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Abstract In this paper, we investigate the gravitational
behavior of compact objects with the help of generalized
polytropic equation of state in isotropic coordinates. We
found three exact solutions of Einstein field equations by
taking into account the different values of polytropic index
with spherically symmetric anisotropic inner fluid distribu-
tion. We have regained the masses of PSR J1614 − 2230,
Vela X-1, Vela 4U, PSR J1903+327 and 4U 1820-30. Speed
of sound has been used to analyze the stability of models.
The comprehensive analysis indicates that all the models are
physically viable and well behaved.

1 Introduction

Polytropes refers to the general solution of Lane-Emden
equation (LEe), contributing significantly in modeling of
compact objects. The form of polytropic equation of state
(EoS) attracted many researchers to explore physical
attributes of polytropic models. Lane [1] presented the fun-
damental results related to modeling of stellar structures via
polytropes. Chandareskhar [2] contributed majorally in this
field by presenting the theory of polytropes in perspective
of Newtonian regime. Tooper [3–5] formulated the basic
scheme of relativistic polytropes by assuming qausi-static
equilibrium. Kovetz [6] made some modifications in Chan-
dareskhar’s work by discussing slowly rotating polytropes.
Shapiro and Teukolsky [7] discussed white dwarfs with the
help of theory of polytropes. Abramowicz [8] described poly-
tropes in higher dimension for evolution of LEe. Komatsu
et al. [9] explained numerical methods and applications of
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rapidly rotating general relativistic stars to uniformly rotat-
ing polytropes. Cook et al. [10] constructed equilibrium
sequences for rotating polytropes. Azam et al. [11] presented
two models which describe general framework of polytropes
in general relativity.

In the study of astrophysical objects anisotropy plays a
vital role. A number of physical problems cannot be mod-
eled without consideration of anisotropy factor. Bowers and
Liang [12] discussed equilibrium mass and surface redshift of
anisotropic compact stars and provided the results by making
comparison with the stars filled with isotropic fluid. In 1981,
Cosenza [13] developed a framework for modeling of com-
pact objects with anisotropic fluid inner fluid distribution.
A comprehensive study about anisotropy in compact objects
was provided by Herrera and Santos [14]. Dev and Gleiser
[15] studied properties of gravitationally bounded compact
objects under anisotropic pressure. Herrera and Berreto [16]
used the concept of effective variables for anisotropic rel-
ativistic polytropes. Herrera et al. [17] formulated full set
of governing to describe the evolution anisotropic dissi-
pative self-gravitating spherical compact objects. Herrera
and Berreto [18,19] checked the stability of anisotropic
polytropic models by using the concept of Tollman mass.
Thirukkanesh and Ragel [20] used static spherically symmet-
ric spacetime to developed models of anisotropic compact
stars and provided the solution of Einstein field equations
(EFEs) within the framework of MIT Bag Model. Reddy et
al. [21] discussed the role of anisotropic forces during dissi-
pative gravitational collapse by using perturbation approach.

Isotropic coordinates are very useful in the study of static
spherically symmetric spacetime and also used to make
spacetime as much Euclidean as possible. Boutros [22] found
exact solution of EFEs in isotropic coordinates with perfect
inner fluid distribution and proved that one of the model veri-
fies polytropic EoS. Mak and Harko [23] converted EFEs into
two independent Riccati-type differential equations using
isotropic coordinates and found three new classes of exact
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solutions. Crothers [24] explained Einstein gravitational field
in detail by making use of isotropic coordinates. Govender
and Thirukkanesh [25] used linear EoS and presented gen-
eral framework for exact solution of EFEs with anisotropic
inner fluid and isotropic coordinates.

For modeling of relativistic stars, use of polytropic EoS
leads to the most elementary and significant contribution.
Chavanis [26,27] used generalized polytropic equation of
state (GPEoS) by combining linear EoS (Pr = αρ0) with

polytropic EoS (Pr = βρ1+ 1
n ), which results in Pr = αρ +

βρ1+ 1
n , where Pr denotes the radial pressure, K is polytropic

constant and n is polytropic index. He described different
cosmological models of early and late time universe with the
help of GPEoS. Freitas and Goncalves [28] used generalized
polytropic EoS to study primordial quantum fluctuations and
build a universe with constant density at the origin. Azam et
al. [11,29] used GPEoS to develop general framework for
charged spherical and cylindrical objects having anisotropic
matter configuration with conformally flat condition.

