensor charge given by [5]
is around 5%, to which renormalization and running is the
largest contribution. With our techniques we can target pre-
cisions of order 1% for this source of uncertainty, greatly
improving on the overall precision of this kind of computa-
tion.

The anomalous dimension of tensor currents is known to
three-loop order in continuum schemes [11,12], while on
the lattice perturbative studies have been carried out to two-
loop order [13]. Non-perturbative determinations of renor-
malization constants in RI/MOM schemes, for the typical
few-GeV values of the renormalization scale accessible to
the latter, have been obtained for various numbers of dynam-
ical flavours and lattice actions [14–20]. The purpose of this
work is to set up the strategy for the application of finite-
size scaling techniques based on the Schrödinger Functional
(SF) [21], in order to obtain a fully non-perturbative determi-
nation of both current renormalization constants at hadronic
energy scales, and the running of renormalized currents to
the electroweak scale. This completes the ALPHA Collabo-
ration non-perturbative renormalization programme for non-
singlet quark field bilinears [7–10,24–26] and four-quark
operators [27–33].

As part of the strategy, we will set up a family of SF renor-
malization schemes, and perform a perturbative study with
the main purpose of computing the perturbative anomalous
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dimension up to two loops, in order to make safe contact
with perturbative physics at the electroweak scale. Prelimi-
nary results of this work have already appeared as proceed-
ings contributions [34].1 We will then apply our formalism
to the fully non-perturbative renormalization of non-singlet
tensor currents in Nf = 0 and Nf = 2 QCD. Our results for
Nf = 3 QCD, that build on the non-perturbative determina-
tion of the running coupling [36–38] and the renormalization
of quark masses [9,10,24], will be provided in a separate
publication [39].

The layout of this paper is as follows. In Sect. 2 we will
introduce our notation and discuss the relevant renormal-
ization group equations. In Sect. 3 we will introduce our
SF schemes, generalizing the ones employed for quark mass
renormalization. In Sect. 4 we will study these schemes in
one-loop perturbation theory, and compute the matching fac-
tors that allow to determine the NLO values of anomalous
dimensions. In Sect. 5 we will discuss our non-perturbative
computations, and provide results for the running of the cur-
rents between hadronic and high-energy scales and for the
renormalization constants needed to match bare hadronic
observables at low energies. Section 6 contains our conclu-
sions. Some technical material, as well as several tables and
figures, are gathered in appendices.

2 Renormalization group

Theory parameters and operators are renormalized at the
renormalization scale μ. The scale dependence of these quan-
tities is given by their Renormalization Group (RG) evolu-
tion. The Callan–Symanzik equations satisfied by the gauge
coupling and quark masses are of the form

μ
∂g

∂μ
= β(g (μ)), (2.1)

μ
∂mi

∂μ
= τ(g (μ))mi (μ) , (2.2)

respectively, with renormalized coupling g and masses mi ;
the index i runs over flavour. The renormalization group
equations (RGEs) for composite operators have the same
form as Eq. (2.2), with the anomalous dimensions of the
operators γ in the place of τ . Starting from the RGE for cor-
relation functions, we can write the renormalization group
equation for the insertion of a multiplicatively renormaliz-

1 During the development of this work, Dalla Brida, Sint and Vilaseca
have performed a related perturbative study as part of the setup of the
chirally rotated Schrödinger Functional [35]. Their results for the one-
loop matching factor required to compute the NLO tensor anomalous
dimensions in SF schemes coincide with ours (cf. Sect. 4), previously
published in [34]. This constitutes a strong crosscheck of the computa-
tion.

able local composite operator O in an on-shell correlation
function as:

μ
∂ O (μ)

∂μ
= γ (g (μ))O (μ). (2.3)

where O (μ) is the renormalized operator. The latter is con-
nected to the bare operator insertion O(g2

0) through

O (μ) = lim
a→0

ZO(g2
0, aμ)O(g2

0). (2.4)

where g0 is the bare coupling, ZO is a renormalization con-
stant, and a is some inverse ultraviolet cutoff – the lattice
spacing in this work. We assume a mass-independent scheme,
such that both the β-function and the anomalous dimensions
τ and γ depend only on the coupling and the number of
flavours (other than on the number of colours N ); examples
of such schemes are the MS scheme of dimensional regular-
ization [40,41], RI schemes [42], or the SF schemes we will
use to determine the running non-perturbatively [21,43]. The
RG functions then admit asymptotic expansions of the form:

β(g) ≈
g∼0

−g3(b0 + b1g
2 + b2g

4 + · · · ), (2.5)

τ(g) ≈
g∼0

−g2(d0 + d1g
2 + d2g

4 + · · · ), (2.6)

γ (g) ≈
g∼0

−g2(γ0 + γ1g
2 + γ2g

4 + · · · ). (2.7)

The coefficients b0, b1 and d0, γ0 are independent of the
renormalization scheme chosen. In particular [44–50]

b0 = 1

(4π)2

(
11

3
N − 2

3
Nf

)
, (2.8)

b1 = 1

(4π)4

[
34

3
N 2 −

(
13

3
N − 1

N

)
Nf

]
, (2.9)

and

d0 = 6CF

(4π)2 , (2.10)

with CF = N2−1
2N .

The RGEs in Eqs. (2.1–2.3) can be formally solved in
terms of the renormalization group invariants (RGIs) �QCD,
Mi and Ô , respectively, as:2

�QCD = μ
[b0g 2(μ)]−b1/2b2

0

e1/2b0g 2(μ)

× exp

{

−
∫ g (μ)

0
dg

[
1

β(g)
+ 1

b0g3 − b1

b2
0g

]}

,

(2.11)

2 Our choice for the normalisation of Mi follows Gasser and
Leutwyler [51–53], whereas for Eq. (2.13) we have chosen the most
usual normalization with a power of αs.
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Mi = mi (μ) [2b0g
2(μ)]−d0/2b0

× exp

{

−
∫ g (μ)

0
dg

[
τ(g)

β(g)
− d0

b0g

]}

, (2.12)

Ô = O (μ)

[
g 2(μ)

4π

]−γ0/2b0

× exp

{

−
∫ g (μ)

0
dg

[
γ (g)

β(g)
− γ0

b0g

]}

≡ ĉ(μ)O (μ). (2.13)

While the value of the �QCD parameter depends on the renor-
malization scheme chosen, Mi and Ô are the same for all
schemes. In this sense, they can be regarded as meaning-
ful physical quantities, as opposed to their scale-dependent
counterparts. The aim of the non-perturbative determination
of the RG running of parameters and operators is to connect
the RGIs – or, equivalently, the quantity renormalized at a
very high energy scale, where perturbation theory applies –
to the bare parameters or operator insertions, computed in
the hadronic energy regime. In this way the three-orders-of-
magnitude leap between the hadronic and weak scales can be
bridged without significant uncertainties related to the use of
perturbation theory.

In order to describe non-perturbatively the scale depen-
dence of the gauge coupling and composite operators, we
will use the step-scaling functions (SSFs) σ and σO , respec-
tively, defined as

− log(s) =
∫ √

σ(u)

√
u

dg′

β(g′)
, (2.14)

σO(s, u) = exp

{∫ √
σ(u)

√
u

γ (g′)
β(g′)

dg′
}

, (2.15)

or, equivalently,

σ(s, u) = g 2(μ/s)
∣∣∣
u=g 2(μ)

, (2.16)

σO(s, u) = U (μ/s, μ), (2.17)

where

U (μ2, μ1) = exp

{∫ √
g 2(μ2)

√
g 2(μ1)

γ (g′)
β(g′)

dg′
}

(2.18)

is the RG evolution operator for the operator at hand,
which connects renormalized operators at different scales as
O (μ2) = U (μ2, μ1)O (μ1). The SSFs are thus completely
determined by, and contain the same information as, the RG
functions γ and β. In particular, σO(s, u) corresponds to the
RG evolution operator of O between the scales μ/s and μ;
from now on, we will set s = 2, and drop the parameter s in
the dependence. The SSF can be related to renormalization
constants via the identity

σO(u) = lim
a→0


O(u, aμ),


O(u, aμ) = ZO(g2
0, aμ/2)

ZO(g2
0, aμ)

∣
∣∣∣∣
u=g 2(μ)

. (2.19)

This will be the expression we will employ in practice to
determine σO , and hence operator anomalous dimensions,
for a broad range of values of the renormalized coupling u.

In this work we will focus on the renormalization of tensor
currents. The (flavour non-singlet) tensor bilinear is defined
as

Tμν(x) = i ψ̄s1(x)σμνψs2(x), (2.20)

where σμν = i
2 [γμ, γν], and s1 �= s2 are flavour indices.

