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Abstract In our previous work we have constructed a
model of noncommutative (NC) gravity based on SO(2, 3)�
gauge symmetry. In this paper we extend the model by adding
matter fields: fermions and a U (1) gauge field. Using the
enveloping algebra approach and the Seiberg–Witten map
we construct actions for these matter fields and expand the
actions up to first order in the noncommutativity (deforma-
tion) parameter. Unlike in the case of pure NC gravity, first
non-vanishing NC corrections are linear in the noncommuta-
tivity parameter. In the flat space–time limit we obtain a non-
standard NC Electrodynamics. Finally, we discuss effects of
noncommutativity on relativistic Landau levels of an elec-
tron in a constant background magnetic field and in addition
we calculate the induced NC magnetic dipole moment of the
electron.

Keywords NC SO(2, 3)� gravity · NC electrodynamics ·
NC Landau levels

1 Introduction

In the past several decades there has been a considerable
effort to develop a theory that would resolve singularity issues
that plague the physics of curved space–time and enable us to
think beyond the concepts of Quantum Field Theory (QFT)
and General Relativity (GR). Noncommutative (NC) Field
Theory, as a theory of fields on NC space–time, offers a
new perspective to the problem. In NC Field Theory, space–
time coordinates are proclaimed to be mutually incompat-
ible. Analogously to the Heisenberg’s uncertainty relations
for a conjugate coordinate-momentum pair of a particle, there
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exist a lower bound for the product of uncertainties �xμ�xν

for a pair of two different coordinates. In order to capture this
“pointlessness” of space–time, an abstract algebra of NC
coordinates is introduced as a deformation of the ordinary
commutative space–time structure. These NC coordinates,
denoted by x̂μ, satisfy some non-trivial commutation rela-
tions, and so, it is no longer the case that x̂μ x̂ν = x̂ν x̂μ. The
simplest case of noncommutativity is the so-called canonical
noncommutativity, defined by

[x̂μ, x̂ν] = iθμν, (1.1)

where θμν are components of a constant antisymmetric
matrix. Abandoning the concept of commutative (classical,
smooth) space–time leads to various new physical effects,
such as UV/IR mixing [1–3], new interactions in NC defor-
mations of Standard Model [4–6], fuzzy geometry [7,8] and
many others.
Instead of deforming an abstract algebra of coordinates one
can take an alternative, but equivalent, approach in which
noncommutativity appears in the form of NC products of
functions (NC fields) of commutative coordinates. These
products are called star products (�-products). Specifically,
the canonical noncommutativity (1.1) corresponds to the NC
Moyal–Weyl �-product,

( f̂ � ĝ)(x) = e
i
2 θαβ ∂

∂xα
∂

∂yβ f (x)g(y)|y→x

= f (x) · g(x) + i

2
θαβ∂α f (x)∂βg(x) + O(θ2).

(1.2)

The first term in the expansion of the exponential is the ordi-
nary point-wise multiplication of functions. The constant
deformation parameters θαβ have dimensions of (length)2

and are assumed to be small.1 They are considered to be fun-

1 To be more precise, the Moyal–Weyl �-product should be written as

( f̂ � ĝ)(x) = e
i
2 k̄θ

αβ ∂
∂xα

∂

∂yβ f (x)g(y)|y→x ,
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damental constants, like the Planck length or the speed of
light. However, it is also possible to treat NC deformation
parameters as dynamical fields, see [9,10].
Apart from being an interesting subject by themselves, NC
Field Theories had begun to gain interest when they were
recognised as a low-energy limit of a more fundamental the-
ory of open strings. In the work of Seiberg and Witten [11]
it is argued that coordinate functions of the endpoints of an
open string constrained to a D-brane in the presence of a
constant Neveu–Schwarz B-field, with B ∼ 1/θ , satisfy the
constant noncommutativity algebra (1.1). Thus, any kind of
evidence of noncommutativity of space–time, interpreted as
a low-energy effect of the String Theory, would be of great
significance.
Formulation of pure gravity in a noncommutative space–time
is a very interesting and a very important problem and it has
been investigated using different approaches [12–16]. In our
previous work, we have established a model of pure NC grav-
ity by treating it as a gauge theory of SO(2, 3)� group [17–
20]. The first non-vanishing NC correction to GR is at the
second order in the NC parameter θαβ and it pertains even
when metric is flat thus leading to a non-trivial NC deforma-
tion of Minkowski space [17]. Studying the deformed met-
ric of Minkowski space, it became clear that by introducing
constant noncommutativity of space–time, we are implicitly
working in a preferred coordinate system—the Fermi inertial
coordinates.
We have to remember that if one aims to explain problems
such as dark energy, inflation or construct a NC deformation
of supergravity, one needs to include matter fields and their
couplings with the gravitational field. As a first step towards
including matter fields in the SO(2, 3)� NC gravity model,
we introduced non-interacting Dirac fermions. In [21] we
have found the first order NC correction to the Dirac action
in curved space–time with various new interaction terms. As
in the case of pure gravity, noncommutativity pertains in the
flat space–time limit and causes linear NC deformation of
electron’s dispersion relation. Also, the NC-deformed energy
levels are helicity-dependent, meaning that NC space–time
behaves as a birefringent medium for electrons propagating
in it.
Following the same line of investigation as in [21] we seek
to obtain a complete theory of Noncommutative Electrody-
namics in SO(2, 3)� model of noncommutative gravity that
would be capable of providing some tangible predictions
concerning the potentially observable physical effects of
space–time noncommutativity. To include interacting Dirac
fermions, we upgrade the gauge group to SO(2, 3)� ×U (1)�

Footnote 1 continued
with the small deformation parameter k̄ and arbitrary constant antisym-
metric matrix elements θαβ . In the usual notation k̄ is absorbed in the
matrix elements θαβ and these are called small deformation parameters.

thus introducing electromagnetic field in the framework. New
interaction terms that emerge enable us to study NC Electro-
dynamics both in curved and flat space–time. In this paper we
analyse some phenomenological consequences of this new
model of NC Electrodynamics in the flat space-time.
The paper is organized as follows. To begin with, in the fol-
lowing section, we discuss coupling of matter fields with
gravity in the first order formalism. In particular, we are
interested in incorporating matter fields in the commutative
(undeformed) SO(2, 3) gauge theory of gravity. In Sect. 3 we
generalize results from Sect. 2 to the NC SO(2, 3)� gravity.
Using the Seiberg–Witten map we construct actions and cal-
culate equations of motion for the NC U (1)� gauge field and
the NC Dirac field. Unlike in [21], fermions are now coupled
with the NC U (1)� gauge field and the NC gravity. Finally,
in Sect. 5 we formulate NC Electrodynamics induced by NC
SO(2, 3)� gravity. In the limit of flat space–time, we discuss
the equation of motion of an electron in the background elec-
tromagnetic field. Especially, we find NC corrections to its
energy levels in constant magnetic field, that is, NC correc-
tions to the relativistic Landau levels. In addition, we derive
the induced NC magnetic dipole moment of an electron. We
end the paper with some discussion of the obtained results
and proposals for future research.

