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Abstract We construct non-relativistic string and p-brane
actions in Newton–Cartan background using the limiting pro-
cedure from the relativistic string and p-brane action in gen-
eral background. We also find their Hamiltonian formula-
tions when however we restrict ourselves to the case of the
vanishing gauge field mμ.

1 Introduction

Today it is well known that strong correlated systems in con-
densed matter can be sucessfully described with the help of
non-relativistic holography, for review see for example [1].
This duality is based on the idea that the strongly coupled the-
ory on the boundary can be described by string theory in the
bulk. Further, when the curvature of the space-time is small
we can use the classical gravity instead full string theory
machinery. In case of non-relativistic holography the situa-
tion is even more interesting since we have basically two pos-
sibilities: Either we use Einstein metric with non-relativistic
isometries [2–4] or we introduce non-relativivistic gravities
in the bulk [5,6], like Newton–Cartan gravity [7]1 or Hořava
gravity [8]. Then it is certainly very interesting to study mat-
ter coupled to non-relativistic gravity. We can either study
field theories on non-relativistic background as in [19–24] or
particles [25–28] or even higher dimensional objects, as for
example non-relativistic strings and p-branes [18,36].

In this work we would like to focus on the canonical for-
mulation of non-relativistic string and p-brane in Newton–
Cartan background. The starting point of our analysis is
the relativistic string in general background that couples to
NSNS two form. Then we use the limiting procedure that
was proposed in [19] and try to find corresponding string
action. Note that this is different limiting procedure than in

1 For some recent works, see [9–17].
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case of the non-relativistic string in flat background where
the non-relativistic limit is performed on coordinates [29–
31].2 It is important to stress that if we apply this limiting
procedure that leads to corank-1 spatial metric and rank one
temporal metric of Newton–Cartan gravity to the case of the
string action we find that there is no way how to ensure that
this action is finite. In order to resolve this problem we have
to select two flat target space longitudial directions exactly
in the same way as in [18]. Then we propose such an ansatz
for NSNS two form field that is constructed with the help
of the fields that define Newton–Cartan geometry and where
the divergent contribution from the coupling to NSNS two
form exactly cancels the divergent contribution coming from
Nambu–Goto part of the action. As a result we obtain an
action for the string in Newton–Cartan background that was
proposed in [18] using different procedure. As the next step
we proceed to the canonical formulation of this theory. Then
however we encounter an obstacle in the form that we are
not able to invert relation between conjugate momenta and
velocity in case of non-zero gauge field m a

μ whose explicit
definition will be given in the next section. For that reason we
restrict ourselves to the case of the zero gauge field keeping
in mind that the case of on-zero gauge field deserves fur-
ther study. Then we find Hamiltonian for this non-relativistic
string that is linear combination of two first class constraints
which is the manifestation of the fact that two dimensional
string action is invariant under world-sheet diffeomorphism.
As the next step we generalize this analysis to the case of
p-brane. We firstly determine well defined action for non-
relativistic p-brane when we consider specific form of the
background p + 1 form that couples to the world-volume of
p-brane. Then we introduce an equivalent form of p-brane
action that allows us to consider canonical analysis of this
theory. Finally we determine constraint structure of this the-
ory and we show that there are p + 1 first class constraints,

2 For recent work, see for example [32–35].
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p-spatial diffeomorphism constraints and one Hamiltonian
constraint. We again show that these constraints are the first
class constraints.

This paper is organized as follows. In the next Sect. 2
we determine the form of non-relativistic string in Newton–
Cartan background and perform its Hamiltonian analysis.
Then in Sect. 3 we generalize this analysis to the case of p-
brane. Finally in conclusion (4) we outline our results and
suggest possible extension of this work.

2 Review of the non-relativistic limit for Nambu–Goto
string

In this section we derive non-relativistic form of the string
action in Newton–Cartan background using the limiting pro-
cedure developed in [15]. We start with the Nambu–Goto
form of the action in the general background

S = −τ̃F

∫
dτdσ

√
− det(E A

μ E B
ν ηAB∂αxμ∂βxν)

+τ̃F

∫
dτdσ Bμν∂τ x

μ∂σ x
ν, (1)

where E A
μ is d-dimensional vierbein so that the metric com-

ponents have the form

Gμν = E A
μ E B

ν ηAB, ηAB = diag(−1, 1, . . . , 1) (2)

Note that the metric inverse Gμν is defined with the help of
the inverse vierbein Eμ

B that obeys the relation

E A
μ Eμ

B = δAB, E A
μ Eν

A = δ ν
μ . (3)

Further, Bμν is NSNS two form field that plays the crucial
role in the limiting procedure. Finally xμ,μ = 0, . . . , d −
1 are embedding coordinates of the string where the two
dimensional world-sheet is parameterised by σα ≡ (τ, σ ).