Since all the Lorentz components have the same anomalous
dimension, as far as renormalization is concerned it is enough
to consider the “electric” operator T0k . As already done in the
introduction, it is important to observe that the tensor current
is the only bilinear operator that evolves under RG transfor-
mation in a different way respect to the quark mass – partial
conservation of the vector and axial currents protect them
from renormalization, and fixes the anomalous dimension of
both scalar and pseudoscalar densities to be−τ . The one-loop
(universal) coefficient of the tensor anomalous dimension is

γ
(0)

T = 2CF

(4π)2 . (2.21)

3 Schrödinger Functional renormalization schemes

The renormalization schemes we will consider are based on
the Schrödinger Functional [21–23], i.e. on the QCD partition
function Z = ∫

D[A, ψ̄, ψ]e−S[A,ψ̄,ψ] on a finite Euclidean
spacetime of dimensions L3×T with lattice spacing a, where
periodic boundary conditions on space (in the case of fermion
fields, up a to a global phase θ ) and Dirichlet boundary con-
ditions at times x0 = 0, T are imposed. A detailed discussion
of the implementation and notation that we will follow can
be found in [54]. We will always consider L = T and triv-
ial gauge boundary fields (i.e. there is no background field
induced by the latter). The main advantage of SF schemes is
that they allow to compute the scale evolution via finite-size
scaling, based on the identification of the renormalization
scale with the inverse box size, i.e. μ = 1/L .

To define suitable SF renormalization conditions we can
follow the same strategy as in [7,8,55,56], which has been
applied successfully also to several other composite operators
both in QCD [25–31,57–59] and other theories.3 We first
introduce the two-point functions

3 See, e.g., [60] for a recent review.
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(a) (b)

Fig. 1 Sketch of correlation function in the SF: bilinear insertion on
the left and boundary-to-boundary on the right

kT(x0) = −1

6

3∑

k=1

〈T0k(x)O[γk]〉 , (3.1)

f1 = − 1

2L6

〈O′
s2s1

[γ5]Os1s2 [γ5]
〉
, (3.2)

and

k1 = − 1

6L6

〈O′
s2s1

[γk]Os1s2 [γk]
〉
. (3.3)

where

O[�] = a6
∑

x,y

ζ̄s2(x) � ζs1(y) (3.4)

is a source operator built with the x0 = 0 boundary fields ζ, ζ̄ .
A sketch of the correlation function in the SF is provided in
Fig. 1. The renormalization constant ZT is then defined by

ZT(g0, a/L)
kT(L/2)

f 1/2−α
1 kα

1

= kT(L/2)

f 1/2−α
1 kα

1

∣∣∣∣
∣
m0=mcr, g2

0=0

, (3.5)

where we have already fixed μ = 1/L , m0 is the bare quark
mass, and mcr is the critical mass, needed if Wilson fermions
are used in the computation – as will be our case. The factor
f 1/2−α
1 kα

1 cancels the renormalization of the boundary fields
contained in O[�], which holds for any value of the param-
eter α; we will restrict ourselves to the choices α = 0, 1/2.
The only remaining parameter in Eq. (3.5) is the kinemati-
cal variable θ entering spatial boundary conditions; once its
value is specified alongside the one of α, the scheme is com-
pletely fixed. We will consider the values θ = 0, 0.5, 1.0 in
the perturbative study discussed in the next section, and in
the non-perturbative computation we will set θ = 0.5.

The condition in Eq. (3.5) involves the correlation func-
tion kT, which is not O(a) improved. Therefore, the scaling of
the renormalized current towards the continuum limit, given
by Eq. (2.4), will be affected by O(a) effects. The latter can
be removed by subtracting suitable counterterms, following
the standard on-shell O(a) improvement strategy for SF cor-
relation functions [54]. On the lattice, and in the chiral limit,
the O(a) improvement pattern of the tensor current reads

T I
μν = Tμν + acT(g

2
0)(∂̃μVν − ∂̃νVμ), (3.6)

where ∂̃ is the symmetrized lattice derivative and Vμ =
ψ̄s1γμψs2 is the vector current. Focusing again only on the
electric part, the above formula reduces to

T I
0k = T0k + acT(g

2
0)(∂̃0Vk − ∂̃kV0) , (3.7)

which results in an O(a) improved version of the two-point
function kT of the form

kI
T(x0) = kT(x0) + acT(g

2
0)∂̃0kV(x0) , (3.8)

with

kV(x0) = −1

6

3∑

k=1

〈Vk(x)O[γk]〉. (3.9)

Note that the contribution involving the spatial derivative
vanishes. Inserting kI

T in Eq. (3.5), and the resulting ZT in
Eq. (2.4) alongside the O(a) improved current, will result
in O(a2) residual cutoff effects in the value of the SSF 
T

defined in Eq. (2.19), provided the action and mcr are also
O(a) improved.

4 Perturbative study

We will now study our renormalization conditions in one-
loop perturbation theory. The aim is to obtain the next-to-
leading (NLO) anomalous dimension of the tensor current in
our SF schemes, necessary for a precise connection to RGI
currents, or continuum schemes, at high energies; and com-
pute the leading perturbative contribution to cutoff effects,
useful to better control continuum limit extrapolations.

We will expand the relevant quantities in powers of the
bare coupling g2

0 as

X =
∞∑

n=0

g2
0X

(n) (4.1)

where X can be any of ZT, kT, kV, f1, or k1. To O(g2
0),

Eq. (3.7) can be written as

kI
T(x0) = k(0)

T (x0) + g2
0

[
k(1)

T (x0)

+ac(1)
T ∂̃0k

(0)
V (x0)

]
+ O(ag4

0), (4.2)

with cT(g2
0) = c(1)

T g2
0 +O(g4

0). The renormalization constant
for the improved tensor correlator kI

T at one-loop is then given
by

Z (1)
T (a/L) = −

{
1

k(0)
T (T/2)

[

k(1)
T (T/2) + c̃(1)

t kT
(0)
;bi (T/2)

+ am(1)
cr

∂k(0)
T (T/2)

∂m0
+ ac(1)

T ∂̃0k
(0)
V (T/2)

]
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−
(

1

2
− α

)
1

f (0)
1

[

f (1)
1 + c̃(1)

t f (0)
1;bi + am(1)

cr
∂ f (0)

1

∂m0

]

−α
1

k(0)
1

[

k(1)
1 + c̃(1)

t k(0)
1;bi + am(1)

cr
∂k(0)

1

∂m0

]}

(4.3)

where c̃t is the coefficient of the counterterm that subtracts
the O(a) contribution coming from the fermionic action at
the boundaries, and am(1)

cr is the one-loop value of the criti-
cal mass [61–63], for which we employ the continuum value
quoted in [28]. The one-loop value of the improvement coef-
ficient cT has been obtained using SF techniques in [64]. We
have repeated the computation of this latter quantity as a
crosscheck of our perturbative setup; a summary is provided
in Appendix A.

4.1 Perturbative scheme matching

Any two mass-independent renormalization schemes (indi-
cated by primed and unprimed quantites, respectively) can
be related by a finite parameter and operator renormalization
of the form

g ′2 = χg(g )g 2, (4.4)

m′
i = χm(g )mi , i = 1, . . . , Nf , (4.5)

O ′ = χO(g )O , (4.6)

where we have assumed O to be multiplicatively renormal-
izable. The scheme change factors χ can be expanded per-
turbatively as

χ(g)
g∼0≈ 1 + χ(1)g2 + O(g4). (4.7)

Plugging Eqs. (4.4, 4.5, 4.6) into the Callan–Symanzik equa-
tions allows to relate a change in a renormalized quantity to
the change in the corresponding RG function, viz.

β ′(g′) =
[
β(g)

∂g′

∂g

]

g=g(g′)
, (4.8)

τ ′(g′) =
[
τ(g) + β(g)

∂

∂g
log(χm(g))

]

g=g(g′)
, (4.9)

γ ′(g′) =
[
γ (g) + β(g)

∂

∂g
log(χO(g))

]

g=g(g′)
. (4.10)

In particular, expanding Eq. (4.10) to order g2 provides a use-
ful relation between the 2-loop coefficient of the anomalous
dimension in the two schemes, viz.