2 Matter fields in SO(2, 3) gauge theory of gravity

It is well known that in the first order formalism (gauge theo-
ries of gravity) fermions couple naturally to the gravitational
field. On the other hand, to couple gauge fields to the grav-
itational field one normally requires the existence of Hodge
dual operation. The definition of Hodge dual operation in the
presence of gravitational field (curved space–time) requires
the existence of a metric tensor, which means working in
the second order formalism. This difference becomes even
more evident in the SO(2, 3) model of gravity. Namely, in
this model the basic variable is SO(2, 3) gauge field, which
splits into the SO(1, 3) spin-connection and vierbeins only
after a suitable gauge fixing (symmetry breaking) [17]. In
this section we discuss the construction of actions involving
gauge field and Dirac spinor field in the SO(2, 3) gravity
model.
Let us briefly review the basics of SO(2, 3) gravity the-
ory. We assume that space–time has the structure of D = 4
dimensional Minkowski space. The gauge field takes values
in the SO(2, 3) algebra, ωμ = 1

2ω AB
μ MAB . The generators

of the SO(2, 3) group, MAB , fulfil

[MAB, MCD] = i(ηADMBC + ηBCMAD

− ηACMBD − ηBDMAC ). (2.1)
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The 5D metric is ηAB = diag(+,−,−,−,+). Group
indices A, B, . . . take values 0, 1, 2, 3, 5, while indices
a, b, . . . take values 0, 1, 2, 3. A representation of the alge-
bra (2.1) is given by

Mab = i

4
[γa, γb] = 1

2
σab, M5a = 1

2
γa, (2.2)

where γa are four dimensional Dirac gamma matrices. Then
the gauge potential ω AB

μ decomposes into ω ab
μ and ω a5

μ =
1
l e

a
μ :

ωμ = 1

2
ω AB

μ MAB = 1

4
ω ab

μ σab − 1

2l
eaμγa . (2.3)

The field strength tensor is defined in the usual way by

Fμν = ∂μων − ∂νωμ − i[ωμ,ων] = 1

2
F AB

μν MAB

=
(
R ab

μν − 1

l2
(eaμe

b
ν − ebμe

a
ν )

)σab

4
− F a5

μν

γa

2
, (2.4)

with

R ab
μν = ∂μω ab

ν − ∂νω
ab

μ + ω ac
μ ω cb

ν − ω bc
μ ω ca

ν ,

l F a5
μν = ∇μe

a
ν − ∇νe

a
μ = T a

μν . (2.5)

Equations (2.3), (2.4) and (2.5) suggest that one can identify
ω ab

μ with the spin connection of the Poincaré gauge theory,
ω a5

μ with the vierbeins, R ab
μν with the curvature tensor and

l F a5
μν with torsion. It was shown in the seventies that one

can indeed make such an identification and relate AdS gauge
theory with GR. Different actions were discussed in the lit-
erature, see [22–25]. A necessary step in obtaining GR from
SO(2, 3) gravity model is the gauge fixing, that is, the sym-
metry breaking from local SO(2, 3) down to local SO(1, 3).
In order to break SO(2, 3) gauge symmetry one usually intro-
duces an auxiliary field φ = φA�A [22–24], where �A are
4×4-matrices satisfying Clifford algebra {�A, �B} = 2ηAB .
One representation is obtained through the usual γ -matrices
and it is given by �A = (iγaγ5, γ5). This field is a space–
time scalar and an internal-space vector. It transforms in the
adjoint representation of SO(2, 3) group, i.e.

δεφ = i[ε, φ], (2.6)

where ε = 1
2ε AB

μ MAB is an infinitesimal gauge parameter.
This auxiliary field also satisfies the constraint φAφA = l2.
Note that this field has mass dimension −1.
In our previous work [17] we analysed the pure gravity action
in the SO(2, 3) model and we also constructed its NC gener-
alization. We will not repeat that discussion here. For com-
pleteness we just write the gravity action before and after the
gauge fixing:

S = c1S1 + c2S2 + c3S3,

S1 = il

64πGN
Tr

∫
d4x εμνρσ FμνFρσ φ, (2.7)

S2 = 1

128πGNl
Tr

∫
d4x εμνρσ FμνDρφDσ φφ + h.c.,

(2.8)

S3 = − i

128πGNl
Tr

∫
d4x εμνρσ DμφDνφDρφDσ φφ,

(2.9)

where covariant derivative in the adjoint representation is
given by

Dμφ = ∂μφ − i[ωμ, φ]. (2.10)

We break the SO(2, 3) gauge symmetry by fixing the aux-
iliary field, specifically, we set φa = 0 and φ5 = l, and
obtain

S = − 1

16πGN

∫
d4x

(
c1

l2

16
εμνρσ εabcd R

ab
μν R cd

ρσ

+√−g
(
(c1 + c2)R − 6

l2
(c1 + 2c2 + 2c3)

))
. (2.11)

For generality, we introduced three dimensionless constants
that are a priori undetermined and can be fixed by some
consistency conditions. The Einstein-Hilbert term requires
c1 + c2 = 1, while the absence of the cosmological con-
stant is provided with c1 + 2c2 + 2c3 = 0. Applying both
constraints leaves one free parameter.

Now we study the coupling of matter fields with gravity
in the framework of the SO(2, 3) model.

2.1 U (1) gauge field

In order to include the electromagnetic interaction of elec-
trons in our framework, we upgrade the original SO(2, 3)

gauge group to SO(2, 3) × U (1). Gauge potential for the
whole gauge group, the master potential, consists of two inde-
pendent parts:

�μ = ωμ + Aμ. (2.12)

The first part is the already mentioned SO(2, 3) gauge poten-
tial (2.3) and the second part, Aμ, is the electromagnetic
potential.
The field strength associated with the master gauge potential
�μ is

Fμν = ∂μ�ν − ∂ν�μ − i[�μ,�ν] , (2.13)

and it can be decomposed as

Fμν = Fμν + Fμν , (2.14)

where the gravity field strength Fμν is given by (2.4) and

Fμν = ∂μAν − ∂ν Aμ (2.15)

is theU (1) field strength tensor, i.e. the electromagnetic field.
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Following the approach of [26] we define a SO(2, 3) invari-
ant action for the U (1) gauge field as follows:

SA = − 1

16l
Tr

∫
d4x εμνρσ

(
f FμνDρφDσ φφ

+ i

3! f f DμφDνφDρφDσ φφ
)

+ h.c. . (2.16)

The action (2.16) includes an additional auxiliary field f

f = 1

2
f ABMAB, δε f = i[ε, f ] (2.17)

with the gauge parameter

ε = 1

2
εABMAB + α (2.18)

consisting of the SO(2, 3) and the U (1) part. We see from
(2.17) that the field f transforms in the adjoint representa-
tion of SO(2, 3) and it is invariant under U (1), i.e. it is not
charged. Its role is to produce the canonical kinetic term for
the U (1) gauge field in curved space-time since we cannot
define the Hodge dual operation without prior knowledge of
the metric tensor.
The full covariant derivative of the field φ is defined as

Dμφ = ∂μφ − i[�μ, φ] = ∂μφ − i[ωμ, φ]. (2.19)

Thus we see that the field φ is invariant under theU (1) gauge
transformations. This simplification is a peculiarity of the
Abelian U (1) group and it does not hold in a more general
case of non-Abelian Yang–Mills theory.
The action (2.16) can be rewritten in a more explicit form as

SA = − 1

16l

∫
d4x εμνρσ

×
{

1

4
f AB F CD

μν (Dρφ)E (Dσ φ)FφGTr(MABMCD�E�F�G)

+ i

24
f AB f CD(Dμφ)E (Dνφ)F (Dρφ)G(Dσ φ)HφR

× Tr(MABMCD�E�F�G�H�R)

+ 1

2
f ABFμν(Dρφ)E (Dσ φ)FφGTr(MAB�E�F�G)

}
+ h.c.