Let us now proceed to the brief description of the pro-
cedure that leads to Newton–Cartan background from gen-
eral background, for more detailed discussion, see the orig-
inal paper [15]. The starting point is following ansatz for
d-dimensional vierbein [15]

E 0
μ = ωτμ + 1

2ω
mμ, E a′

μ = e a′
μ , (4)

where a′ = 1, . . . , d−1 and where ω is free parameter which
goes to infinity in the Newton–Cartan limit. Note that in this
case the metric has the form

Gμν = E A
μ E B

ν ηAB = −ω2τμτν − 1

2
τμmν

−1

2
τνmμ + hμν + 1

4ω2 mμmν

= −ω2τμτν + h̄μν + 1

4ω2 mμmν, h̄μν = hμν

−1

2
τμmν − 1

2
τνmμ, hμν = e a′

μ e b′
ν δa′b′ . (5)

Inserting this metric into the Nambu–Goto action and per-
forming expansion with respect to ω we obtain

S = −τ̃Fω2
∫

dτdσ
√− det a

− τ̃F

2

∫
dτdσ

√− det aaαβ h̄αβ, (6)

where we defined

aαβ = τμν∂αx
μ∂βx

ν, aαβaβγ = δα
γ ,

h̄αβ = h̄μν∂αx
μ∂βx

ν . (7)

We also used the fact that aαβ is 2 × 2 matrix that is non-
singular. Apparently we see from (7) that there is a term pro-
portional to ω2 that cannot be made finite by rescaling of τ̃F .
In case of the string in the flat non-relativistic background
such a term can be canceled with the suitable form of the
background NSNS two form. Further, , this two form field
should be build from the fields that define Newton–Cartan
theory as mμ, τν . However it turns out that it is not possible
to find such a NSNS two form due to the fact that it has to be
antisymmetryc in space-time indicies. In order to find solu-
tion of this problem we implement the generalization of the
Newton–Cartan gravity that was introduced in [18]. Explic-
itly, we split the target-space indices A into A = (a′, a)

where now a = 0, 1 label longitudial and a′ = 2, . . . , d − 1
correspond to transverse directions. Then we introduce τ a

μ

so that we write

τμν = τ a
μ τ b

ν ηab, a, b = 0, 1, ηab = diag(−1, 1). (8)

In the same way we introduce vierbein e a′
μ , a′ = 2, . . . , d−1

and also we generalize mμ into m a
μ . The τ a

μ can be inter-
preted as the gauge fields of the longitudinal translations
while e a′

μ as the gauge fields of the transverse translations
[18]. Then we can also introduce their inverses with respect
to their longitudinal and transverse subspaces

e a′
μ eμ

b′ = δa
′

b′ , e a′
μ eν

a′ = δν
μ − τ a

μ τν
a,

τμ
aτ

b
μ = δba , τμ

ae
a′

μ = 0, τ a
μ eμ

a′ = 0. (9)

Performing this generalization implies following form of the
vierbein

E a
μ = ωτ a

μ + 1

2ω
m a

μ , E a′
μ = e a′

μ (10)

so that we find following form of the metric

Gμν = E a
μ E b

ν ηab + E a′
μ E b′

ν δa′b′
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= ω2τμν + hμν + 1

2
τ a
μ m b

ν ηab + 1

2
m a

μ τ b
ν ηab

+ 1

4ω2 m
a
μ m b

ν ηab. (11)

It was shown in [15] that in order to find the right form of
the particle action in Newton–Cartan background we should
consider following ansatz for the background gauge field
Aμ = ωτμ − 1

2ω
mμ. In order to find correct form of the

action for the string in Newton–Cartan background we pro-
pose analogue form of the NSNS two form3

Bμν =
(

ωτ a
μ − 1

2ω
m a

μ

) (
ωτ b

ν − 1

2ω
m b

ν

)
εab

= ω2τ a
μ τ b

ν εab − 1

2
(m a

μ τ b
ν + τ a

μ m b
ν )εab

+ 1

4ω2 m
a
μ m b

μ εab, εab = −εba, ε01 = 1. (12)