γ ′
1 = γ1 + 2b0χ

(1)
O − γ0χ

(1)
g . (4.11)

The one-loop matching coefficient χ
(1)
g for the SF cou-

pling was computed in [65,66],

χ(1)
g = 2b0 log(Lμ) − 1

4π
(c1,0 + c1,1Nf), (4.12)

where the logarithm vanishes with our choice μ = 1/L , and
for the standard definition of the SF coupling one has

c1,0 = 1.25563(4) c1,1 = 0.039863(2). (4.13)

The other finite term χO in Eq. (4.10) will provide the oper-
ator matching between the lattice-regulated SF scheme and
some reference scheme where the NLO anomalous dimen-
sion is known, such as MS or RI, that we will label as “cont”.
The latter usually are based on variants of the dimensional
regularization procedure; our SF schemes will be, on the
other hand, regulated by a lattice. The practical application
of Eq. (4.11) thus involves a two-step procedure, in which
the lattice-regulated SF scheme is first matched to a lattice-
regulated continuum scheme, that is in turned matched to the
dimensionally-regulated continuum scheme. This yields

[χ(1)
O ]SF;cont = [χ(1)

O ]SF;lat − [χ(1)
O ]cont;lat. (4.14)

The one-loop matching coefficients [χ(1)
O ]cont;lat that we need

can be extracted from the literature [13,67,68], while the
term [χ(1)

O ]SF;lat is obtained from our one-loop calculation of
renormalization constants. Indeed, the asymptotic expansion
for the one-loop coefficient of a renormalization constant in
powers and logarithms of the lattice spacing a has the form

Z (1)(L/a) =
∑

n≥0

( a

L

)n {rn + sn log(L/a)}, (4.15)

where s0 = γ
(0)

T and the finite part surviving the continuum
limit is the matching factor we need,

[χ(1)
0 ]SF;lat = r0. (4.16)

Our results for [χ(1)
0 ]SF;lat have been obtained by com-

puting the one-loop renormalization constants on a series of
lattices of sizes ranging from L/a = 4 to L/a = 48, and
fitting the results to Eq. (4.15) to extract the expansion coef-
ficients. The computation has been carried out with O(a)

improved fermions for three values of θ for each scheme,
and without O(a) improvement for θ = 0.5, which allows
for a crosscheck of our computation and of the robustness of
the continuum limit (see below). The results for the match-
ing factors are provided in Table 1; details about the fitting
procedure and the assignment of uncertainties are discussed
in Appendix B.

Inserting our results in Eq. (4.11), we computed for the
first time the NLO anomalous dimension in our family of SF
schemes for the tensor currents, which are given in Table 2.
We have crosschecked the computation by performing the
matching with and without O(a) improvement, and pro-
ceeding through both MS and RI as reference continuum
schemes, obtaining the same results in all cases. In this con-
text we observe that the NLO correction to the running is
in general fairly large. It is also important to stress that the
NLO anomalous dimension exhibits a strong dependence on

123



575 Page 6 of 27 Eur. Phys. J. C (2018) 78 :575

Table 1 Finite parts of one-loop renormalization constants in the
scheme specified by the parameters θ and α for the unimproved and
O(a)-improved fermion actions

θ α rα;θ
0;SF (csw = 0) rα;θ

0;SF (csw = 1)

0.0 0 n/a − 0.0198519(3) × CF

1/2 n/a − 0.0198519(3) × CF

0.5 0 − 0.096821(5) × CF − 0.05963(4) × CF

1/2 − 0.099979(5) × CF − 0.06279(4) × CF

1.0 0 n/a − 0.0827(2) × CF

1/2 n/a − 0.0866(2) × CF

Table 2 NLO anomalous dimensions for various SF schemes, labeled
by the parameters θ and α. The ratio to the LO anomalous dimension
is also provided, as an indicator of the behaviour of the perturbative
expansion. For comparison, γ

(1)

T;MS
/γ

(0)
T = 0.1910 − 0.0091 × Nf

θ α γ
(1)

T;SF γ
(1)

T;SF/γ
(0)

T

0.0 0 0.0143209(6) −
0.00067106(3) ×
Nf

0.84805(3) −
0.0397383(2)× Nf

1/2 0.0143209(6) −
0.00067106(3) ×
Nf

0.84805(3) −
0.0397383(2)× Nf

0.5 0 0.0069469(8) −
0.00022415(5) ×
Nf

0.41138(5) −
0.013273(6) × Nf

1/2 0.0063609(8) −
0.00018863(5) ×
Nf

0.37668(5) −
0.011170(6) × Nf

1.0 0 0.00266(3) +
0.000036(2) × Nf

0.157(2) +
0.0021(1) × Nf

1/2 0.00192(3) +
0.000081(2) × Nf

0.114(2) +
0.0048(1) × Nf

the parameter θ . The choice θ = 0.5 for numerical simu-
lations [7–10] was originally motivated by the observation
in [55] that it leads to a conveniently small value of the quark
mass NLO anomalous dimension. In our case, on the other
hand, the value of the NLO coefficient of the anomalous
dimension for θ = 1.0 is smaller than the one for θ = 0.5
and θ = 0.0. However, since we will rely on ensembles
obtained at θ = 0.5, we have stuck to this latter value in the
non-perturbative part of the work.

4.2 One-loop cutoff effects in the step scaling function

As mentioned above, the RG running is accessed via SSFs,
defined in Eq. (2.19). It is thus both interesting and useful to
study the scaling of 
T within perturbation theory. Plugging
the one-loop expansion of the renormalization constant in
Eq. (2.19), we obtain an expression of the form


T(u, L/a) = 1 + k(L/a)g 2 + O(g 4), (4.17)

where

k(L/a) = Z (1)
T (2L/a) − Z (1)

T (L/a). (4.18)

In order to extract the cutoff effect which quantifies how fast
the continuum limit σT is approached, we define

k(∞) = γ
(0)

T log(2), (4.19)

and the relative cutoff effect δk

δk(L/a) = k(L/a)

k(∞)
− 1. (4.20)

The one-loop values of δk for both the improved and unim-
proved renormalization conditions are listed in Table 3. The
behaviour of δk as a function of the lattice size is shown in
Fig. 2. The figure shows that the bulk of the linear cutoff
effect is removed by the improvement of the action, and that
the improvement of the current has a comparatively small
impact. Note also that θ = 0.5 leads to the smaller pertur-
bative cutoff effects among the values explored, cf. Table 3.
We have performed the computation both with the value of
the one-loop critical mass am(1)

cr obtained from the PCAC
relation at the corresponding value of L/a, and using every-
where the asymptotic value of am(1)

cr in the limit L/a → ∞
– referred to as am(1)

cr (L/a) and am(1)
cr (∞), respectively, in

the caption of Table 3.4 Both procedures differ by subleading
O(a2) effects only, which might however be sizeable at the
smaller lattice sizes. Table 3 and Fig. 2 show the resulting
differences, which are quite small in the case of the tensor
current SSF. In the rest of our analysis, we will use the results
for δk obtained using am(1)

cr (L/a).

5 Non-perturbative computations

We will now present non-perturbative results for both Nf = 0
and Nf = 2 QCD. The simulations underlying each of the
two cases are those in [27] (which in turn reproduced and
extended the simulations in [7]) and [8], respectively. For
Nf = 2 simulations are performed with non-perturbatively
O(a) improved Wilson fermions, whereas in the quenched
case the computation was performed both with and with-
out O(a) improvement, which, along with the finer lattices
used, allows for a better control of the continuum limit (cf.
below). A gauge plaquette action is always used. In both
cases, we rely on the computation of the SF coupling and
its non-perturbative running, given in [7,65] for Nf = 0 and
[69] for Nf = 2.

4 In the former case the value is available for a subset of the lattice
sizes we study only, although it covers the whole interval relevant for
the non-perturbative computation.
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Fig. 2 Upper panel: cutoff effects as a function of a/L for the various
schemes considered and the O(a) improved fermion action. Results
with and without operator improvement are provided. Results with both
am(1)

cr (L/a) and am(1)
cr (∞) are plotted for comparison. Lower panel:

zoom-in displaying only results for the schemes with θ = 0.5 (which
will be the one employed in the non-perturbative computation), also
including those with an unimproved fermion action

5.1 Nf = 0

Simulation details for the quenched computation are given
in [27]. Simulation parameters have been determined by tun-
ing β such that the value of the renormalized SF coupling is
kept constant with changing L/a, and fixing the bare quark
mass to the corresponding non-perturbatively tuned value of
κc. A total of fourteen values of the renormalized coupling
have been considered, namely,u = {0.8873,0.9944,1.0989,

1.2430, 1.3293, 1.4300, 1.5553, 1.6950, 1.8811, 2.1000,

2.4484, 2.7700, 3.1110, 3.4800}, corresponding to fourteen
different physical lattice lengths L . In all cases the renormal-
ization constants ZT are determined, in the two schemes given
by α = 0, 1/2, on lattices of sizes L/a = {6, 8, 12, 16} and
2L/a = {12, 16, 24, 32}, which allows for the determination
of 
T(u, a/L) at four values of the lattice spacing.

As mentioned above, two separate computations have
been performed, with and without an O(a) improved fermion
action with a non-perturbatively determined csw coefficient.5

This allows to improve our control over the continuum limit
extrapolation for σT, by imposing a common result for both
computations based on universality. It is important to note
that the gauge ensembles for the improved and unimproved
computations are different, and therefore the corresponding
results are fully uncorrelated. Another important observation
is that the cT coefficient for the O(a) improvement countert-
erm of the tensor current is not known non-perturbatively,
but only to leading order in perturbation theory. In our com-
putation of ZT for Nf = 0 we have thus never included the
improvement counterterm in the renormalization condition,
even when the action is improved, and profit only from the
above universality constraint to control the continuum limit,
as we will discuss in detail below. The resulting numerical
values of the renormalization constants and SSFs are reported
in Tables 4 and 5.