Stability analysis is significantly important in mathemat-
ical modeling of compact objects. Hydrostatic equilibrium
equations were initially developed to check the stability
of compact objects by Bondi [30]. Different studies have
been presented in the past to elaborate polytropic models in
Schwarzchild coordinates. Some researchers have also used
isotropic coordinates which are derived from Schwarzchild
coordinates to explain the stellar structure using range 1 <

n < 5 for polytropic index. Pandey et al. [31] used range
1
2 < n < 3 to explain the properties and structure of com-
pact objects. Herrera et al. [32] presented cracking technique
to check the stability of system using local density pertur-
bation. Thirukkanesh and Regal [33] used different poly-
tropic indices for exact solutions of EFEs under the effect
of anisotropy in spherically symmetric spacetime. Takissa
and Maharaj [34] used different values of n to obtain exact
solution to the EFEs. Azam et al. [35] used local density
perturbation technique to address the instability problem by
calculating cracking points for a variety of compact stars.
Ngubelanga and Maharaj [36] discovered new classes of
polytropic models for different values of polytropic index
and obtained masses of several stars. The same authors [37]
usedn = 1, 1

2 , 2
3 , 2 to generate physically well behaved poly-

tropic models.
In this work the main objective is to develop new phys-

ically viable polytropic solutions to the EFEs in isotropic
coordinates with GPEoS. We assume spherically symmetric
spacetime with anisotropic inner fluid in isotropic coordi-
nates with GPEoS. We present three different mathematical
models for n = 1, 1

2 , 1
3 , and a physical analysis indicates

that the models are well behaved. For the sake of simplicity,
we will explain the properties of model by using polytropic
index n = 1. Our paper is organized as follows, in Sect. 2, we

will comprehensively explain our model. Section 3 contains
the integration of the model and in Sect. 4, we will develop
different polytropic models for n = 1, 1

2 , 1
3 . Physical prop-

erties of the system for n = 1 will be explained in Sect. 5
followed by the conclusion.

2 Einstein field equations

The line element for static spherically symmetric spacetime
in isotropic coordinates (xa) = (t, r, θ, φ) is given by

ds2 =−A2(r)dt2+B2(r)
[
dr2+r2

(
dθ2+sin2θdφ2

)]
,

(1)

where the metric quantities A(r) and B(r) are gravitational
potentials. For an anisotropic fluid, energy momentum tensor
has the following form

Ti j = diag (−ρ, Pr , Pt , Pt ) , (2)

where ρ, Pt and Pr are matter quantities representing energy
density, tangential pressure and radial pressure. The time-
like unit four velocity ui = 1

A δi0, is used to measure these
quantities. From Eqs. (1) and (2), EFEs takes the following
form

8πρ = − 1

B2

[
2
B ′′

B
− B ′

B

(
B ′

B
− 4

r

)]
, (3)

8πpr = 2
A′

A

(
B ′

B3 + 1

r

1

B2

)
+ B ′

B3

(
B ′

B
+ 2

r

)
, (4)

8πpr = 2
1

B2

[
B ′′

B
− B ′

B

(
B ′

B
− 1

r

)]
+ 1

B2

(
A′′

A
+ 1

r

A′

A

)
.

(5)

The above system of Eqs. (3)–(5) comprises five independent
variables (ρ, Pr , Pt , A(r), B(r)) with three equations. To
understand the system more efficiently, we use new following
transformation [36,37]

x ≡ r2, L ≡ B−1, G ≡ L A, (6)

applying transformation given in above Eq. (6) to system of
Eqs. (3)–(5), we get the following set of equation

8πρ = 4 [2xLLxx − 3(xLx − L)Lx ] , (7)

8πpr = 4L(L − 2xLx )
Gx

G
− 4(2L − 3xLx )Lx , (8)

8πpt = 4xL2 Gxx

G
+ 4L (L − 2xLx )

Gx

G
− 4(2L − 3xLx )Lx − 8xLLxx . (9)

for line element in Eq. (1). The subscript x represents deriva-
tive with respect to x . we assume that matter should satisfy
GPEoS which has the form [11]
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Pr = βρ + αρ	, (10)

where 	 = 1 + 1
n .