It is important that terms proportional to ω−2 and ω−4 vanish
in the limit ω → ∞ while the divergent contribution cancel
the divergence coming from Nambu–Goto part of the action
since

−τ̃Fω2
∫

d2σ
√− det a + τ̃F

2

∫
d2σεαβBμν∂αx

μ∂βx
ν

= −τ̃Fω2
∫

d2σ det τ a
α

+ω2 τ̃F

2

∫
d2σεαβεabτ

a
α τ b

β = 0, (13)

where we introduced 2×2 matrix τ a
α ≡ τ a

μ ∂αxμ and where

we used the fact that det τ a
α = 1

2εαβεabτ
a

α τ b
β where εαβ =

−εβα, ε01 = 1 is antisymmetric symbol with upper indices.
In summary we obtain the action for non-relativistic string

in Newton–Cartan background in the form

S = −τF

2

∫
d2σ

√− det aaαβ h̄αβ

+τF

2

∫
dτdσ(m a

μ τ b
ν + τ a

μ m b
ν )εab∂τ x

μ∂σ x
ν, (14)

where τ̃F = τF .
Our goal is to find Hamiltonian formulation of this theory.

To do this we rewrite the Lagrangian density introduced in
(14) into the form

L = 1

4λτ
(h̄ττ − 2λσ h̄τσ + (λσ )2h̄σσ ) − λτ τ 2

F h̄σσ

3 It is clear that the background fields have to obey equations of motion
of the effective string theory. Certainly if we insert proposed ansatz for
metric and NSNS two form into these equations of motion we get set
of differential equations for Newton–Cartan background fields. Since
we are interested in the dynamics of probe string in Newton–Cartan
background it is not necessary to address this question and we postpone
this analysis for future work.

+Bτ

(
λτ −

√− det a
2τFaσσ

)
+ Bσ

(
λσ − aτσ

aσσ

)

+τF

2
(m a

μ τ b
ν + τ a

μ m b
ν )εab∂τ x

μ∂σ x
ν . (15)

It is easy to see an equivalence of these two Lagrangians
since the equations of motion for Bτ and Bσ give

λτ =
√− det a
2τFaσσ

, λσ = aτσ

aσσ

. (16)

Inserting this result into (15) and using the fact that

1

λτ
= −2τFaσσ

√− det a,
λσ

λτ
= 2τFaτσ

√− det a,

1

4λτ
((λσ )2 − 4τ 2

F (λτ )2) = −τF

2
aσσ

√− det a (17)

we find that (15) reduces into (14). Then from (15) we obtain
conjugate momenta

pμ = 1

2λτ
h̄μν∂τ x

ν − λσ

2λτ
h̄μν∂σ x

ν

−Bτ 1

2τFaσσ

τμν∂αx
νaατ

√− det a − Bσ

aσσ

τμν∂σ x
ν

+τF

2
(m a

μ τ b
ν + τ a

μ m b
ν )εab∂σ x

ν,

Pτ
B = ∂L

∂∂τ Bτ
≈ 0, Pσ

B = ∂L

∂∂τ Bσ
≈ 0,

Pτ
λ = ∂L

∂∂τλτ
≈ 0, Pσ

λ = ∂L

∂∂τλσ
≈ 0 (18)

Now we come to the most important problem in our analysis
which is an imposibility to invert the relation between pμ and
∂τ xμ in order to express ∂τ xμ using the canonical variables.
The reason why we are not able to do is in the presence of
the vector field m a

μ so that the contraction of the metric h̄μν

with τμ is non-zero and carries also longitudinal index a and
hence further manipulation is non-trivial and it is not clear for
us how to proceed further. For that reason we restrict to the
simpler case when m a

μ = 0.4 Despite of this simplification

4 It is instructive compare this problem with the Hamiltonian analysis
of particle in NC background. Recall that the particle action in Newton–
Cartan background has the form [27]

S = m

2

∫
dτ

ẋμh̄μν ẋν

ẋρτρ

, h̄μν = hμν − mμτν − τμmν , ẋμ ≡ dxμ

dτ
.