5.1.1 Continuum extrapolation of SSFs

As discussed above, the continuum limit for 
T is controlled
by studying the scaling of the results obtained with and with-
out an O(a) improved actions. To that respect, we first check
that universality holds within our precision, by perform-
ing independent continuum extrapolations of both datasets.
Given the absence of the cT counterterm, we always assume
that the continuum limit is approached linearly in a/L , and
parametrize



csw=0
T (u, a/L) = σ

csw=0
T (u) + ρ

csw=0
T (u)

a

L
, (5.1)



csw=NP
T (u, a/L) = σ

csw=NP
T (u) + ρ

csw=NP
T (u)

a

L
. (5.2)

We observe that, in general, fits that drop the coarsest lat-
tice, corresponding to the step L/a = 6 → 12, are of
better quality; when the 
T(L/a = 6) datum is dropped,
σ
csw=0
T (u) and σ

csw=NP
T (u) always agree within ∼ 1σ . The

slopes ρ
csw=NP
T (u) are systematically smaller than ρ

csw=0
T (u),

showing that the bulk of the leading cutoff effects in the ten-
sor current is subtracted by including the Sheikholeslami-
Wohlert (SW) term in the action.

We thus proceed to obtain our best estimate for σT(u)

from a constrained extrapolation, where we set σ
csw=0
T (u) =

σ
csw=NP
T (u) = σT(u) in Eq. (5.1), and drop the L/a = 6 →

12 step from the fit. The results for both schemes are provided
in Table 6, and illustrated in Figs. 3 and 4.

5 The SF boundary improvement counterterms proportional to ct and c̃t
are taken into account at two- and one-loop order in perturbation theory,
respectively.
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Table 6 Continuum-extrapolated values for the SSFs for Nf = 0

u α = 0 α = 1/2

σT(u) χ2/dof σT(u) χ2/dof

0.8873 1.0168(31) 0.23 1.0155(27) 0.20

0.9944 1.0190(34) 0.46 1.0171(30) 0.41

1.0989 1.0127(34) 0.69 1.0115(30) 1.18

1.2430 1.0242(38) 0.61 1.0219(33) 0.54

1.3293 1.0215(42) 1.49 1.0192(36) 1.83

1.4300 1.0295(42) 1.48 1.0265(36) 1.52

1.5553 1.0268(51) 0.20 1.0235(43) 0.20

1.6950 1.0347(50) 0.64 1.0294(42) 0.60

1.8811 1.0380(53) 1.01 1.0320(45) 1.03

2.1000 1.0461(50) 0.58 1.0381(40) 1.08

2.4484 1.0688(57) 3.41 1.0550(45) 3.65

2.7700 1.0912(63) 0.06 1.0677(50) 0.05

3.1110 1.1001(67) 1.00 1.0738(51) 0.86

3.4800 1.1128(76) 1.00 1.0806(57) 1.09

5.1.2 Fits to continuum step-scaling functions

In order to compute the RG running of the operator in the
continuum limit, we fit the continuum-extrapolated SSFs to
a functional form in u. The simplest choice, motivated by the
perturbative expression for γT and β, and assuming that σT

is a smooth function of the renormalized coupling within the
covered range of values of the latter, is a polynomial of the
form

σT(u) = 1 + p1u + p2u
2 + p3u

3 + p4u
4 + · · · . (5.3)

The perturbative prediction for the first two coefficients of
Eq. (5.3) reads

ppert
1 = γ

(0)
T log(2), (5.4)

ppert
2 = γ

(1)
T log(2) +

[
(γ

(0)
T )2

2
+ b0γ

(0)
T

]

(log(2))2. (5.5)

Note, in particular, that perturbation theory predicts a depen-
dence on Nf only at O(u2).
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Fig. 3 Continuum limit extrapolations of the Nf = 0 SSF for the renormalization scheme α = 0. Blue (red) points correspond to results with the
O(a) improved (unimproved) action, respectively
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Fig. 4 Continuum limit extrapolations of the Nf = 0 SSF for the renormalization scheme α = 1/2. Blue (red) points correspond to results with
the O(a) improved (unimproved) action, respectively

We have considered various fit ansätze, exploring combi-
nations of the order of the polynomial and possible perturba-
tive constraints, imposed by fixing either p1 or both p1 and
p2 to the values in Eqs. (5.4, 5.5). We always take as input the
results from the joint csw = 0 and csw = NP extrapolation,
discussed above. The results for the various fits are shown in
Table 7. All the fits result in a good description of the non-
perturbative data, with values of χ2/d.o.f. close to unity and
little dependence on the ansatz. The coefficients of powers
larger than u3 are consistently compatible with zero within
one standard deviation. We quote as our preferred fit the one
that fixes p1 to its perturbative value, and reaches O(u3)

(fit B in Table 7). This provides an adequate description of
the non-perturbative data, without artificially decreasing the
goodness-of-fit by including several coefficients with large
relative errors (cf., e.g., fit E). The result for σT from fit B in
our two schemes is illustrated in Fig. 5. It is also worth point-
ing out that the value for p2 obtained from fits A and B is
compatible with the perturbative prediction within 1 and 1.5
standard deviations, respectively, for the two schemes; this

reflects the small observed departure of σT from its two-loop
value until the region u � 2 is reached, cf. Fig. 5.

5.1.3 Determination of the non-perturbative running factor

Once a given fit for σT is chosen, it is possible to compute the
running between two well-separated scales through a finite-
size recursion. The latter is started from the smallest value
of the energy scale μhad = L−1

had , given by the largest value of
the coupling for which σT has been computed, viz.

g 2(2μhad) = 3.48. (5.6)

Using as input the coupling SSF σ(u) determined in [7], we
construct recursively the series of coupling values

uk+1 = g 2(2k+2μhad) = σ−1(uk) , u0 = 3.48. (5.7)

This in turn allows to compute the product

U (μhad, μpt) =
n∏

k=0

σT(uk), μpt = 2n+1μhad, (5.8)
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Table 7 Fits to the continuum
Nf = 0 SSFs for various choices
of polynomial ansatz, cf.
Eq. (5.3)

Fit p1 p2 p3 p4 χ2/dof

α = 0 A 0.011705 0.00611 (32) – – 1.16

B 0.011705 0.0042 (12) 0.00072 (45) – 1.04

C 0.011705 0.005449 0.00028 (11) – 1.04

D 0.011705 0.005449 −0.00005 (66) 0.00011 (22) 1.11

E 0.011705 −0.0006 (37) 0.0051 (32) −0.00089 (64) 0.96

α = 1/2 A 0.011705 0.00370 (25) – – 0.88

B 0.011705 0.0035 (10) 0.000072 (36) – 0.95

C 0.011705 0.005043 −0.000455 (88) – 1.05

D 0.011705 0.005043 −0.00098 (54) 0.00017 (17) 1.06

E 0.011705 −0.0003 (31) 0.0034 (26) −0.00068 (52) 0.88
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Fig. 5 Nf = 0 continuum-extrapolated SSFs in the schemes α = 0 (left) and α = 1/2 (right), and their fitted functional forms following fit B in
Table 7. The one- and two-loop perturbative predictions are also shown for comparison

Table 8 Non-perturbative
Nf = 0 running in the scheme
α = 0. (Our best result
ĉ2/3(μhad) is stressed.)

k uk [U (μhad, 2k+1μhad)]−1 ĉ1/2(μhad) ĉ2/2(μhad) ĉ2/3(µhad) ĉ3/3(μhad)

0 3.480 0.8916(45) 1.0655(53) 0.9099(45) 0.9133(46) 0.8201(41)

1 2.455(18) 0.8376(51) 1.0377(64) 0.9256(59) 0.9272(59) 0.8768(59)

2 1.918(15) 0.8031(54) 1.0218(70) 0.9332(66) 0.9342(66) 0.9021(65)

3 1.584(13) 0.7783(57) 1.0113(76) 0.9378(72) 0.9384(72) 0.9160(72)

4 1.353(13) 0.7592(60) 1.0039(82) 0.9408(78) 0.9412(78) 0.9246(78)

5 1.184(12) 0.7436(63) 0.9983(87) 0.9429(84) 0.9433(84) 0.9304(84)

6 1.053(12) 0.7306(66) 0.9939(93) 0.9446(90) 0.9448(90) 0.9346(90)

7 0.950(11) 0.7195(68) 0.9905(98) 0.9459(95) 0.9461(95) 0.9377(95)

8 0.865(10) 0.7097(70) 0.9876(102) 0.9469(99) 0.9471(99) 0.9401(99)

where U is the RG evolution operator in Eq. (2.18), here
connecting the renormalised operators at scales μhad and
2n+1μhad. The number of iterations n is dictated by the small-
est value of u at which σT is computed non-perturbatively,
i.e. u = 0.8873. We find u7 = 0.950(11) and u8 =
0.865(10), corresponding respectively to 8 and 9 steps of
recursion. The latter involves a short extrapolation from
the interval in u covered by data, in a region where the
SSF is strongly constrained by its perturbative asymptotics.
This point is used only to test the robustness of the recur-

sion, but is not considered in the final analysis. The val-
ues of uk and the corresponding running factors are given
in Tables 8 and 9.