The EFEs (7)–(9) together with the GPEoS (10), leads to
following relations

8πρ = 4 [2xLLxx − 3 (xLx − L) Lx ] , (11)

Pr = βρ + αρ1+ 1
n , (12)

8π Pt = 8π Pr + 
, (13)


 = 4xL2 Gxx

G
+ 4L (L − 2xLx )

Gx

G
−4 (2L − 3xLx ) Lx

−8xLLxx − β

2
[8(2xLLxx − 3(xLx − L)Lx )]

− 8πα

(16π)1+ 1
n

[8 (2xLLxx−3 (xLx − L) Lx )]
1+ 1

n ,

(14)
Gx

G
= 2β

L(L − 2xLx )
[(2xLLxx − 3 (xLx − L) Lx )]

+ (2L − 3xLx ) Lx

L (L − 2xLx )

+ 2πα

L(L − 2xLx )

×
[

8 (2xLLxx−3 (xLx−L) Lx )

2π

]1+ 1
n

, (15)

where 
 = 8π(Pt − Pr ) defines measure of anisotropy. Sys-
tem of Eqs. (11)–(15) is nonlinear for L and G. This system
has six unknowns (Pr , ρ, Pt ,
, L ,G) and five independent
equations. In order to get exact solution by integration we
need value of one variable. We write mass function as in [34]

m(r) = 2π

∫ x

0

1√
γ

[
γρ(γ )

]
dγ, (16)

where γ denotes integration variable.

3 Integration

To obtain functional forms of the matter variables, we solve
the system of Eqs. (11)–(15) by means of integration. In order
to make physically viable choice of the independent variable,
we introduce gravitational potential L of the form

L = ax2 + bx + c, (17)

which is quadratic in nature, where a, b and c are constants.
Using of above relation in Eq. (11), we obtain result for

energy density as

ρ = 1

2π

[
3bc + 10acr2 + abr4 − 2a2r6

]
, (18)

and the radial pressure from Eq. (12) takes the from

Pr = β

2π

(
3bc + 10acr2 + abr4 − 2a2r6

)

+ α

(2π)1+ 1
n

(
12bc + 40acr2 + 4abr4 − 8a2r6

)1+ 1
n
. (19)

Now Eq. (15) reduces to

Gx

G
= 2β

(ax2 + bx + c)(−3ax2 − bx + c)[
−2a2x3 + abx2 + 10acx + 3ac

]

+ (−4ax2 − bx + 2c)(2ax + b)

(ax2 + bx + c)(−3ax2 − bx + c)

+ 2πα

(ax2 + bx + c)(−3ax2 − bx + c)

×
[−2a2x3 + abx2 + 10acx + 3ac

2π

]1+ 1
n

, (20)

the above equation is in the form of gravitational potential G
and its difficult to integrate it due the presence of polytropic
index n. To obtain exact models we integrate it for specific
values of polytropic indices n = 1, n = 1/2, n = 1/3.

4 Polytropic models

In this section we present three exact polytropic models for
selected values of polytropic index as mentioned in the pre-
vious section. With the general value of polytropic index n,
it is difficult to integrate Eq. (20) and present exact solu-
tions. That is why, we have chosen different constant values
of n to integrate Eq. (20) and generate a variety of polytropic
models.

4.1 n = 1

For n = 1, Eq. (20) can be integrated as

G(r) = K
(
ar4 + br2 + c

)P

×
(
−3ar4 − br2 + c

)Q
eN (r) [U (r)]R [V (r)]S ,

(21)

where K is constant of integration, we take

P = 3

8aπ

[
3b3α + 4a(π − 3bcα + 2πβ)

]
, (22)

Q = 1

648aπ

[
25b3α + 12a(77bcα + 9π(1 + 14β))

]
, (23)

N (r) = −(109b2 − 384ac)α + 42abr4 − 12a2r6α

54π
, (24)

U (r) =
√

(4ac − b2) + b + 2ar2
√

(4ac − b2) − b − 2ar2
, (25)
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V (r) =
√

(−12ac − b2) + b + 6ar2
√

(−12ac − b2) − b − 6ar2
, (26)

R(r) = 9α(−b2 + 4ac)
3
2

8aπ
, (27)

S = −25b4α+7056a2c2α + 24ab(16bcα + 9π(1 + 2β))

648aπ
√

−b2 − 12ac
. (28)

The degree of anisotropy becomes


 = 4Q(−b − 6ar2)(ar4 + br2 + c)