(2.20)

After calculating traces (see Appendix A) we obtain

SA = − i

32l

∫
d4x εμνρσ

×
{
f AB F CD

μν (Dρφ)E (Dσ φ)FφG(ηFGεABCDE

+ 2ηADεBCEFG)

− 2i f ABFμν(Dρφ)E (Dσ φ)FφGεABEFG

− i

6
f AB fAB(Dμφ)E (Dνφ)F (Dρφ)G(Dσ φ)HφRεEFGHR

}
+ h.c.

(2.21)

The first term in (2.21) is purely imaginary and it will vanish
because we have defined SA to be real by adding the corre-
sponding hermitian conjugate terms. Thus, after the gauge
fixing, when (Dμφ)a = eaμ and (Dμφ)5 = 0, the action
reduces to

SA = −1

8

∫
d4x εμνρσ

{
f abFμνεabe f e

e
ρe

f
σ

+ 1

12
f AB fAB εe f ghe

e
μe

f
ν e

g
ρe

h
σ

}

= 1

2

∫
d4x e

(
f abeμ

a e
ν
bFμν+1

2
( f ab fab+2 f a5 f 5

a )
)
.

(2.22)

with the vierbein determinant e = det (eaμ) = √−g.
Equations of motion (EOMs) for the components of the aux-
iliary field f are

fa5 = 0, fab = −eμ
a e

ν
bFμν. (2.23)

Using these EOMs we can eliminate the auxiliary field in the
action (2.22). This leaves us with the well known action for
pure U (1) gauge field in curved space–time:

SA = −1

4

∫
d4x e gμρgνσFμνFρσ . (2.24)

2.2 Dirac fermions

The Dirac spinor field ψ transforms in the fundamental rep-
resentation of SO(2, 3) ×U (1) gauge group, i.e.

δεψ = iεψ = i

2
εABMABψ + iαψ, (2.25)

where, as in (2.18), εAB are infinitesimal antisymmetric
gauge parameters of SO(2, 3) gauge group and α is an
infinitesimal gauge parameter of U (1) gauge group. The
covariant derivative of the full SO(2, 3)×U (1) gauge group
in the fundamental representation is given by

Dμψ = ∂μψ − i�μψ = ∂μψ − i(ωμ + Aμ)ψ

= ∇̃μψ + i

2
eaμγaψ, (2.26)

where we introduced ∇̃μ = ∇μ − i Aμ as a covariant deriva-
tive for SO(1, 3)×U (1) gauge group, and ∇μ is the ordinary
SO(1, 3) covariant derivative. In addition, we set q = −1
for an electron.
The fermionic action consists of two parts: the kinetic term
Sψ,kin (which also contains the interaction) and the mass term
Sψ,m . They are given by

Sψ,kin = i

12

∫
d4x εμνρσ

{
ψ̄DμφDνφDρφDσ ψ − Dσ ψ̄DμφDνφDρφψ

}
, (2.27)
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Sψ,m = i

144

(m
l

− 2

l2

) ∫
d4x εμνρσ ψ̄

{
DμφDνφDρφDσ φφ

−DμφDνφDρφφDσ φ + DμφDνφφDρφDσ φ
}
ψ + h.c.,

(2.28)

and they were investigated in detail in [21], both classi-
cally and noncommutatively, but without any reference to the
electromagnetic interaction. The only difference however, is
that the covariant derivative of the Dirac field now contains
an additional term, −i Aμ, associated with the U (1) gauge
group. This will give us the interaction term for the Dirac
field.
After the symmetry breaking the total spinor action Sψ , given
by the sum of (2.27) and (2.28), reduces to

Sψ = Sψ,kin + Sψ,m

= i
∫

d4x e ψ̄
(
eσ
s γ s(∇σ − i Aσ ) − m

)
ψ. (2.29)

This is the familiar action for a U (1) charged Dirac fermion
in curved space–time.

3 NC matter fields

Let us now generalize the setup from the previous section
and define actions for the NC U (1)� gauge field and the NC
Dirac fermion. This problem was also treated in [26–28].
We will work in the canonically deformed NC space–time
with the NC Moyal–Weyl �-product (1.2). However, our con-
struction can straightforwardly be generalized to an arbitrary
noncommutative space–time coming from an Abelian twist
deformation.
To establish the NC field theory with SO(2, 3)� × U (1)�
gauge group, we introduce the NC spinor field ψ̂ and the NC
gauge potential �̂μ. The corresponding NC field strength
tensor is defined as

F̂μν = ∂μ�̂ν − ∂ν�̂μ − i[�̂μ
�, �̂ν]. (3.1)

The covariant derivatives of the NC spinor ψ̂ and the auxiliary
field φ̂ are defined by

Dμψ̂ = ∂μψ̂ − i�̂μ � ψ̂, (3.2)

Dμφ̂ = ∂μφ̂ − i[�̂μ
�, φ̂]. (3.3)

The fields ψ̂ and φ̂, along with their covariant derivatives
(3.2) and (3.3), transform in the fundamental and the adjoint
representation, respectively, under NC infinitesimal gauge
transformations, i.e.

δ�
εψ̂ = i�̂ε � ψ̂ , δ�

εDμψ̂ = i�̂ε � Dμψ̂,

δ�
ε φ̂ = i[�̂ε

�, φ̂], δ�
εDμφ̂ = i[�̂ε

�, Dμφ̂]. (3.4)

The transformation laws for NC gauge potential and field
strength are

δ�
ε�̂μ =∂μ�̂ε − i[�̂μ

�, �̂ε],
δ�
ε F̂μν =i[�̂ε

�, F̂μν].
(3.5)

We see that NC field strength F̂μν transforms in the adjoint
representation of the deformed gauge group SO(2, 3)� ×
U (1)� just as ordinary field strength Fμν transforms in the
adjoint representation of SO(2, 3) × U (1). In the previous
transformation rules, �̂ε is the NC gauge parameter of the full
SO(2, 3)� ×U (1)� gauge group, which in the commutative
limit reduces to (2.18).
The Seiberg–Witten (SW) map enables us to express NC
fields in terms of the corresponding commutative fields, with-
out introducing new degrees of freedom (new fields) in the
theory. NC fields are represented as power series in the defor-
mation parameter θαβ , with expansion coefficients built out
of the commutative quantities like φ, ψ and �μ. For example:

�̂μ = �μ − 1

4
θαβ{�α, ∂β�μ + Fβμ} + O(θ2), (3.6)

φ̂ = φ − 1

4
θαβ{�α, (∂β + Dβ)φ} + O(θ2), (3.7)

ψ̂ = ψ − 1

4
θαβ�α(∂β + Dβ)ψ + O(θ2), (3.8)

where �μ is the commutative master gauge potential (2.12),
while ψ and φ are the commutative Dirac spinor and the aux-
iliary field, respectively. Using the SW map, we can derive
the first order NC corrections to the field strength, and the
covariant derivatives of adjoint and spinor field. They are
given by