Once μpt = 28μhad has been reached, perturbation theory
can be used to make contact with the RGI operator. We thus
compute the total running factor ĉ(μ) in Eq. (2.13) at μ =
μhad as

ĉ(μhad) = ĉ(μpt)

U (μhad, μpt)
, (5.9)
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Table 9 Non-perturbative
Nf = 0 running in the scheme
α = 1/2. (Our best result
ĉ2/3(μhad) is stressed.)

k uk [U (μhad, 2k+1μhad)]−1 ĉ1/2(μhad) ĉ2/2(μhad) ĉ2/3(µhad) ĉ3/3(μhad)

0 3.480 0.9207(36) 1.1003(44) 0.9522(38) 0.9556(38) 0.8732(35)

1 2.455(18) 0.8762(41) 1.0855(52) 0.9776(49) 0.9792(49) 0.9344(49)

2 1.918(15) 0.8459(44) 1.0761(57) 0.9904(54) 0.9914(54) 0.9628(54)

3 1.584(13) 0.8231(47) 1.0695(63) 0.9981(60) 0.9987(60) 0.9787(60)

4 1.353(13) 0.8051(50) 1.0646(69) 1.0031(66) 1.0036(66) 0.9888(66)

5 1.184(12) 0.7902(54) 1.0608(74) 1.0068(72) 1.0071(72) 0.9956(72)

6 1.053(12) 0.7775(57) 1.0577(80) 1.0095(78) 1.0098(78) 1.0006(78)

7 0.950(11) 0.7665(59) 1.0552(85) 1.0116(83) 1.0119(83) 1.0043(83)

8 0.865(10) 0.7568(62) 1.0531(89) 1.0133(87) 1.0135(87) 1.0072(87)
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Fig. 6 Running of the tensor current for Nf = 0 in the schemes α = 0 (left) and α = 1/2 (right), compared to perturbative predictions using the
1/2-, 2/2-, and 2/3-loop values for γT/β

where ĉ(μpt) is computed using the highest available orders
for γ and β in our schemes (NLO and NNLO, respectively).
In order to assess the systematic uncertainty arising from the
use of perturbation theory, we have performed two cross-
checks:

(i) Perform the matching to perturbation theory at all the
points in the recursion, and check that the result changes
within a small fraction of the error.

(ii) Match to perturbation theory using different combina-
tions of perturbative orders in γ and β: other than our
NLO/NNLO preferred choice, labeled “2/3” – after the
numbers of loops – in Tables 8 and 9, we have used
matchings at 1/2-, 2/2-, and 3/3-loop order, where in the
latter case we have employed a mock value of the NNLO
anomalous dimension given by γ (2) ≡ (γ (1))2/γ (0) as a
means to have a guesstimate of higher-order truncation
uncertainties.

We thus quote as our final numbers

ĉ(μhad)
∣∣
Nf=0 = 0.9461(95), scheme α = 0;

ĉ(μhad)
∣∣
Nf=0 = 1.0119(83), scheme α = 1/2. (5.10)

In Fig. 6 we plot the non-perturbative running of the operator
in our two schemes, obtained by running backwards from the
perturbative matching point corresponding to the renormal-
ized coupling u7 = 0.950(11). with our non-perturbative σT,
and compare it with perturbation theory. In order to set the
physical scale corresponding to each value of the coupling,
we have used �SF/μhad = 0.422(32), from [7]. The latter
work also provides the value of μhad in units of the Sommer
scale r0 [70], viz. (2r0μhad)

−1 = 0.718(16) – which, using
r0 = 0.5 fm, translates into μhad = 274(6) MeV. It is impor-
tant to stress that the results in Eq. (5.10) are given in the
continuum, and therefore do not contain any dependence on
the regularization procedures employed to obtain them.

5.1.4 Hadronic matching

The final piece required for a full non-perturbative renor-
malization is to compute renormalization constants at the
hadronic scale μhad within the interval of values of the
bare gauge coupling covered by non-perturbative simula-
tions in large, hadronic volumes. We have thus proceeded
to obtain ZT at four values of the bare coupling, β =
{6.0129, 6.1628, 6.2885, 6.4956}, tuned to ensure that L
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Table 10 Renormalization
constants ZT(g2

0 , L/a) at
L = 1/μhad for Nf = 0, scheme
α = 0

β L
a csw = NP csw = 0

κc ZT κc ZT

6.0219 8 0.135043(17) 1.0401(21) 0.153371(10) 0.9407(19)

6.1628 10 0.135643(11) 1.0606(13) 0.152012(7) 0.9617(16)

6.2885 12 0.135739(13) 1.0738(15) 0.150752(10) 0.9792(24)

6.4956 16 0.135577(7) 1.0950(35) 0.148876(13) 1.0022(35)

Table 11 Renormalization
constants ZT(g2

0 , L/a) at
L = 1/μhad for Nf = 0, scheme
α = 1/2

β L
a csw = NP csw = 0

κc ZT κc ZT

6.0219 8 0.135043(17) 0.9715(15) 0.153371(10) 0.8853(15)

6.1628 10 0.135643(11) 0.9909(9) 0.152012(7) 0.9033(13)

6.2885 12 0.135739(13) 1.0044(11) 0.150752(10) 0.9178(18)

6.4956 16 0.135577(7) 1.0236(24) 0.148876(13) 0.9399(27)

Table 12 RGI renormalization factors ẐT for Nf = 0

β csw = NP csw = 0

Ẑα=0
T Ẑα=1/2

T Ẑα=0
T Ẑα=1/2

T

6.0129 0.984(10) 0.983(8) 0.890(9) 0.896(8)

6.1628 1.003(10) 1.003(8) 0.910(9) 0.914(8)

6.2885 1.016(10) 1.016(8) 0.926(10) 0.929(8)

6.4956 1.036(11) 1.036(9) 0.948(10) 0.951(8)

– and hence the renormalized SF coupling – stays con-
stant when L/a = {8, 10, 12, 16}, respectively. The results,
both with and without O(a) improvement, are provided in
Tables 10 and 11. These numbers can be multiplied by the
corresponding value of the running factor in Eq. (5.10) to
obtain the quantity

ẐT(g
2
0) = ĉ(μhad)ZT(g

2
0, aμhad), (5.11)

which relates bare and RGI operators for a given value of
g2

0. They are quoted in Table 12; it is important to stress
that the results are independent of the scheme within the
∼ 1% precision of our computation – as they should, since
the scheme dependence is lost at the level of RGI operators,
save for the residual cutoff effects which in this case are not
visible within errors. A second-order polynomial fit to the
dependence of the results in β

ẐT(g
2
0) = z0 + z1(β − 6) + z2(β − 6)2 (5.12)

for the numbers obtained from the scheme α = 1/2, which
turns out to be slightly more precise, yields

csw = NP : z0 = 0.9814(9), z1 = 0.138(8), z2 = −0.06(2) ;
csw = 0 : z0 = 0.8943(4), z1 = 0.127(3), z2 = −0.024(6),

(5.13)

with correlation matrices among the fit coefficients

C[csw = NP] =
⎛

⎝
1.000 −0.766 0.605

−0.766 1.000 −0.955
0.605 −0.955 1.000

⎞

⎠ ,

C[csw = 0] =
⎛

⎝
1.000 −0.768 0.615

−0.768 1.000 −0.960
0.615 −0.960 1.000

⎞

⎠ .

(5.14)

These continuous form can be obtained to renormalize
bare matrix elements, computed with the appropriate action,
at any convenient value of β within the range usually covered
in large-volume simulations.

5.2 Nf = 2

In this case all our simulations were performed using an O(a)

improved Wilson action, with the SW coefficient csw deter-
mined in [71]. Renormalization constants have been com-
puted at six different values of the SF renormalized coupling
u = {0.9703, 1.1814, 1.5078, 2.0142, 2.4792, 3.3340}, cor-
responding to six different physical lattice lengths L . For each
physical volume, three different values of the lattice spacing
have been simulated, corresponding to lattices with L/a =
6, 8, 12 and the double steps 2L/a = 12, 16, 24, for the
computation of the renormalization constant ZT(g0, a/L).
All simulational details, including those referring to the tun-
ing of β and κ , are provided in [8].