(−3ar4 − br2 + c)2

×
[
2P(b + 2ar2)(−3ar4 − br2 + c)

+ (Q − 1)(−b − 6ar2)

+ r2(−3ar4 − br2 + c)(ar4 + br2 + c)

×
(
N

′
2R

U
′

U
+ 2S

V
′

V

)

− −6

Q(−b − 6ar2)

]
+8r2P(b+2ar2)(ar4+br2 + c)

×
[
R
U

′

U
+ S

V
′

V

]
+ 4r2(ar4 + br2 + c)

×
[
R
U

′′

U
+S

V
′′

V

]
+4r2(ar4+br2+c)2

×
[
R(R − 1)

(U ′

U

)2 + S(S − 1)
(V ′

V

)2

+ 4r2(−3ar4 − br2 + c)
[
R
U

′

U
+ S

V
′

V

]

+ 4r2(ar4 + br2 + c)

×
[
N

′′ + 2RS(ar4 + br2 + c)
U

′
V

′

UV

+
(
P(b + 2ar2) + R(ar4 + br2 + c)

U
′

U

+ S(ar4 + br2 + c)
V

′

V
+ (ar4 + br2 + c)N

′)
N

′]

+ 4P(2ar2 + b)
[
r2(P − 1)(2ar2 + b)

+ (−3ar4 − br2 + c)
]

+ 4(ar4 + br2 + c)
[
2ar2P + Q(−b − 6ar2)

]

+ 4(ar4 + br2 + c)(−3ar4 − br2 + c)N
′

− 4(2ar2 + b)(−4ar4 − br2 + c)

− 16ar2(ar4 + br2 + c)

− 4β
[
4ar2(ar4 + br2 + c) − 3(2ar2 + b)(ar4 − c)

]

− 8πα

(2π)2

[
4ar2(ar4 + br2 + c)

− 3(2ar2 + b)(ar4 − c)
]2

. (29)

The line element in Eq. (1) for n = 1 takes the form

ds2 = −K (ar4 + br2 + c)2P
(
−3ar4 − br2 + c

)2(Q−1)

× [U (r)]2R [V (r)]2S e2N (r)dt2

+(−3ar4 − br2 + c)−2

×
[
dr2 + r2

(
dθ2 + sin2θdφ2

)]
. (30)

This form of solution is characterized by GPEoS Pr = βρ +
αρ2.

4.2 n = 1
2

For n = 1
2 , Eq. (20) can be integrated as

G(r) = K (ar4 + br2 + c)P

×(−3ar4 − br2 + c)QeN (r)[U (r)]R[V (r)]S,(31)

where K is constant of integration

P = 3

16a2π2

[
− 9b6α + 90ab4cα + 288a3c3α

− 8a2(36b2c2α + π2(1 + 2β))
]
, (32)

Q = 1

349928a2π2

[
125b6α + 1650ab4cα

+ 296352a3c2α + 216a2(224b2c2α

+ 27π2(1 + 14β))
]
, (33)

N (r) = r2α

29160aπ2

[
− 97790b5 + 48270ab4r2

+ 3ab3(29737c − 1031ar4)

+ 135a2b2r2(−2966c + 151ar4)

+ 540a3r2(1544c2 − 141acr4 + 6a2r8)

− 72a2b(35100c2 − 2995acr4 + 153a2r8)
]
, (34)

U (r) =
√

(4ac − b2) + b + 2ar2
√

(4ac − b2) − b − 2ar2
, (35)

V (r) =
√

(−12ac − b2) + b + 6ar2
√

(−12ac − b2) − b − 6ar2
, (36)

R = 27bα

8a2π2 (−b2 + 4ac)
5
2 , (37)

S = b

17496a2π2
√−b2 − 12ac

[
125b6α + 2400ab4cα,

− 846720a3c3α − 144a2(431b2c2α

+ 81π2(1 + 2β))
]
. (38)
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The degree of anisotropy is of the following form


 = 4Q(−b − 6ar2)(ar4 + br2 + c)

(−3ar4 − br2 + c)2

×
[
2P(b + 2ar2)(−3ar4 − br2 + c)

+ (Q − 1)(−b − 6ar2)

+ r2(−3ar4 − br2 + c)(ar4 + br2 + c)

×
(
N

′
2R

U
′

U
+ 2S

V
′

V

)

− −6

Q(−b − 6ar2)