(19)

From this action we obtain conjugate momenta

pμ = m
h̄μν ẋν

ẋρτρ

− m

2

ẋρ h̄ρσ ẋσ

(ẋρτρ)2 τμ. (20)

Firstly we multiply this relation with τμ and we obtain

τμ pμ = −τμmμ − m

2

ẋρhρσ ẋσ

(ẋωτω)2 . (21)

123
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we will see that even in this case the Hamiltonian formulation
of the non-relativistic string in Newton–Cartan background
is non-trivial task. In case when m a

μ = 0 we have h̄μν = hμν

and h̄μνhνρ h̄ρσ = hρσ and hence from (18) we obtain
(
pμ + λσ

2λτ
hμρ∂σ x

ρ

)
hμν

(
pν + λσ

2λτ
hνσ ∂σ x

σ

)

= 1

4(λτ )2 ∂τ x
μhμν∂τ x

ν . (25)

On the other hand let us multiply both sides of expression
(18) with τ

μ
aη

abεbcτ
c

ρ ∂σ xρ and we obtain

pμτμ
aη

abεbcτ
c

ρ ∂σ x
ρ

= −Bτ 1

2τFaσσ

∂αx
μτ a

μ εabτ
b

ρ ∂σ x
ρaατ

√− det a

−Bσ 1

aσσ

∂σ x
μτ a

μ εabτ
b

ν ∂σ x
ν

= −Bτ 1

2τFaσσ

∂τ x
μτ a

μ εabτ
b

ρ ∂σ x
ρ aσσ

det a

√− det a

= 1

2τF
Bτ (26)

using

τμ
aτμν = τ b

ν ηba (27)

and also we used the fact that

√− det a = det τ a
α = τ aτ τ bσ εab, (28)

where τ a
α = τ a

μ ∂αxμ. Then the relation (26) implies follow-
ing primary constraint

�τ ≡ 2τF pμτμ
aη

abεbcτ
c

ρ ∂σ x
ρ − Bτ ≈ 0. (29)

On the other hand if we multiply the relation (18) with
τμντνρ∂σ xρ we obtain

Footnote 4 continued
On the other hand let us multiply (20) with hμν and we get

hμν pν = m
hμνhνρ ẋρ

ẋρτρ

− mhμνmν (22)

and hence we find

(pμ + mμ)hμν(pν + mν) = m2 ẋ
μhμν ẋν

(ẋρτρ)2 . (23)

Finally if we combine this result with (21) we obtain following Hamil-
tonian constraint [28]

Hτ = (pμ + mμ)hμν(pν + mν) + 2m(pμ + mμ)τμ ≈ 0. (24)

The reason, why the particle case is much simpler than string like case
is, that τμ and mμ do not carry tangent space indices a, b and hence the
manipulations with them is much simpler.

pμτμντνρ∂σ x
ρ

= −Bτ 1

2τFaσσ

aσαaατ
√− det a − Bσ = −Bσ (30)

and hence we obtain second primary constraint

�σ ≡ pμτμντνρ∂σ x
ρ + Bσ ≈ 0. (31)

As a result the extended Hamiltonian with all primary con-
straints included has the form

HE =
∫

dσ
(
λτ (pμh

μν pν + τ 2
Fhσσ )

−Bτ λτ − Bσ λσ + λσ pμh
μνhνρ∂σ x

ρ

+Uτ�
τ +Uσ �σ + vB

τ Pτ
B

+vB
σ Pσ

B + vλ
τ P

τ
λ + vλ

σ P
σ
λ

)
. (32)

Let us now analyze the requirement of the preservation of
the primary constraints Pτ

λ ≈ 0, Pσ
λ ≈ 0. In case of Pτ

λ we
obtain

∂τ P
τ
λ = {

Pτ
λ , HE

} = −pμh
μν pν − τ 2

Fhσσ + Bτ

= −pμh
μν pν − τ 2

Fhσσ

+2τF pμτμ
aη

abεbcτ
c

ρ ∂σ x
ρ − 2τF�τ

≈ −pμh
μν pν − τ 2

Fhσσ

+2τF pμτμ
aη

abεbcτ
c

ρ ∂σ x
ρ ≡ −Hτ ≈ 0 (33)

and also

∂τ P
σ
λ = {

Pσ
λ , H

} = −pμ∂σ x
μ + pμτμντνρ∂σ x

ρ + Bσ

= −pμ∂σ x
μ + �σ ≈ −pμ∂σ x

μ ≡ −Hσ ≈ 0. (34)

We see that the requirement of the preservation of the primary
constraints Pτ

λ ≈ 0, Pσ
λ ≈ 0 implies an existence of two

secondary constraints:

Hσ = pμ∂σ x
μ ≈ 0, Hτ = pμh

μν pν + τ 2
Fhσσ

−2τF pμτμ
aη

abebcτ
c

ρ ∂σ x
ρ ≈ 0. (35)