Concerning O(a) improvement, the configurations at the
three weaker values of the coupling were produced using
the one-loop perturbative estimate of ct [65,66], while for
the three stronger couplings the two-loop value [72] was
used. In addition, for L/a = 6, β = 7.5420 and L/a = 8,
β = 7.7206 separate simulations were performed with the
one- and two-loop value of ct , which results in two differ-
ent, uncorrelated ensembles, with either value of ct , being
available for u = 1.5078. For c̃t the one-loop value is used
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Table 13 Nf = 2 results for the renormalization constant ZT and the step scaling function 
T

g 2
SF(L) β κc L/a α = 0 α = 1/2

ZT(g2
0 , L/a) ZT(g2

0 , 2L/a) 
T(g2
0 , L/a) ZT(g2

0 , L/a) ZT(g2
0 , 2L/a) 
T(g2

0 , L/a)

0.9793 9.50000 0.131532 6 0.98153(89) 0.9912(14) 1.0098(17) 0.96914(76) 0.9795(12) 1.0107(14)

9.73410 0.131305 8 0.98260(89) 0.9926(20) 1.0102(22) 0.97167(77) 0.9819(17) 1.0105(20)

10.05755 0.131069 12 0.98950(93) 1.0070(26) 1.0177(28) 0.97945(80) 0.9955(23) 1.0163(25)

1.1814 8.50000 0.132509 6 0.97970(96) 0.9922(40) 1.0127(42) 0.96388(81) 0.9774(33) 1.0141(35)

8.72230 0.132291 8 0.9847(18) 1.0046(15) 1.0202(24) 0.9702(15) 0.9895(13) 1.0199(21)

8.99366 0.131975 12 0.9920(11) 1.0145(37) 1.0227(39) 0.97849(92) 0.9997(33) 1.0217(35)

1.5078 7.54200 0.133705 6 0.98204(96) 1.0045(30) 1.0229(32) 0.96022(81) 0.9818(24) 1.0224(27)

7.72060 0.133497 8 0.9865(23) 1.0150(39) 1.0288(46) 0.9665(19) 0.9927(33) 1.0271(40)

1.5031 7.50000 0.133815 6 0.98189(86) 0.9955(36) 1.0138(37) 0.95991(73) 0.9744(29) 1.0151(32)

8.02599 0.133063 12 0.9947(24) 1.02096(59) 1.0264(25) 0.9764(21) 0.9999(29) 1.0241(37)

2.0142 6.60850 0.135260 6 0.9871(13) 1.0193(22) 1.0326(26) 0.9544(11) 0.9841(17) 1.0311(21)

6.82170 0.134891 8 0.9924(23) 1.0336(26) 1.0416(36) 0.9635(19) 0.9990(22) 1.0368(31)

7.09300 0.134432 12 1.0070(23) 1.0449(13) 1.0376(27) 0.9797(18) 1.0127(11) 1.0337(22)

2.4792 6.13300 0.136110 6 0.9964(21) 1.0452(72) 1.0489(76) 0.9531(18) 0.9959(57) 1.0449(63)

6.32290 0.135767 8 1.0006(14) 1.0467(85) 1.0461(87) 0.9620(12) 1.0011(68) 1.0406(71)

6.63164 0.135227 12 1.0157(33) 1.0776(13) 1.0610(37) 0.9820(25) 1.03268(100) 1.0516(28)

3.3340 5.62150 0.136665 6 1.0118(40) 1.086(15) 1.073(16) 0.9494(30) 1.0050(95) 1.059(11)

5.80970 0.136608 8 1.0237(40) 1.134(12) 1.108(13) 0.9671(28) 1.0447(98) 1.080(11)

6.11816 0.136139 12 1.0377(57) 1.129(12) 1.088(13) 0.9885(42) 1.0505(68) 1.0627(83)

throughout. Finally, since, contrary to the quenched case, we
do not have two separate (improved and unimproved) sets of
simulations to control the continuum limit, we have included
in our analysis the improvement counterterm to the tensor
current, with the one-loop value of cT [64].

The resulting values for the renormalization constants
ZT and the SSF 
T are listed in Table 13. The estimate of
autocorrelation times has been computed using the “Gamma
Method” of [73].

5.2.1 Continuum extrapolation of SSFs

In this case, our continuum limit extrapolations will assume
an O(a2) scaling of 
T. This is based on the fact that we
implement O(a) improvement of the action (up to small
O(ag4

0) effects in c̃t and O(ag4
0) or O(ag6

0) in ct , cf. above);
and that the residual O(ag4

0) effects associated to the use of
the one-loop perturbative value for cT can be expected to be
small, based on the findings discussed above for Nf = 0. Our
ansatz for a linear extrapolation in a2 is thus of the form


T(u, a/L) = σT(u) + ρT(u)
( a

L

)2
. (5.15)

Furthermore, in order to ameliorate the scaling we subtract
the leading perturbative cutoff effects that have been obtained
in Sect. 4, by rescaling our data for 
T as


′
T(u, a/L) = 
T(u, a/L)

1 + uδk(a/L)γ
(0)

T log(2)
, (5.16)

where the values of the relative cutoff effects δk(a/L) are
taken from Table 3. Continuum extrapolations are performed
both taking 
T and the one-loop improved 
′

T as input; the
two resulting continuum limits are provided in Tables 14
and 15, respectively. As showed in Fig. 7, the effect of includ-
ing the perturbative improvement is in general non-negligible
only for our coarsest L/a = 6 lattices. The slope of the con-
tinuum extrapolation is decreased by subtracting the pertur-
bative cutoff effects at weak coupling, but for u � 2 the
quality of the extrapolation does not change significantly,
and the slope actually flips sign. This behaviour is illustrated
in Fig. 8. The u = 1.5078 case is treated separately, and a
combined extrapolation to the continuum value is performed
using the independent simulations carried out with the two
different values of ct . We quote as our best results the extrap-
olations obtained from 
′

T.

5.2.2 Fits to continuum step-scaling functions

Here we follow exactly the same strategy described above for
Nf = 0, again considering several fit ansätze by varying the
combination of the order of the polynomial and the number of
coefficients fixed to their perturbative values. The results are
listed in Table 16. As in the quenched case, we quote as our
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Table 14 Nf = 2
continuum-extrapolated values
of σT without subtraction of
perturbative cutoff effects. The
two lines for u = 1.5078
correspond to the use of the one-
and two-loop value of ct ,
respectively

u α = 0 α = 1/2

σT ρ(u) χ2/dof σT ρ(u) χ2/dof

0.9793 1.0174(32) −0.30(14) 2.26 1.0157(28) −0.20(13) 1.91

1.1814 1.0271(48) −0.49(28) 0.20 1.0252(42) −0.38(24) 0.19

1.5078 1.0311(34) −0.28(12) 0.25 1.0283(45) −0.20(12) 0.31

−0.63(20) −0.48(0.20)

2.0142 1.0410(36) −0.26(18) 2.24 1.0356(29) −0.14(15) 1.49

2.4792 1.0647(55) −0.66(40) 1.09 1.0538(43) −0.40(32) 1.11

3.3340 1.102(17) −0.66(97) 2.56 1.069(11) −0.16(64) 2.38

Table 15 Nf = 2
continuum-extrapolated values
of σT with subtraction of
perturbative cutoff effects. The
two lines for u = 1.5078
correspond to the use of the one-
and two-loop value of ct ,
respectively

u α = 0 α = 1/2

σT(u) ρ(u) χ2/dof σT(u) ρ(u) χ2/dof

0.9793 1.0180(32) −0.03(15) 1.99 1.0161(28) 0.04(13) 1.73

1.1814 1.0279(48) −0.16(28) 0.29 1.0256(42) −0.08(24) 0.26

1.5078 1.0318(34) 0.15(12) 0.32 1.0288(45) 0.18(12) 0.37

−0.21(21) −0.11(20)

2.0142 1.0420(36) 0.31(18) 2.64 1.0361(29) 0.38(15) 1.75

2.4792 1.0659(56) 0.06(40) 0.95 1.0543(44) 0.25(33) 0.99

3.3340 1.103(17) 0.37(99) 2.75 1.070(11) 0.74(65) 2.53
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Fig. 7 Continuum extrapolations of SSFs for Nf = 2 in the schemes α = 0 (left) and α = 1/2 (right). Blue points are the data in Table 13; red
points result from subtracting the one-loop value of cutoff effects
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Fig. 8 Slopes of the continuum limit extrapolation of 
T for Nf = 2 in the scheme α = 0 (left) and α = 1/2 (right), illustrating the effect of
subtracting one-loop cutoff effects

Table 16 Fits to the continuum
Nf = 2 SSFs for various choices
of polynomial ansatz, cf.
Eq. (5.3)

Fit p1 p2 p3 p4 χ2/dof

α = 0 A 0.011705 0.00559(53) – – 0.72

B 0.011705 0.0061(22) −0.00021(95) – 0.89

C 0.011705 0.005070 0.00021(23) − 0.76

D 0.011705 0.005070 0.0003(11) −0.00003(41) 0.94

E 0.011705 0.0118(63) −0.0056(55) 0.0012(12) 0.87

α = 1/2 A 0.011705 0.00364(43) − – 1.00

B 0.011705 0.0056(18) −0.00083(76) − 0.95

C 0.011705 0.004713 −0.00048(18) – 0.80

D 0.011705 0.004713 −0.00022(85) −0.00010(32) 0.98

E 0.011705 0.0079(56) −0.0028(47) 0.00041(96) 1.20
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1

1.05

1.1
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u

σ T f1
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PT NLO
fit B

0 1 2 3
1

1.05

1.1

1.15

u

σ T k
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Fig. 9 SSF for Nf = 2 in the scheme α = 0 (left) and α = 1/2 (right), compared with the LO and NLO perturbative predictions

preferred result the fit obtained by fixing the first coefficient
to its perturbative value and fitting through O(u3) (fit B).
The resulting fit, as well as its comparison to perturbative
predictions, is illustrated in Fig. 9.