F̂μν = Fμν − 1

4
θαβ{�α, (∂β + Dβ)Fμν}

+1

2
θαβ{Fαμ, Fβν} + O(θ2),

Dμφ̂ = Dμφ − 1

4
θαβ{�α, (∂β + Dβ)Dμφ}

+1

2
θαβ{Fαμ, Dβφ} + O(θ2),

Dμψ̂ = Dμψ − 1

4
θαβ�α(∂β + Dβ)Dμψ

+1

2
θαβ

FαμDβψ + O(θ2), (3.9)

with the commutative field strength tensor Fμν defined in
(2.14). All these results will be put into use in the next sub-
section where we turn to the NC version of the actions (2.16)
and (2.27, 2.28) and calculate their perturbative expansions
in powers of the deformation parameter θαβ .
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3.1 NC U (1) gauge field

To construct a NC model ofU (1) gauge field coupled to grav-
ity with SO(2, 3)� ×U (1)� gauge symmetry, we canonically
deform action (2.16):

ŜA = − 1

16l
Tr

∫
d4x εμνρσ

(
f̂ � F̂μν � Dρφ̂ � Dσ φ̂ � φ̂

+ i

3! f̂ � f̂ � Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ φ̂ � φ̂
)

+ h.c.

(3.10)

In addition to the NC master gauge field �̂ and the NC aux-
iliary field φ̂ we also have to introduce a NC generalization
of the auxiliary field f defined in (2.17). The NC field f̂
transforms in the adjoint representation of the full NC gauge
group

δ�
ε f̂ = i[�̂ε

�, f̂ ] . (3.11)

The transformation laws (3.5) and (3.11) ensure that the
action (3.10) is invariant under SO(2, 3)�×U (1)� NC gauge
transformations.
The general rule for calculating first order NC correction to
the �-product of two fields states that

(
Â � B̂

)(1) = Â(1)B + AB̂(1) + i

2
θαβ∂αA∂βB. (3.12)

If both of these two fields transform in the adjoint represen-
tation, one can show [29] that the following statement holds,

(
Â � B̂

)(1) = − 1

4
θαβ {�α, (∂β + Dβ)AB} + i

2
θαβDα ADβ B

+ cov( Â(1))B + Acov(B̂(1)), (3.13)

where cov( Â(1)) is the covariant part of A′s first order NC
correction, and cov(B̂(1)), the covariant part of B ′s first order
NC correction. By using this specialised rule (3.13) we sig-
nificantly reduce the amount of calculation and immediately
obtain the covariantized result, which is not the case with
the general rule (3.12). After some simplification, including
a few partial integrations, the first order NC correction to ŜA
is given by

Ŝ(1)
A = Ŝ(1)

A f + Ŝ(1)
A f f

= 1

32l
θαβ Tr

∫
d4x εμνρσ

{
1

2
{Fαβ, f }FμνDρφDσ φφ

+ i f DβFμνDα(DρφDσ φφ)

− f {Fαμ, Fβν}DρφDσ φφ − i f FμνDα(DρφDσ φ)Dβφ

− i f Fμν(DαDρφ)(DβDσ φ)φ

− f Fμν [{Fαρ, Dβφ}, Dσ φ]φ
+ i

3!
(

1

2
{Fαβ, f 2}DμφDνφDρφDσ φφ

− f 2{[{Fαμ, Dβφ}, Dνφ], DρφDσ φ}φ

− i f 2
(
Dα(DμφDνφDρφDσ φ)Dβφ

+ Dα(DμφDνφDρφ)(DβDσ φ)φ

+ (
Dα(DμφDνφ)(DβDρφ)

+ (DαDμφ)(DβDνφ)Dρφ
)
Dσ φφ

))}
+ h.c. (3.14)

As we can see, all terms are manifestly SO(2, 3) × U (1)

invariant. This property is insured by the Seiberg–Witten
map. The f -part of the obtained first order action will be
denoted as Ŝ(1)

A f and the f 2-part as Ŝ(1)
A f f .

After the gauge fixing by choosing φa = 0 and φ5 = l, the
Ŝ(1)
A f part becomes

Ŝ(1)
A f =

6∑
j=1

Ŝ(1)
A f. j , (3.15)

with

Ŝ(1)
A f.1 = −1

8
θαβ

∫
d4x e

{
− 1

16
εabcdε

rspt eμ
p e

ν
t F

ab
αβ f cd Fμνrs

+ F ab
αβ f c5(Fμνa5 eμ

b e
ν
c + 1

2
Fμνc5e

μ
a e

ν
b

)

+ F a5
αβ f cd

(
Fμνd5e

μ
a e

ν
c + 1

2
Fμνa5 eμ

c e
ν
d

)

+ 1

4
F mn

μν eμ
me

ν
n

(
F ab

αβ fab

+ 2F a5
αβ fa5

) + 2Fαβ f cdFμνe
μ
c e

ν
d

}
, (3.16)

Ŝ(1)
A f.2 = − 1

4l
θαβ

∫
d4x e

{
eμ
d

(
f d
c (DβF

c5
αμ ) + f 5

c (DβF
dc

αμ )
)

− l(∇αe
r
ρ)

(
f d
c (DβF

mc
μν )

+ f d
5 (DβF

m5
μν )

)
(eμ

d e
ν
me

ρ
r + eμ

r e
ν
de

ρ
m + eμ

me
ν
r e

ρ
d )

}
,

(3.17)

Ŝ(1)
A f.3 = 1

4
θαβ

∫
d4x e

{
− 1

16
εambnε

cdpt eμ
p e

ν
t fcd F

am
αμ F bn

βν

+ F am
αμ F b5

βν

(
fa5e

μ
me

ν
b + fb5e

μ
a e

ν
m

) + 2 f cdFαμFβνe
μ
c e

ν
d

+ 1

4
eμ
c e

ν
d

(
f cd

(
F am

αμ Fβνam + 2F a5
αμ Fβνa5

)

+ 4 fm5F
dm

αμ F c5
βν

)}
, (3.18)

Ŝ(1)
A f.4 = − 1

16l
θαβ

∫
d4x e εμνρσ

×
{
f a5F bc

μν (∇αe
d
ρ)eδ

ae
λ
be

γ
c
(
gσβεδλγ τ e

τ
d − εδλγ σ eβd

)

+ f abF c5
μν (∇αe

d
ρ)eδ

ae
λ
be

γ
c
(
gσβεδλγ τ e

τ
d − εδλγ σ eβd

)

− 2(∇αe
e
ρ)εδλσβe

δ
be

λ
e

(
f a5F b

μν a + f abFμνa5
)

+ 1

2l
εδλγ τ e

δ
ae

λ
be

γ
c e

τ
d f

abF cd
μν gαρgσβ

+ 2

l
( f abF c

μν a − f b5F c5
μν )gαρεδλσβe

δ
be

λ
c

}
,

Ŝ(1)
A f.5 = 1

64
θαβ

∫
d4x e εμνρσ εδλγ τ e

δ
ae

λ
be

γ
c e

τ
d f

abF cd
μν

×
(
(∇αe

e
ρ)(∇βeσe) + 1

l2
gαρgσβ

)
, (3.19)
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Ŝ(1)
A f.6 = − 1

32
θαβ

∫
d4x e εμνρσ

×
{
εδλβσ e

δ
ee

λ
f F

e f
αρ ( f abFμνab + 2 f a5Fμνa5)

+ 4εδλβσ e
δ
ee

λ
b

(
f abFμνa5F

e5
αρ + f a5F b

μν a F
e5

αρ

+ 2 f abFαρFμν

)}
. (3.20)

After the symmetry breaking, the Ŝ(1)
A f f part of the action

becomes:

Ŝ(1)
A f f = 1

16
θαβ

∫
d4x e Fαβ f 2 + h.c.