Further, since
{
Pτ
B(σ ), �τ (σ ′)

} = δ(σ − σ ′),
{
Pσ
B (σ ),

�σ (σ ′)
} = −δ(σ − σ ′) we see that these constraints are

the second class constraints that can be explicitly solved for
Bτ and Bσ . Then these constraints vanish strongly and hence
the Hamiltonian is linear combination of the constraints

HE = λτHτ + λσHσ + vλ
τ P

τ
λ + vλ

σ P
σ
λ . (36)

As the next step we should check that Hτ ≈ 0 ,Hσ ≈ 0 are
the first class constraints. To do this we introduce the smeared
forms of these constraints

Tτ (N ) =
∫

dσNHτ , Tσ (Nσ ) =
∫

dσNσHσ . (37)

First of all we easily find{
Tσ (Nσ ), Tσ (Mσ )

} = Tσ (Nσ ∂σ M
σ − Nσ ∂σ M

σ ). (38)
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In case of the Hamiltonian constraints the situation is more
involved since the explicit calculation gives

{Tτ (N ), Tτ (M)}
=

∫
dσ(N∂σ M − M∂σ N )4τ 2

F pμh
μνhνρ∂σ x

ρ

+ 2
∫

dστF (N∂σ M − M∂σ N )pμV
μ
νh

νω pω

+
∫

dσ(N∂σ M − M∂σ N )pρV
ρ
σV

σ
ω∂σ x

ω

+ τ 2
F

∫
dσ(N∂σ M − M∂σ N )4τ 2

FV
μ
ν ∂σ x

νhμρ∂σ x
ρ,

(39)

where we defined

Vμ
ν = −2τFτμ

aη
abεbcτ

c
ν . (40)

To proceed further we calculate

4pμh
μνhνρ∂σ x

ρ = 4τ 2
F pμ∂σ x

μ

−4τ 2
F pμτμρτρν∂σ x

ν,

pρV
ρ
μV

μ
ν ∂σ x

ν = 4τ 2
F pμτμ

aτ
a
ν∂σ x

ν

= 4τ 2
F pμτμρτρν∂σ x

ν,

Vμ
ν ∂σ x

νhμρ∂σ x
ρ = 0, pμV

μ
νh

νω pω = 0. (41)

Collecting all these results together we finally obtain

{Tτ (N ), Tτ (M)} = Tσ ((N∂σ M − M∂σ N )4τ 2
F ). (42)

Finally we also calculate Poisson bracket between Tσ (Nσ )

and Tτ (M) and we find

{
Tσ (Nσ ), Tτ (M)

} = Tτ (∂σ MNσ − M∂σ N
σ ). (43)

These results show that Hτ ≈ 0,Hσ ≈ 0 are the first class
constraints and the non-relativistic string is well defined sys-
tem from the Hamiltonian point of view.

Finally we also say few words about the gauge fixed the-
ory. We showed above that the Hamiltonian and spatial dif-
feomorphism constraints are the first class. Standard way how
to deal with such a theory is to gauge fix them. For example,
we can impose the static gauge when we introduce two gauge
fixing functions

G0 = x0 − τ ≈ 0, G1 = x1 − σ ≈ 0. (44)

It is easy to see that Ga ≈ 0 are the second class constraints
together with Hτ ≈ 0,Hσ ≈ 0. Since then these constraints
vanish strongly we can identify the Hamiltonian density on
the reduced phase space from the action principle

S =
∫

dτdσ(pμ∂τ x
μ −H) =

∫
dτdσ(pi∂τ x

i + p0) (45)

so that it is natural to identify −p0 as the Hamiltonian on the
reduced phase space Hred = −p0. The explicit form of the
Hamiltonian follows from the Hamiltonian constraint that
can be solved for p0. Note also that Hσ can be solved for p1

as p1 = −pI ∂σ x I , I = 2, . . . , d − 1.