5.2.3 Non-perturbative running

Using as input the continuum SSFs, we follow the same strat-
egy as in the quenched case to recursively compute the run-
ning between low and high energy scales. In this case the
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Table 17 Non-perturbative
Nf = 2 running in the scheme
α = 0. (Our best result
ĉ2/3(μhad) is stressed.)

k uk [U (μhad, 2k+1μhad)]−1 ĉ1/2(μhad) ĉ2/2(μhad) ĉ2/3(μhad ) ĉ3/3(μhad)

−1 4.610 1 1.1818 0.9483 0.9495 0.7871

0 3.032(16) 0.9214(71) 1.143(9) 0.984(8) 0.985(8) 0.904(7)

1 2.341(21) 0.8710(86) 1.115(11) 0.992(10) 0.992(10) 0.942(10)

2 1.918(20) 0.8348(90) 1.096(12) 0.994(11) 0.994(11) 0.960(11)

3 1.628(17) 0.8072(92) 1.082(13) 0.996(12) 0.996(12) 0.970(12)

4 1.414(14) 0.7852(94) 1.071(13) 0.996(13) 0.997(13) 0.977(12)

5 1.251(12) 0.7670(96) 1.063(14) 0.997(13) 0.997(13) 0.982(13)

6 1.121(11) 0.7516(99) 1.057(14) 0.997(14) 0.997(14) 0.985(14)

7 1.017(10) 0.7384(102) 1.052(15) 0.998(14) 0.998(14) 0.988(14)

Table 18 Non-perturbative
Nf = 2 running in the scheme
α = 1/2. (Our best result
ĉ2/3(μhad) is stressed.)

k uk [U (μhad, 2k+1μhad)]−1 ĉ1/2(μhad) ĉ2/2(μhad) ĉ2/3(μhad ) ĉ3/3(μhad)

−1 4.610 1 1.1818 0.965 0.9661 0.8241

0 3.032(16) 0.9401(55) 1.166(7) 1.016(6) 1.017(6) 0.946(6)

1 2.341(21) 0.8975(68) 1.149(9) 1.031(8) 1.032(8) 0.987(8)

2 1.918(20) 0.8654(71) 1.136(10) 1.039(9) 1.039(9) 1.008(9)

3 1.628(17) 0.8399(74) 1.126(10) 1.043(10) 1.043(10) 1.020(10)

4 1.414(14) 0.8191(78) 1.118(11) 1.045(11) 1.046(11) 1.028(11)

5 1.251(12) 0.8017(81) 1.111(12) 1.047(11) 1.047(11) 1.034(11)

6 1.121(11) 0.7867(85) 1.106(12) 1.049(12) 1.049(12) 1.038(12)

7 1.017(10) 0.7737(89) 1.102(13) 1.050(13) 1.050(13) 1.041(13)

lowest scale reached in the recursion, following [8], is given
by g 2

SF(μhad) = 4.61. Using the coupling SSF from [69],
the smallest value of the coupling that can be reached via
the recursion without leaving the interval covered by data
is g 2

SF(μpt) = 1.017(10), corresponding to n = 7 (i.e. a
total factor scale of 28 in energy, like in the Nf = 0 case).
The matching to the RGI at μpt is again performed using the
2/3-loop values of the γ /β functions, and the same checks
to assess the systematics are carried out as in the quenched
case. Now the value obtained for ĉ(μhad) remains within the
quoted error for all n ≥ 3. Detailed results for the recursion
in either scheme are provided in Tables 17 and 18. We quote
as our final results for the running factor

ĉ(μhad)
∣∣
Nf=2 = 0.998(14), scheme α = 0;

ĉ(μhad)
∣∣
Nf=2 = 1.050(13), scheme α = 1/2. (5.17)

The running is illustrated, and compared with the perturbative
prediction, in Fig. 10, where the value of log(�SF/μhad) =
−1.298(58) from [8] has been used. Using r0�SF =
0.331(22) from [74] and r0 = 0.50 fm, this would cor-
respond to a value of the hadronic matching energy scale
μhad ≈ 477(37) MeV.

5.2.4 Hadronic matching

The computation of the renormalization constants at μhad

needed to match bare hadronic quantities proceeds in a some-
what different way to the quenched case. The value of ZT in
either scheme has been computed at three values of β, namely
β = {5.20, 5.29, 5.40}, again within the typical interval cov-
ered by large-volume simulations with non-perturbatively
O(a) improved fermions and a plaquette gauge action. For
each of the values of β two or three values of the lattice
size L/a have been simulated, corresponding to different
values of L and therefore to different values of the renor-
malized coupling. The resulting values of ZT are given in
Table 19.

The lattice size L/a = 6 used at β = 5.20 corresponds
within errors to L = 1/μhad; for the other two values of β

linear interpolations can be performed to obtain ZT at the
correct value u = 4.610; examples of such interpolations are
illustrated in Fig. 11. The resulting values of ZT can then be
multiplied times the running factors in Eq. (5.17) to obtain the
RGI renormalization factors for eachβ. The result is provided
in Table 20, showing the expected mild β dependence for
fixed L/a.
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Fig. 10 Running of the tensor current for Nf = 2 in the schemes α = 0 (left) and α = 1/2 (right), compared to perturbative predictions using the
1/2-, 2/2-, and 2/3-loop values for γT/β

Table 19 Renormalization constants ZT(g2
0 , L/a) at L = 1/μhad for

Nf = 2

β κc L/a ḡ2
SF(L) Zα=0

T Zα=1/2
T

5.20 0.13600 4 3.65(3) 1.0433(14) 0.9423(11)

6 4.61(4) 1.0797(17) 0.9715(12)

5.29 0.13641 4 3.394(17) 1.0299(13) 0.9403(10)

6 4.297(37) 1.0602(21) 0.9661(14)

8 5.65(9) 1.1057(22) 0.9975(15)

5.40 0.13669 4 3.188(24) 1.0212(12) 0.9416(9)

6 3.864(34) 1.0411(17) 0.9597(13)

8 4.747(63) 1.0760(17) 0.9862(12)

6 Conclusions

In this work we have set up the strategy for a non-perturbative
determination of the renormalization constants and anoma-
lous dimension of tensor currents in QCD using SF tech-

niques, and obtained results for Nf = 0 and Nf = 2. In the
former case we employed both O(a) improved and unim-
proved Wilson fermions, and simulations were performed at
four values of the lattice spacing for each of the fourteen
different values of the renormalization scale, resulting in an
excellent control of the continuum limit. For Nf = 2 our
simulations were carried out with O(a) improved fermions,
at only three values of the lattice for each of the six renor-
malization scales. The precision of the running factors up to
the electroweak scale in the schemes that allow for higher
precision is 0.9 and 1.1%, respectively. The somewhat lim-
ited quality of our Nf = 2 dataset, however, could result in
the quoted uncertainty for that case not being fully free of
unquantified systematics. We have also provided values of
renormalization constants at the lowest energy scales reached
by the non-perturbative running, which allows to match
bare matrix elements computed with non-perturbatively O(a)

improved Wilson fermions and the Wilson plaquette gauge
action.
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Fig. 11 Nf = 2, interpolation to uhad
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Table 20 RGI renormalization
factors ẐT for Nf = 2 β Ẑα=0

T Ẑα=1/2
T

5.20 1.077(15) 1.020(12)

5.29 1.068(15) 1.020(12)

5.40 1.068(15) 1.031(12)

As part of the ALPHA programme, we are currently com-
pleting a similar study in Nf = 3 QCD [39], that builds upon
a high-precision determination of the strong coupling [36–
38] and mass anomalous dimension [9,10,24]. Preliminary
results indicate that a precision ∼ 1% for the running to
low-energy scales is possible even for values of the hadronic
matching scale well below the one reached for Nf = 2.
This is an essential ingredient in order to obtain matrix ele-
ments of phenomenological interest with fully controlled
uncertainties and target precisions in the few percent ball-
park.
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Appendix A: Perturbative improvement

The improvement coefficient cT for the tensor current can,
by definition, be determined by requiring an O(a) improved
approach to the continuum of the renormalized correlation
function at any given order in perturbation theory. As dis-
cussed in the main text, the computation of cT to one loop
has been carried out in [64]; here we reproduce it, mainly as
a crosscheck of our perturbative setup.