= 1

8
θαβ

∫
d4x e Fαβ( f ab fab + 2 f a5 f 5

a ). (3.21)

The gravitational part (that which includes quantities like
curvature and torsion) of Ŝ(1)

A f f is purely imaginary and it
vanishes after adding its hermitian conjugate and so we are
left with (3.21).
Now we need to evaluate the action ŜA = Ŝ(0)

A + Ŝ(1)
A on the

equations of motion (EOMs) of the auxiliary field f , up to
first order in the NC parameter θαβ . The EOMs are obtained
by varying ŜA in fab and fa5 independently and we calculate
EOMs up to first order in the NC parameter θαβ . The first
order action, evaluated on the EOMs of the field f , denoted as
Ŝ(1)
AEOM , has two contributions. The first contribution comes

from evaluating the first order action Ŝ(1)
A on the zeroth order

EOMs which have been already calculated in Sect. 2.1 and
are given by (2.23). The second contribution comes from
evaluating the zeroth order action Ŝ(0)

A on the first order EOMs
for the field f . It is straightforward, although tedious, to
compute the first order EOMs, but actually there is no need
for that. It can be readily demonstrated that if we work only up
to first order, the zeroth order NC action (2.22) is annihilated
after inserting the first order EOMs for f , whatever they
may be. This is the consequence of the zeroth order equations
(2.23). Thus, we only need to insert zeroth order terms (2.23)
in the first order action Ŝ(1)

A . The resulting first order action
is a sum

Ŝ(1)
AEOM =

6∑
j=1

Ŝ(1)
AEOM f. j + Ŝ(1)

AEOM f f . (3.22)

The corresponding terms are given by

Ŝ(1)
AEOM f.1 = 1

32
θαβ

∫
d4x e

{
Fμν Rμνab

(
R ab

αβ − 2

l2
eaαe

b
β

)

+ Fρσ eaρe
b
σ

(
Rμνab R

cd
αβ eμ

c e
ν
d − 2

l2
Rαβab

)

+ 4Fρμecρ
(
Rμνac R

ab
αβ eν

b − 2

l2
Rμβace

a
α

)

+ Fλτ e
λ
ae

τ
b R

ab
αβ

(
R mn

μν eμ
me

ν
n

− 12

l2
) + 2

l2
FμνT a

αβ

(
Tμνa − 2Tρνme

ρ
a e

m
μ

)

− 2

l2
Fαβ

(
R mn

μν eμ
me

ν
n − 12

l2
− 4l2FμνFμν

)}
, (3.23)

Ŝ(1)
AEOM f.2 = 1

4
θαβ

∫
d4x e

{
− (∇β R

mc
μν )(∇αe

r
ρ)eλ

c

× (
eν
m(F μ

λ eρ
r − F ρ

λ eμ
r ) + F ν

λ eμ
r e

ρ
m

)

+ 1

l2
F μ

ρ eρ
c

(∇βT
c

αμ + eβb R
bc

μν

)

− 4

l2
F μ

ν (∇αe
r
ρ)(∇βe

m
μ )eν

me
ρ
r

− 1

l2
(∇αe

r
ρ)eρ

r

(
eν
cF μ

β T c
μν − eν

cF μ
ν T c

μβ

)

+ 1

2l2
T r

αβ T c
μν F ν

λ eλ
c e

μ
r

+ 1

l2
(∇αe

r
ρ)eν

r

(
T m

μν

(F μ
β eρ

m − F ρ
β eμ

m

)

+ T m
βν F ρ

μ eμ
m

)

+ 2

l2
F ρ

λ eλ
c (∇αe

r
ρ)(∇βe

c
ν)e

ν
r + 1

l4
Fαβ

}
, (3.24)

Ŝ(1)
AEOM f.3 = − 1

16
θαβ

∫
d4x e

{
Fμν

(
Rβνam

× (
R am

αμ − 4

l2
eaαe

m
μ

) + 8FαμFβν

)

+ Fλτ R
am

αμ R bn
βν

(
eμ
a e

ν
me

λ
be

τ
n + eλ

ae
τ
me

μ
b e

ν
n

+ 2eλ
ne

τ
m(eμ

a e
ν
b − eν

ae
μ
b )

)

+ 2

l2
eλ
ne

τ
b

(
2Fατ R

bn
βλ − Fλτ R

bn
αβ

)

+ 2

l2
FμνT a

αμ Tβνa

}
, (3.25)

Ŝ(1)
AEOM f.4 + Ŝ(1)

AEOM f.5 = 1

16
θαβ

∫
d4x e

×
{

+ R ab
μν (∇αe

m
ρ )(∇βeσm)

(
Fμνeρ

a e
σ
b + Fρσ eμ

a e
ν
b − 4Fμρeν

ae
σ
b

)

− 1

l2
R ab

μν

(Fμνeαaeβb + Fαβe
μ
a e

ν
b + 4Fμ

βe
ν
ae

σ
b

)

− 1

l2
Fρσ (∇αe

m
ρ )(∇βeσm)

+ 2

l2
T c

μν (∇αe
d
ρ)

(
Fμν(2eρ

c eβd − eρ
d eβc)

+ 2F μ
β (eρ

c e
ν
d − eρ

d e
ν
c )

+ 2Fρμ(2eν
c eβd − eν

deβc)

+ 2Fρ
βe

μ
c e

ν
d

)
− 2

l2
FρμTμνcT

d
αβ ecρe

ν
d

− 4

l2
Tβνa(∇αe

d
ρ)eaλ

(Fλνeρ
d − Fλρeν

d

)

+ 4

l2
R c

βν ae
a
λ

(Fλνeαc − Fλ
αe

ν
c

) − 6

l4
Fαβ

}
,

(3.26)

Ŝ(1)
AEOM f.6 = − 1

16
θαβ

∫
d4x e

{
Fκξ eaκe

b
ξ e

μ
e e

ν
f

× (
R ef

αβ Rμνab − 2R ef
βν Rαμab

) + 8Fμν
(FαβFμν

− 2FαμFβν

) + 2

l2
Fμνeaμe

b
ν Rαβab

− 4

l2
Fβνε

ν
a e

ρ
b R

ab
αρ + 4

l2
Fκμeaκe

ρ
e

(
TρμaT

e
αβ

+ TμβaT
e

αρ + TβρaT
e

αμ

) − 8

l4
Fαβ

}
, (3.27)

Ŝ(1)
AEOM f f = 1

8
θαβ

∫
d4x e FαβFμνFμν . (3.28)
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3.2 NC Dirac fermion