]
+ 8r2P(b+2ar2)(ar4+br2 + c)

×
[
R
U

′

U
+S

V
′

V

]
+4r2(ar4+br2+c)

×
[
R
U

′′

U
+ S

V
′′

V

]

+ 4r2(ar4 + br2 + c)2

×
[
R(R − 1)

(
U

′

U

)2

+ S(S − 1)

(
V

′

V

)2

+ 4r2(−3ar4 − br2 + c)

[
R
U

′

U
+ S

V
′

V

]

+ 4r2(ar4 + br2 + c)

×
[
N

′′ + 2RS(ar4 + br2 + c)
U

′
V

′

UV

+
(
P(b + 2ar2) + R(ar4 + br2 + c)

U
′

U

+ S(ar4 + br2 + c)
V

′

V
+ (ar4 + br2 + c)N

′)
N

′]

+ 4P(2ar2 + b)

×
[
r2(P − 1)(2ar2 + b) + (−3ar4 − br2 + c)

]

+ 4(ar4 + br2 + c)
[
2ar2P + Q(−b − 6ar2)

]

+ 4(ar4 + br2 + c)(−3ar4 − br2 + c)N
′

− 4(2ar2 + b)(−4ar4 − br2 + c)

−16ar2(ar4 + br2 + c)

− 4β
[
4ar2(ar4 + br2 + c) − 3(2ar2 + b)(ar4 − c)

]

− 8πα

(2π)2

[
4ar2(ar4 + br2 + c) − 3(2ar2 + b)(ar4 − c)

]3
.

(39)

The line element (1) for n = 1
2 takes the form

ds2 = −K (ar4 + br2 + c)2P (−3ar4 − br2 + c)2(Q−1)

× [U (r)]2R

× [V (r)]2S e2N (r)dt2

+(−3ar4 − br2 + c)−2
[
dr2 + r2(dθ2 + sin2θdφ2)

]
. (40)

This form of solution is characterized by GPEoS Pr = βρ +
αρ

3
2 .

4.3 n = 1
3

For n = 1
3 , the integration of Eq. (20) yields following

expression

G(r) = K (ar4 + br2 + c)P
(
−3ar4 − br2 + c

)Q

×eN (r)[U (r)]R[V (r)]S, (41)

P = 3

32a3π3

[
27b9α − 405ab7cα + 2268a2b5c2α

+ 5184a4bc4α16a3(−351b3c3α + pi3(1 + 2β))
]
, (42)

Q = 1

1889568a3π3

[
625b9α + 11625ab7cα

− 45900a2b5c2α + 51565248a4bc4α

+ 432a3(8897b3c3α + 729π3(1 + 14β))
]
, (43)

N (r) = −r2α

5511240a2π3

[
− 27889715b8 − 13933920ab7r2

− 945a2b5r2(192128c + 7303ar4)

+ 105ab6(−3721712c + 88261ar4)

− 3780a3b3r2(218351c2 − 20427acr4 + 1113a2r8)

+ 63a2b4(31462905c2 − 1776470acr4 + 85761a2r8)

− 11340a4br2(−137728c3 + 25578ac2r4

− 2904a2cr8 + 135a3r12)

+ 216a3b2(−18976160c3 + 2148405ac2r4

− 253638a2cr8 + 13635a3r12)

+ 1296a4(3091760c4 − 582400ac3r4 + 93051a2c2r8

− 8370a3cr12 + 315a4r16)
]
, (44)

U (r) =
√

(4ac − b2) + b + 2ar2
√

(4ac − b2) − b − 2ar2
, (45)

V (r) =
√

(−12ac − b2) + b + 6ar2
√

(−12ac − b2) − b − 6ar2
, (46)

R = 81(b2 − ac)(−b2 + 4ac)
7
2

16a3ı3
, (47)

S = 1

4629441600a3π3
√−b2 − 12ac[

625b10α + 15375ab8cα

+12600a2b6c2α − 73664640a4b2c4α

−149361408a5c5α − 864a3b(7106b3c3α

+729π3(1 + 2β))
]
. (48)

In this case degree of anisotropy is written as


 = 4Q(−b − 6ar2)(ar4 + br2 + c)

(−3ar4 − br2 + c)2

×
[
2P(b + 2ar2)(−3ar4 − br2 + c)

+ (Q − 1)(−b − 6ar2)