We introduce the following notation for the renormalized
tensor correlator kT;R in the chiral limit evaluated with SF
boundary conditions at x0 = T/2,

hT(θ, a/L) ≡ kT;R(T/2). (A.1)

where the θ as well as the a/L dependence have been made
explicit. The one-loop expansion reads

hT = k(0)
T (T/2) + g 2{k(1)

T (T/2) + c̃(1)
t kT

(0)
;bi (T/2)

+am(1)
cr

∂k(0)
T (T/2)

∂m0
+

(
Z (1)

T + 2Z (1)
ζ

)
k(0)

T (T/2)

+ac(1)
T ∂̃0k

(0)
V (T/2)} + O(g 4), (A.2)

where Zζ is the renormalization constant of the boundary
fermionic fields, and cT is the coefficient we are interested
in, providing the O(a) improvement of the operator. The
one-loop value of the two-point functions contains the con-
tribution from the boundary improvement coefficient c̃t; for
am(1)

cr we have employed the asymptotic L/a → ∞ value
from [28,63].

In order to determine c(1)
T we have adopted two different

strategies. The first one proceeds by imposing the condition

hT(θ, a/L)

hT(0, a/L)
= const + O(a2). (A.3)

With some trivial algebra, and observing that ∂̃0k
(0)
V (θ =

0) = 0, we end up with the relation

k̄(1)
T (θ, a/L)

k(0)
T (θ, a/L)

− k̄(1)
T (0, a/L)

k(0)
T (0, a/L)

= −ac(1)
T

∂̃0k
(0)
V (θ, a/L)|x0=T/2

k(0)
T (θ, a/L)

, (A.4)

where k̄T is a shorthand notation for the correlator including
the subtraction of the boundary and mass O(a) terms. The
divergent part of Z (1)

T , as well as of Zζ , cancel out in the ratio,
since they are independent of θ at one loop. Following [75],
in order to remove the constant term on the r.h.s. of Eq. (A.3)
– which is indeed proportional to the difference of the finite
parts at two different values of θ – we take a symmetric
derivative in L , defined as

∂̃L f (L) = 1

2a
[ f (L + a) − f (L − a)] , (A.5)

and apply it to both sides of Eq. (A.4), obtaining

R(θ, a/L) = − ∂̃LC(L)

∂̃L A(L)
= c(1)

T + O(a), (A.6)

withC(L) as the l.h.s of Eq. (A.4), and A(L) the r.h.s. without
the term with c(1)

T .
As a second strategy to determine cT to one loop, one can

exploit the tree-level identities obtained in [75], which relate
k(0)

V , k(0)
T , f (0)

A and f (0)
P , and impose

−k̄(1)
T + 1

3
f̄ (1)

P − 2

3
f̄ (1)

A − Z (1)
T k(0)

T + 1

3
Z (1)

P f (0)
P

−ac(1)
T ∂̃0k

(0)
V |x0=T/2 − 2

3
ac(1)

A ∂̃0 f
(0)

P |x0=T/2

= const + O(a2). (A.7)

After some simple algebra we find

F(θ, a/L) ≡ ∂̃LC(L)

∂̃L A(L)
− c(1)

A = c(1)
T + O(a), (A.8)
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Fig. 12 Extraction of c(1)
T , compared with the result in [64]

where now

C(L) = −k̄(1)
T (L/a) + 1

3
f̄ (1)

P (L/a) − 2

3
f̄ (1)

A (L/a)

− 8

3(4π)2 log(L/a)[k(0)
T (L/a) + f (0)

P (L/a)],
(A.9)

A(L) = a∂̃0k
(0)
V (T/2). (A.10)

Using the results for c(1)
A quoted in [75], we reproduce the

value quoted in [64],

c(1)
T = 0.00896(1)CF. (A.11)

with an error of similar size. The comparison between our
determination and the one in [64] is displayed in Fig. 12. In
all cases, the continuum extrapolation has been performed
using similar techniques to the one employed for the finite
part of renormalization constants (see “Appendix B”).

Appendix B: Continuum extrapolations in perturbation
theory

In this appendix we summarize the techniques used to extrap-
olate our perturbative computations to a/L → 0, a necessary
step in order to obtain scheme-matching and improvement
coefficients. Our approach is essentially an application to the
present context of the techniques discussed in Appendix D
of [72], which have been applied in a number of cases, see
e.g. [28].

The typical outcome of a perturbative computation is a
linear combination of one-loop Feynman diagrams, e.g. the
one yielding the one-loop coefficient Z (1) of a renormal-
ization constant, for N values {l1, . . . , lN } of the variable
l = L/a. We consider the quantity to be a function of l
only. It is possible to identify all divergences appearing in

the quantity of interest at one-loop, which in general means
linear divergences related to the additive renormalization of
the quark masses proportional to the one-loop critical mass
m(1)

cr in the limit L/a → ∞, and the logarithmic divergences
proportional to the (one-loop) anomalous dimension. The
latter is particularly relevant for the present analysis, since it
allows to check the consistency of the fitting procedure and
provides a natural criterion for the choice of the best fitting
ansatz. In the following we consider finite quantities, since
the leading divergence is subtracted, and the critical mass is
appropriately tuned. Considering F(l) as a generic one-loop
interesting quantity, following [72] we conservatively assign
the error

δF(l) = ε(l)|F(l)| , ε(l) =
(
l

2

)3

× 10−14 , (B.1)

since in this case the computation has been carried out in
double precision. This source of error is however completely
subdominant with respect to the systematic fit uncertainty.
As expected, the asymptotic behaviour is (cf. Eq. (4.15))

F(l) = r0 +
n∑

k=1

1

ln
(rk + sk ln(l)) + Rn(l) (B.2)

with a residue Rn(l) that decreases faster than any of the terms
in the sum as l → ∞. In order to determine the coefficients
(rk, sk) we define as our likelihood function a χ2 given by

χ2 = (F − f ξ)T W (F − f ξ) , (B.3)

where F and ξ are the N−column vectors F = (F(l1), . . . ,
F(lN ))T and (2n + 1)−column vector ξ = (r0, r1, . . . , rn,
s1, . . . , s0)

T , f is the N × (2n + 1) matrix

f =

⎛

⎜
⎜⎜
⎝

1 l−1
1 . . . l−n

1 l−1
1 ln(l1) . . . l−n

1 ln(l1)
1 l−1

2 . . . l−n
2 l−1

2 ln(l2) . . . l−n
2 ln(l2)

...
...

...
...

...
...

...

1 l−1
N . . . l−n

N l−1
N ln(lN ) . . . l−n

N ln(lN )

⎞

⎟
⎟⎟
⎠

, (B.4)

andW is in general a matrix with weights which, as suggested
in [72], is omitted from the actual χ2 used. The minimum
condition for our likelihood function is given by

f ξ = PF , (B.5)

where we are assuming that 2n + 1 < N , and P is the
projector to the subspace spanned by the linearly independent
column-vectors of f . A convenient and numerically stable
way to solve Eq. (B.5) is the Singular Value Decomposition
of f

f = USV T , (B.6)

where U is an N × (2n + 1) matrix such that

UTU = 1 UUT = P , (B.7)
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Fig. 13 One-loop
renormalization constants for
the three values of θ = 0, 0.5, 1.
The a/L dependence both
before and after the subtraction
of the leading logarithmic
divergence is shown
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S is a diagonal and V is an orthonormal (2n + 1) × (2n + 1)

matrix. Inserting Eqs. (B.6) into (B.5) one has

ξ = V S−1UT F . (B.8)

Finally the uncertainty of the results ξk is estimated to be

(δξk)
2 =

N∑

l=1

[(V S−1UT )kl ]2(δFl)
2 , (B.9)

with δFk = F(lk). In order to avoid giving excessive weight
to the coarsest lattices, we considered several possible fit
ranges [lmin, lmax], where lmax = 48 and lmin is changed
from 4 to 20. In order to account for a better description of
the dependence on l we explored different values of n from
1 to 4.

In Fig. 13 we show an example of the fitting procedure
described above applied to the one-loop renormalization con-
stant in several renormalization scheme, with and without
subtraction of the logarithmic divergence.

In particular, concerning the fit for the extraction of the
finite parts, we chose as best ansatz the one reproducing the
coefficient of the LO anomalous dimension γ

(0)
T . In particular

for the Wilson action we find γ
(0)

T /s0 = 0.998(5) for both f1
and k1 schemes using n = 3 starting with L/a = 16 as the
smallest lattice. In the case with clover improvement of the
action for the three values of θ = 0 for n = 3 L/a = 14 we
have γ

(0)
T /s0 = 1.001(3); for θ = 0.5, n = 3, and L/a = 10,

γ
(0)

T /s0 = 1.000(6); and finally, for θ = 1.0, n = 3, and
L/a = 10, γ

(0)
T /s0 = 1.000(3).
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