The non-interacting Dirac field has already been treated in the
framework of SO(2, 3)� model in [21] where we proposed
an NC action for Dirac spinor coupled with gravity. It is the
canonically deformed version of the classical action given by
the sum of (2.27) and (2.28)

Ŝψ = Ŝψ,kin + Ŝψ,m

= i

12

∫
d4x εμνρσ

{̂̄ψ � (Dμφ̂) � (Dν φ̂) � (Dρφ̂) � (Dσ ψ̂)

− (Dσ
̂̄ψ) � (Dμφ̂) � (Dν φ̂) � (Dρφ̂) � ψ̂

}

+ i

144

(m
l

− 2

l2

) ∫
d4x εμνρσ ̂̄ψ �

{
Dμφ̂ � Dν φ̂

� Dρφ̂ � Dσ φ̂ � φ̂

− Dμφ̂ � Dν φ̂ � Dρφ̂ � φ̂ � Dσ φ̂

+ Dμφ̂ � Dν φ̂ � φ̂ � Dρφ̂ � Dσ φ̂
}

� ψ̂ + h.c. (3.29)

Expanding this action via the SW map leads to a non-
vanishing first order NC correction after the symmetry break-
ing. To include interaction, we generalize the result in [21]
by making substitutions ∇μ → ∇̃μ = ∇μ − i Aμ and
Fμν → Fμν = Fμν +Fμν . The fermionic mass term is also
modified due to inclusion of theU (1) gauge field. Beside the
generalization of the covariant derivative, an additional term
of the type ψ̄Fαβψ appears

Ŝ(1)
ψ,m = θαβ

4

(
m − 2

l

) ∫
d4x e ψ̄

×
{

− i(∇αe
a
μ)eμ

a ∇̃β + 1

6
ηab(∇αe

a
μ)(∇βe

b
ν)σ

μν

− 1

3
(∇αe

a
μ)(∇βe

b
ν)(e

μ
a e

ν
c − eμ

c e
ν
a)σ

c
b

− 1

9l
(∇αe

a
μ)eμ

a γβ − 1

24
R ab

αβ σab

− 1

3
R ab

αμ eμ
a e

c
βσbc − 1

18l
T a

αβ γa − 7

18l
T a

αμ eμ
a γβ

− 1

2l2
σαβ − 3

2
Fαβ

}
ψ + h.c. (3.30)

The complete result for the first order NC correction to the
kinetic part after the substitution [i.e. inclusion ofU (1) gauge
field] is given by:

Ŝ(1)
ψ,kin = 1

8
θαβ

∫
d4x e ψ̄

×
{

− R ab
αμ

(
eμ
a γb + i

2
eμ
c εcabd γ dγ 5

)
∇̃β

+ 1

2
R ab

αβ

(
eσ
b γa − i

2
ε d
abc eσ

d γ cγ 5
)
∇̃σ

− i

3
R ab

αμ ε d
abc ecβ(eμ

d e
σ
s − eμ

s e
σ
d ) γ sγ 5∇̃σ

+ i

l
T a

αμ

(
eμ
a − ieμ

b σ b
a

)
∇̃β

− i

l
T a

αβ

(
eσ
a + i

2
eμ
a σ σ

μ

)
∇̃σ

− 2

3l
T a

αμ

(
ε cd
ab ebβe

μ
c e

σ
d γ 5∇̃σ + 3

4l
eμ
a γβ − eβaγ

μ
)

+ 7i

6l2
ε d
abc eaαe

b
βe

σ
d γ cγ 5∇̃σ

− 2
(
(∇αe

a
μ)(eμ

a e
σ
b − eσ

a e
μ
b )γ b + 1

l
σ σ

α

)
∇̃β ∇̃σ

+ i(∇αe
a
μ)(∇βe

b
ν )e

μ
c e

ν
de

σ
s

(2

3
ε cds
b γa − ηabε

cdrsγr

)
γ5∇̃σ

− 2

3l
ecα(∇βe

b
ν )ε

ds
bc eν

de
σ
s γ5∇̃σ

− 1

l
(∇αe

a
μ)(eμ

a e
σ
b − eσ

a e
μ
b )ecβσ b

c∇̃σ

− 1

l
(∇αe

a
μ)

(
4ieμ

a + eμ
b σ b

a

)
∇̃β − 8

3l3
σαβ

+ 1

16l
R ab

αβ σab − 1

2l
R ab

αμ

(5

3
eμ
a e

c
β + eβae

μc
)
σbc

− 3

4l2
T a

αβ γa

+ 2

3l
(∇αe

a
μ)(∇βe

b
ν )

(
ηabσ

μν − 2(eμ
a e

ν
c − eμ

c e
ν
a)σ

c
b

)

− 1

2l2
(∇αe

a
μ)

(
3eμ

a γβ − eβaγ
μ
)

+ 3iFαβe
σ
s γ s∇̃σ

− 2iFαμe
μ
mγm∇̃β − 5

l
Fαβ

}
ψ + h.c.. (3.31)

Apart from the change in covariant derivative, the last three
terms in the action (3.31), those that include the electromag-
netic field strength Fμν , are completely new. It is important
that all three of them pertain in the limit of flat space–time
and this leads to new phenomenological consequences con-
cerning NC electrodynamics. Putting the pieces together, we
come to the action for NC electrodynamics in curved space–
time up to the first order in deformation parameter. It is given
by

Ŝ = Ŝ(0) + Ŝ(1)
ψ,kin + Ŝ(1)

ψ,m + Ŝ(1)
AEOM f + Ŝ(1)

AEOM f f . (3.32)

This action is hermitian and invariant under local SO(1, 3)×
U (1) transformations. From it we can derive the Dirac equa-
tion for an electron and the Maxwell’s electromagnetic field
equations in curved noncommutative space–time. Although
this calculation is straightforward, we will not peruse it now.
Instead we will investigate in detail the flat NC space–time
limit.

4 Flat space–time NC electrodynamics in SO(2, 3)�
model

Although the flat space–time limit might seem too much a
simplification, nevertheless in this section we will show that
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interesting and non-trivial results can be obtained. The action
for NC electrodynamics in flat space–time up to the first order
in θαβ is given by

Ŝ f lat = Ŝ(0)
f lat + Ŝ(1)

f lat

=
∫

d4x ψ̄(i /D − m)ψ − 1

4

∫
d4x FμνFμν

+ θαβ

∫
d4x

(1

2
FαμFβνFμν − 1

8
FαβFμνFμν

)

+ θαβ

∫
d4x ψ̄

(
− 1

2l
σ σ
α DβDσ + 7i

24l2
ε

ρσ
αβ γργ5Dσ

−
(

m

4l2
+ 1

6l3

)
σαβ + 3i

4
Fαβ /D − i

2
Fαμγ μDβ

−
(

3m

4
− 1

4l

)
Fαβ

)
ψ, (4.1)

where we introduced flat space–time covariant derivative
Dμ = ∂μ − i Aμ. We notice immediately that this action
is different from actions for NC Electrodynamics already
present in the literature [30–33]. The new terms appear as
residual from the gravitational interaction and they will lead
to some non-trivial phenomena, like a deformed dispersion
relation and deformed propagator for fermions. Also, we see
the appearance of new interaction terms between fermions
and the electromagnetic field specific to the SO(2, 3)�
model.