3 Generalization: non-relativistic p-brane

In this section we perform generalization of the analysis pre-
sented previously to the case of non-relativistic p-brane. As
the first step we determine an action for non-relativistic p-
brane in Newton–Cartan backgorund in the same way as in
the string case. Explicitly, we start with the relativistic p-
brane action coupled to C p+1 form whose action has the
form

S = −τ̃p

∫
d p+1ξ

√− det Aαβ + τ̃p

∫
C (p+1),

Aαβ = Gμν∂αx
μ∂βx

ν, (46)

where ξα, α = 0, . . . , p label world-volume of p-brane and
where

C (p+1) =Cμ1...μp+1dx
μ1 ∧ . . . dxμp+1

= 1

(p + 1)!ε
α1...αp+1Cμ1...μp+1∂α1x

μ1 . . . ∂αp+1x
μp+1 ,

(47)

where again εα1...αp+1 is totally antisymmetric symbol.
With the help of the action (46) we can proceed to the def-

inition of non-relativistic p-brane in Newton–Cartan back-
ground. As we have seen in case of the non-relativistic string
the requirement that the action for non-relativistic string
should be finite select two longitudial directions. Then we
can deduce that in case of non-relativistic p-brane we should
select p + 1 longitudial directions. Explicitly, we presume
that in case of the probe p-brane the background metric has
the form

Gμν = E a
μ E b

ν ηab + E a′
μ E b′

ν δa′b′

= ω2τμν + hμν + 1

2
τ a
μ m b

ν ηab + 1

2
m a

μ τ b
ν ηab

+ 1

4ω2 m
a
μ m b

ν ηab, (48)

where now a, b = 0, . . . , p and a′, b′ · · · = (p+1, . . . , d −
1). Further, τμν and hμν are defined as

τμν =τ a
μ τ b

ν ηab, ηab = diag(−1, . . . , 1),

hμν =e a′
μ e b′

ν δa′b′ . (49)
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We also introduce their inverses with respect to their longi-
tudinal and transverse dimensions

e a′
μ eμ

b′ = δa
′

b′ , e a′
μ eν

a′ = δν
μ − τ a

μ τν
a, τμ

aτ
b

μ = δba ,

τμ
ae

a′
μ = 0, τ a

μ eμ

a′ = 0. (50)

In case of p + 1-form C (p+1) we presume, with the analogy
with the string case, that it has the form

Cμ1...μp+1 =
(

ωτ a1
μ1

− 1

2ω
m a1

μ1

)
× · · ·

×
(

τ
ap+1

μp+1 − 1

2ω
m

ap+1
μp+1

)
εa1...ap+1 , (51)

where εa1...ap+1 is totally antisymmetric symbol. Now we are
ready to define non-relativistic limit of p-brane action. We
start with the kinetic term and we obtain

SDBI = −τ̃pω
p+1

∫
d p+1ξ

√− det a

− τ̃p

2
ωp−1

∫
d p+1ξ

√− det aãαβ h̄αβ, (52)

where ãαβ is inverse to aαβ . In fact, it is reasonable to presume
that aαβ = ∂αxμηab∂βxν = τ a

α ηabτ
b

β since τ a
α and ηab are

(p+1)×(p+1) non-singular matrices. From the requirement
that the kinetic term is finite we have to perform following
rescaling

τ̃pω
p−1 = τp. (53)

Further, the divergent term can be written as

τ̃pω
p+1

∫
d p+1ξ

√− det a = τpω
2
∫

d p+1ξ det τ b
α ,

τ a
α = τ a

μ ∂αx
μ. (54)

Let us now concentrate on the second term in the action (46).
If we express τ̃p using τp as τ̃p = 1

ωp−1 τp we find that the
only non-zero contribution comes from the product of τ a

μ ’s
while remaining terms vanish in the limit ω → ∞. Then we
obtain

SW Z = 1

ωp−1 τp

∫
d p+1εα1...αp+1ωτ a1

μ1
∂α1x

μ1

. . . ωτ
ap+1

μp+1 ∂αp+1x
μp+1εa1...ap+1

= ω2τp

∫
d p+1ξ

1

p!ε
α1...αp+1τ a1

α1
. . . τ

ap+1
αp+1

= ω2τp

∫
d p+1ξ det τ a

α (55)

and we again see that these two divergent contributions
cancel. As a result we obtain well defined action for non-
relativistic p-brane in Newton–Cartan background

S = −τp

2

∫
d p+1ξ

√− det aãαβ h̄μν∂αx
μ∂βx

ν . (56)

Now we proceed to the Hamiltonian formulation of this the-
ory. With the analogy with the string case we write the action
as

S =
∫

d p+1ξ

(
1

4λτ
(∂0x

μ − λi∂i x
μ)hμν(∂0x

ν − λ j∂ j x
ν)

−λτ τ 2
p det ai jai j hi j

+B0

(
λ0 −

√− det a
2τp det ai j

)
+ Bi (λi − ai0)