4.1 Deformed equations of motion

By varying with respect to Aρ we obtain NC Maxwell equa-
tion with sources in flat space–time. Up to first order the
equation is given by

∂μFμρ − 1

4
θαβFαβ∂μFμρ − 1

2
θαρFαν∂μFμν

+ θαβ∂μ(F μ
α F ρ

β )

= −ψ̄γ ρψ − i

2l
θαρψ̄σ σ

α Dσ ψ − i

2l
θαβψ̄σ ρ

α Dβψ

+ i

2l
θαβ∂β(ψ̄σ ρ

α ψ)

− 7

24l2
θαβε

λρ
αβ ψ̄γλγ5ψ − i

2
θαβ∂α(ψ̄γ ρDβψ)

+ i

2
θρβ∂μ(ψ̄γ μDβψ) + 1

2l
θαρ∂α(ψ̄ψ). (4.2)

By varying NC action (4.1) with respect to ψ̄ we obtain a
deformed Dirac equation for an electron coupled to the elec-
tromagnetic field Aμ

(
i /∂ − m + /A + θαβMαβ

)
ψ = 0, (4.3)

where θαβMαβ is given by

θαβMαβ = θαβ

{
− 1

2l
σ σ
α DβDσ + 7i

24l2
ε

ρσ
αβ γργ5Dσ −

×
(

m

4l2
+ 1

6l3

)
σαβ

+ 3i

4
Fαβ /D − i

2
Fαμγ μDβ −

(
3m

4
− 1

4l

)
Fαβ

}
.

(4.4)

From (4.4) we immediately see that there will be new inter-
action terms in (4.3). Remember that for electron q = −1.

5 Electron in background magnetic field

We will use the deformed Dirac equation (4.3) with (4.4)
to investigate the special case of an electron propagating in
constant magnetic field B = Bez . We choose the gauge Aμ =
(0, By, 0, 0) accordingly. Then, an appropriate ansatz [34]
for (4.3) is

ψ =
(

ϕ(y)
χ(y)

)
e−i Et+i px x+i pz z . (5.1)

The spinor components and the energy function are all rep-
resented as perturbation series in powers of the deformation
parameter,

ϕ = ϕ(0) + ϕ(1) + O(θ2) , (5.2)

χ = χ(0) + χ(1) + O(θ2) , (5.3)

E = E (0) + E (1) + O(θ2). (5.4)

Inserting the ansatz (5.1) in the Dirac equation (4.3) we obtain

[
Eγ 0 − pxγ

1 + iγ 2 d

dy
− pzγ

3 − m + Byγ 1 + θαβMαβ

]

(
ϕ(y)
χ(y)

)
= 0. (5.5)

The zeroth order (undeformed) equation is given by

[
E (0)γ 0 − pxγ

1 + iγ 2 d

dy
− pzγ

3 − m + Byγ 1
](

ϕ(0)

χ(0)

)
= 0,

(5.6)

while the first order equation is
[
E (0)γ 0 − pxγ

1+iγ 2 d

dy
− pzγ

3 − m + Byγ 1
] (

ϕ(1)

χ(1)

)

= −
[
E (1)γ 0 + θαβMαβ

](
ϕ(0)

χ(0)

)
. (5.7)
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Bearing in mind that the adjoint of (5.6) is

ψ̄(0)

[
E(0)γ 0 − pxγ

1 − iγ 2
←−
d

dy
− pzγ

3 − m + Byγ 1

]
= 0,

(5.8)

after multiplying (5.7) by ψ̄(0) from the left and integrating
over y we obtain:

E (1)

∫
dy ψ̄(0)γ 0ψ(0) = −θαβ

∫
dy ψ̄(0)Mαβψ(0).

Therefore, the NC energy correction can be calculated as

E (1) = −θαβ
∫

dy ψ̄(0)Mαβψ(0)

∫
dy ψ̄(0)γ 0ψ(0)

. (5.9)

Let us calculate explicitly the zeroth order solution ψ(0).
From the unperturbed Eq. (5.6) we can derive the equation
for ϕ(0) spinor component. It is given by
[

d2

dy2 − (px − By)2 + (E(0))2 − p2
z − m2 − Bσ3

]
ϕ(0)(y) = 0.

It is well known that the unperturbed energy levels of an elec-
tron in constant magnetic field (relativistic Landau levels) are

E (0)
n,s =

√
p2
z + m2 + (2n + s + 1)B, (5.10)

wheren is the principal quantum number andn = 0, 1, 2, . . . ,
while s = ±1 are the eigenvalues of the matrix σ3.
The complete undeformed Dirac spinor is

ψ(0)
n,s =

(
ϕ

(0)
n,s

χ
(0)
n,s

)
e−i E (0)

n,s t+i px x+i pz z, (5.11)

with components

ϕ(0)
n,s = �nϕs , (5.12)

χ(0)
n,s = 1

E (0)
n,s + m

[
−

√
B

2

(√
n + 1�n+1σ− − √

n�n−1σ+
)

+ pz�nσ3

]
ϕs, (5.13)

where σ± = σ1 ± iσ2, and ϕs is the eigenvector of σ3 for
eigenvalue s = ±1. Functions �n(ξ) (n = 0, 1, . . .) are
Hermitian functions defined by

�n(ξ) = 1√
2nn!√πB

Hn

(
ξ√
B

)
e− ξ2

2B , (5.14)

where Hn are Hermitian polynomials and ξ = By − px .
Normalization for (5.11) gives us

∫
dy ψ̄(0)

n,sγ
0ψ(0)

n,s = 2E (0)
n,s

B(E (0)
n,s + m)

. (5.15)

We are looking for NC shift E (1)
n,s of the ordinary, undeformed

energy levels (5.10). Using the Eq. (5.9), we find

E (1)
n,s = −θαβ

∫
dy ψ̄

(0)
n,sMαβψ

(0)
n,s∫

dy ψ̄
(0)
n,sγ

0ψ
(0)
n,s

. (5.16)

In particular, for θ12 = −θ21 = θ �= 0 and all the other
components of the matrix θαβ equal to zero, we find

E (1)
n,s = − θs

E (0)
n,s

(
m2

12l2
− m

3l3

)

×
(

1 + B

(E (0)
n,s + m)

(2n + s + 1)

)

+ θB2

2E (0)
n,s

(2n + s + 1). (5.17)

In the absence of magnetic field we confirm the already estab-
lished result [21],

E (1)
n,s = − θs

E (0)
n,s

(
m2

12l2
− m

3l3

)
.

The NC energy levels depend on s = ±1 and we see that
constant noncommutative background causes Zeeman-like
splitting of undeformed energy levels.
The non-relativistic limit of NC energy levels (5.17) is
obtained by expanding the undeformed energy function E (0)

n,s

assuming that p2
z , B 	 m2:

E (0)
n,s = m + p2

z + (2n + s + 1)B

2m

− (p2
z + (2n + s + 1)B)2

8m3 . (5.18)

Expanding (5.17), we obtain the first order NC correction to
the energy levels of a non-relativistic electron:

E (1)
n,s =

(
θs

3l3
− θsm

12l2

)(
1 − p2

z

2m2 + 3p4
z

8m4 + 3p2
z (2n + s + 1)B

8m4

)

+ θB2

2m
(2n + s + 1)

(
1 − p2

z + (2n + s + 1)B

2m2

+3(pz + (2n + s + 1)B)2

8m4

)
.