)
, (57)

where

λi = ai ja j0, ai ja jk = δki . (58)

In order to see an equivalence between the action (57) and
(56) we note that the inverse matrix ãαβ to the matrix aαβ has
the form

ã00 =det ai j
det a

, ã0i = −a0kak j
det ai j
det a

,

ãi0 = − aikak0
det ai j
det a

, ãi j = ai j + det ai j
det a

aikak0a0lal j ,

(59)

where ai ja jk = δik . Then the equation of motion for B0 and
Bi imply

λ0 = −
√− det a
2τp det ai j

, λi = a0i . (60)

Inserting this result into (57) we obtain that it is equal to the
action (56). Let us now return to the action (57) and determine
conjugate momenta from it

pμ = ∂L
∂(∂0xμ)

= 1

2λτ
h̄μν∂0x

ν − λi

2λτ
h̄μν∂i x

ν

−Bτ 1

2τp det ai j
τμν∂αx

ν(a−1)α0√− det a − Bi τμν∂i x
ν,

P0 = ∂L
∂(∂0λ0)

≈ 0, Pi = ∂L
∂(∂0λi )

≈ 0,

PB
0 = ∂L

∂(∂0B0)
≈ 0, PB

i = ∂L
∂(∂0Bi )

≈ 0. (61)

From the same reason as in case of the fundamental string
we have to restrict to the case m a

μ = 0 so that h̄μν = hμν .
Then if we multiply (61) with hμν we obtain
(
pμ + λi

2λτ
hμρ∂i x

ρ

)
hμν

(
pν + λ j

2λτ
hνσ ∂ j x

σ

)

= 1

4(λτ )2 ∂0x
μhμν∂0x

ν . (62)
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On the other hand let us multiply both sides of (61) with
τμντνρ∂i xρ and we obtain

pμτμντνρ∂i x
ρ = −Bτ 1

2τp det ai j
∂i x

μτμν∂αx
νaα0

√− det a

−∂i x
μτμν∂ j x

νB j = −ai j B j (63)

that imlies p-primary constraints

�i ≡ pμτμντνσ ∂ j x
σ a j i + Bi ≈ 0. (64)

On the other hand let us multiply (61) with following expres-
sion

1

p! τ
μ
aη

aa1εa1...ap+1τ
a2

ν2 . . . τ
ap+1

νp+1 ε j2... jp+1∂ j2 x
ν2 . . . ∂ jp+1 x

νp+1 .

(65)

Then using the fact that

∂i x
ντνμτμ

aη
aa1εa1...ap+1τ

a2
ν2

. . . τ
ap+1

νp+1 ε j2... jp+1∂ j2x
ν2

. . . ∂ jp+1x
νp+1 = 0,

1

p!a0α∂αx
ντνμτμ

aη
aa1εa1...ap+1τ

a2
ν2

. . . τ
ap+1

νp+1 ε j2... jp+1∂ j2x
ν2

. . . ∂ jp+1x
νp+1

√− det a
det ai j

= − 1

(p + 1)!εa1...ap+1ε
j1... jp+1τ a1

ν1
∂α1x

ν1

. . . τ
ap+1

νp+1 ∂αp+1x
νp+1

1

det τ a
α

= −1 (66)

we obtain second primary constraint

�0 ≡ 2τp pμ

1

p!τ
μ
aη

aa1εa1...ap+1τ
a2

ν2
. . . τ

ap+1
νp+1 ε j2... jp+1∂ j2x

ν2

. . . ∂ jp+1x
νp+1 − B0 ≈ 0. (67)

Using all these results we determine extended Hamiltonian
with all primary constraints included in the form

HE =
∫

d pξ(λ0 pμh
μν pν + λi pμh

μνhνσ ∂i x
σ

+λτ τ 2
p det ai jai j hi j

−B0λτ − Biλi + v0P0 + vi Pi + v0
B P

B
0

+vB
i Pi

B + �0�
0 + �i�

i ). (68)

Since
{
PB

0 (ξ),�0(ξ ′)
} = δ(ξ − ξ ′),

{
Pi
B(ξ),� j (ξ ′)

} =
−δi jδ(ξ − ξ ′) we see that that PB

0 together with �0 are the
couple of p + 1 second class constraints. Then we can solve
these constraints with respect to B0, Bi and we we obtain the
Hamiltonian in the form