If we take pz = 0, the non-relativistic NC energy levels
reduce to

En,s = E (0)
n,s + E (1)

n,s + O(θ2)

= m + θs

3l3
− θsm

12l2
+ 2n + s + 1

2m
(B + θB2)

− (2n + s + 1)2

8m3 (B2 + 2θB3) + O(θ2)
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= m − sθ

(
m

12l2
− 1

3l3

)
+ 2n + s + 1

2m
Bef f

− (2n + s + 1)2

8m3 B2
e f f + O(θ2), (5.19)

where we introduced Bef f = (B+θB2) as an effective mag-
netic field. As in the case of non-interacting electrons [21],
the spin-dependent shift of mass is apparent. If we compare
this expression with the one for undeformed energy levels
E (0)
n,s , we see that the only effect of noncommutativity is to

modify the mass of an electron and the value of the back-
ground magnetic field. This interpretation of constant non-
commutativity is in accord with string theory. In [11] it is
argued that coordinate functions of the endpoints of an open
string constrained to a D-brane in the presence of a constant
Neveu–Schwarz B-field satisfy constant noncommutativity
algebra. The implication is that a relativistic field theory on
NC space–time can be interpreted as a low energy limit, i.e.
an effective theory, of the theory of open strings.
From the energy function (5.19) we can derive a NC defor-
mation of the induced magnetic moment of an electron in the
n-th Landau level in the limit of a weak magnetic field:

μn,s = −∂En,s

∂B
= −μB(2n + s + 1)(1 + θB), (5.20)

where μB = e�
2mc is the Bohr magneton. We recognise

−(2n+ 1)μB as the diamagnetic moment of an electron and
−sμB as the spin magnetic moment. The θB-term is another
potentially observable phenomenological prediction of our
model. It is a linear NC correction to the induced electron’s
magnetic dipole moment. We can use it to make an assess-
ment about the value of NC deformation parameter θ . First,
let us make formula (5.20) more transparent by reintroducing
units:

μn,s = −∂En,s

∂B
= −μB(2n + s + 1)

(
1 + eθB

�

)
. (5.21)

Let �NC stand for the energy scale at which noncommutativ-
ity becomes important. Then we have θ = �

2c2

�2
NC

. According

to [35] the scale of noncommutativity �NC � 1.0 TeV, and
so the lower bound for θ would be of order 10−37m2. We will
take �NC � 10 TeV. The relative error in the current mea-
surements of electron’s magnetic dipole moment is of order
10−13 [36], and so we estimate that the NC correction eθB

�

should be of the same order. Thus the magnetic field needed
to make NC effects “visible” should be at least of order 1011

T. This is known to be the order of magnitude character-
istic for various astrophysical objects, e.g. radio-pulsars and
magnetars, and it is far above the ordinary values of magnetic
fields produced in laboratories.

A next step would be to calculate the induced magnetisa-
tion of a material as the induced magnetic moment per unit

area. To do this we need to understand better the meaning
and the realization of noncommutativity in materials.

6 Discussion

In this paper we discussed coupling of matter fields with grav-
ity in the framework of NC SO(2, 3)� gauge theory of grav-
ity. Using the Seiberg–Witten map we constructed the gauge
invariant actions and calculated equations of motion for the
NC U (1)� gauge field and the NC Dirac fermion. Unlike in
[21], fermions are now coupled with NC U (1) gauge field
and the NC gravity. In this way we formulated NC Electro-
dynamics in curved space–time induced by NC SO(2, 3)�
gravity. The flat space–time limit of this model enables one to
study behaviour of an electron in a background electromag-
netic field. Especially, corrections to the relativistic Landau
levels of an electron in a constant magnetic field are given
by (5.17) and their non-relativistic limit is (5.19). Motion of
an electron in a constant background magnetic field and NC
corrections to Landau levels were investigated in the case of
canonical noncommutaivity in [37–39] and for other types of
NC space–times in [40,41]. It can be seen both from (5.17)
and (5.19) that NC correction to (non)-relativistic Landau
levels depends on the mass m, the principal quantum num-
ber n and the spin s. In particular, the NC correction to energy
levels will be different for different levels. It would be inter-
esting to calculate the NC correction to the degeneracy of
Landau levels and we plan to address this problem in future
work. It is well known that the physics of the Lowest Lan-
dau Level (LLL) is closely related to the physics of Quantum
Hall Effect (QHE). Using the obtained results, we plan to
investigate NC corrections to the QHE. In this way, together
with the induced NC magnetic moment (5.20) and the NC-
induced magnetization in materials we hope to obtain some
constraints on noncommutaivity parameter from condensed
matter experiments.
Starting from (4.1) one can check renormalizability of the
model. It is known that, the so-called Minimal NC Electrody-
namics, a theory obtained by directly introducing NC Moyal–
Weyl �-product in the classical Dirac action for fermions
coupled with U (1) gauge field in Minkowski space,

Ŝ =
∫

d4x ̂̄ψ � (iγ μDμ − m)ψ̂ − 1

4

∫
d4x F̂μν � F̂μν,

(6.1)

is not a renormalizabile theory because of the fermionic loop
contributions [30–32]. It would be interesting to see if addi-
tional terms present in the NC SO(2, 3)� gravity-induced
Electrodynamics (4.1) could be renormalised by using the
freedom in the Seiberg–Witten map.
The NC SO(2, 3)� gravity model also enables one to intro-
duce coupling with non-Abelian gauge fields. In this way, it is
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possible to progress towards generalizing Standard Model to
a NC space–time using the setup we described in this paper.
All this open problems and research proposals we postpone
for future work.
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A AdS algebra and the �-matrices

Algebra relations:2

{MAB, �C } = iεABCDEM
DE

{MAB, MCD} = i

2
εABCDE�E + 1

2
(ηACηBD − ηADηBC )

[MAB, �C ] = i(ηBC�A − ηAC�B)

�
†
A = −γ0�Aγ0

M†
AB = γ0MABγ0 (A.1)

Identities with traces:

Tr(�A�B) = 4ηAB

Tr(�A) = Tr(�A�B�C ) = 0

Tr(�A�B�C�D) = 4(ηABηCD − ηACηBD + ηADηCB)

Tr(�A�B�C�D�E ) = −4iεABCDE

Tr(MABMCD�E ) = iεABCDE

Tr(MABMCD) = −ηADηCB + ηACηBD

Tr(MAB�E�F�G) = 2εABEFG

Tr(MABMCD�E�F�G) = iεABCDEηFG

−iεABCDFηEG + iεABCDGηEF

+iεBCEFGηAD + iεADEFGηBC

−iεBDEFGηAC − iεACEFGηBD

(A.2)
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ity at second order via Seiberg-Witten map. Phys. Rev. D 87,
024017 (2013). arXiv:1207.4346

30. M. Burić, V. Radovanović, The One loop effective action for quan-
tum electrodynamics on noncommutative space. JHEP 0210, 074
(2002). arXiv:hep-th/0208204

31. R. Wulkenhaar, Nonrenormalizability of theta expanded noncom-
mutative QED. JHEP 0203, 024 (2002). arXiv:hep-th/0112248
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