HB =
∫

d pξ(λ0H0 + λiHi + v0P0 + vi Pi ) (69)

where

H0 = pμh
μν pν + τ 2

p det ai jai j hi j

−2τp pμ

1

p!τ
μ
aη

aa1εa1...ap+1τ
a2

ν2

. . . τ
ap+1

νp+1 ε j2... jp+1∂ j2x
ν2 . . . ∂ jp+1x

νp+1 ≈ 0,

Hi = pμ∂i x
μ ≈ 0. (70)

Then the requirement of the preservation of the constraint
P0 ≈ 0, Pi ≈ 0 implies p + 1 secondary constraints

H0 ≈ 0, Hi ≈ 0. (71)

Now we have to check that these constraints are the first class
constraints. We introduce their smeared form

TT (N ) =
∫

d pξNH0, TS(N
i ) =

∫
d pξNiHi (72)

and calculate corresponding Poisson brackets. First of all we
have{

TS(N
i ), TS(M

j )
}

= TS(N
j∂ j M

i − M j∂ j N
i ). (73)

In case of the calculation of the Poisson brackets between
TS(Ni ) and TT (M) we have to be more careful. First of all
we have

{
TS(N

i ), τ a
i

}
= −Nk∂kτ

a
i − ∂i N

jτ a
j , τ a

i ≡ ∂i x
μτ a

μ .

(74)

Then we obtain{
TS(N

i ), ai j
}

= −Nk∂kai j − ∂i N
kak j − aik∂ j N

k,{
TS(N

i ), ai j
}

= −Nk∂kai j + ∂k N
iak j + aik∂k N j ,{

TS(N
i ), det ai j

}
= −Nk∂k(det ai j ) − 2∂i N

i det ai j .

(75)

Using also the fact that{
TS(N

i ), ∂i x
μ
}

= −Nk∂k(∂i x
μ) − ∂i N

k∂k x
μ,{

TS(N
i ), hi j

}
= −Nk∂khi j − ∂i N

khk j − hik∂ j N
k (76)

we finally obtain{
TS(N

i ), det ai jaklhkl
}

= −Nk∂k(det ai jaklhkl)

−2∂i N
i det ai jaklhkl . (77)

Let us introduce following vector

Vμ = −2τp
1

p!τ
μ
aη

aa1εa1...ap+1τ
a2

ν2

. . . τ
ap+1

νp+1 ε j2... jp+1∂ j2x
ν2 . . . ∂ jp+1x

νp+1 . (78)
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Then after some algebra we obtain

{
TS(N

i ), Vμ
}

= −Nk∂kV
μ − 2∂k N

kVμ. (79)

Collecting all these results together we finally find

{
TS(N

i ), TS(M)
}

= TT (Ni∂i M − ∂i N
i M). (80)

Finally we calculate Poisson brackets of the smeared forms
of Hamiltonian constraints and we obtain

{TT (N ), TT (M)}
=

∫
d pξ(N∂i M − M∂i N )4τ 2

p det ai jai j pμh
μνhνσ ∂ j x

σ

+2τp

∫
d pξ(N∂i M

−M∂i N )
1

(p − 1)! pντ
ν
aη

aa1εa1...ap+1τ
a2

μ τ a3
ν3

. . . τ
ap+1

νp+1

×εi j3... jp+1∂ j3x
ν3 . . . ∂ jp+1x

νp+1Vμ. (81)

Then after some lengthy calculations we find that the last
expression is equal to

4τ 2
p(N∂i M − M∂i N )ai j pμτμντνσ ∂ j x

σ det ai j . (82)

Inserting this result into (81) we obtain final result

{TT (N ), TT (M)} = TS((N∂i M − M∂i N )4τ 2
pai j det ai j ).

(83)

These results show that H0 and Hi are the first class
constraints that reflect diffeomorphism invariance of non-
relativistic p-brane.

4 Conclusion

In this paper we formulated non-relativistic actions for string
and p-brane in Newton–Cartan background. Then we found
their Hamiltonian formulations and we determined structure
of constraints in the special case where the gauge field m a

μ is
zero. We argued that we restricted to this case since we were
not able to express time derivatives of xμ or their combina-
tions as functions of canonical variables in the case when
m a

μ 	= 0. Certainly this more general case deserves fur-
ther study. One possibility is to address this problem from
different point of view when we start with the Hamiltonian
formulation string in general background, then we perform
limiting procedure on the background metric and NSNS two
form field and derive corresponding Hamiltonian. This prob-
lem is currently under study and we hope to report on this
analysis in near future.
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