+ r2(−3ar4 − br2 + c)(ar4 + br2 + c)

×
(
N

′
2R

U
′

U
+ 2S

V
′

V

)
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− −6

Q(−b − 6ar2)

]

+ 8r2P(b + 2ar2)(ar4 + br2 + c)

×
[
R
U

′

U
+ S

V
′

V

]
+ 4r2(ar4 + br2 + c)

×
[
R
U

′′

U
+ S

V
′′

V

]
+ 4r2(ar4 + br2 + c)2

×
[
R(R − 1)

(U ′

U

)2 + S(S − 1)
(V

′

V

)2

+ 4r2(−3ar4 − br2 + c)
[
R
U

′

U
+ S

V
′

V

]

+ 4r2(ar4 + br2 + c)

×
[
N

′′ + 2RS(ar4 + br2 + c)
U

′
V

′

UV

+
(
P(b + 2ar2) + R(ar4 + br2 + c)

U
′

U

+ S(ar4 + br2 + c)
V

′

V
+ (ar4 + br2 + c)N

′)
N

′]

+ 4P(2ar2 + b)[
r2(P − 1)(2ar2 + b) + (−3ar4 − br2 + c)

]

+ 4(ar4 + br2 + c)
[
2ar2P + Q(−b − 6ar2)

]

+ 4(ar4 + br2 + c)(−3ar4 − br2 + c)N
′

− 4(2ar2 + b)(−4ar4 − br2 + c)

−16ar2(ar4 + br2 + C)

− 4β
[
4ar2(ar4 + br2 + c) − 3(2ar2 + b)(ar4 − c)

]

− 8πα

(2π)2

[
4ar2(ar4 + br2 + c) − 3(2ar2 + b)(ar4 − c)

]4
.

(49)

The metric (1) becomes

ds2 = −K (ar4 + br2 + c)2P
(
−3ar4 − br2 + c

)2(Q−1)

× [U (r)]2R [V (r)]2S e2N (r)dt2

+(−3ar4 − br2 + c)−2

×
[
dr2 + r2(dθ2 + sin2θdφ2)

]
. (50)

This form of solution is characterized by GPEoS Pr = βρ +
αρ

4
3 .

5 Properties of solutions

In previous section, we presented the line element, anisotropy
and solution of the gravitational system for three different
values of polytropic index. We will discuss the physical prop-
erties of the model for n = 1 as its less complicated. For con-
sidered value of polytropic index the radial pressure takes the
form

pr = βρ + αρ2, (51)

which is of degree 2 and energy density has the form

8πρ =
[
12bc + 40acr2 + 4abr4 − 8a2r6

]
. (52)

Using Eq. (52) in Eq. (51), we obtain the expression for radial
pressure

Pr = β

2π

(
3bc + 10acr2 + abr4 − 2a2r6

)

+ α

(2π)2

(
3bc + 10acr2 + abr4 − 2a2r6

)2
, (53)

and expression for m(r) becomes

m(r) =
(

4acr5 − 4

9
a2r9 + 2bcr3 + 2

7
abr7

)
, (54)

all the above quantities are well behaved. The energy density
(ρ) and central radial pressure (Pr0) can be written as

ρ0 = 3bc

2π
, (55)

Pr0 = β
(3bc

2π

)
+ α

(3bc

2π

)2
. (56)

The speed of sound is defined as

υ2 = dpr
dρ

. (57)

For physically viability, we have the restrictions υ ≤ 1 and
radial pressure must be zero at boundary. For r = 1, we
obtain the relation

β = −α(3bc + 10acr2 + abr4 − 2a2r6)

2π
. (58)

The numerical values of all model parameters for five dif-
ferent stars are given in Table 1. We have generated masses of
five different stars by varying parameters β, a and c, which

Table 1 Mass (m), central
density (ρ) and central radius
Pr0 of different stars
corresponding to α = 1.95 and
b = −10.69

Name of star Mass β a c ρ0 Pr0

PSR J1614-2230 1.97 − 0.635408 0.047 − 0.0838 0.510 0.075

Vela X-1 1.77 − 0.744017 0.040 − 0.0893 0.456 0.066

Vela 4U 1.73 − 0.704571 0.050 − 0.0890 0.454 0.082

PSR J1903+327 1.67 − 0.635408 0.055 − 0.0838 0.428 0.085

4U 1820-30 1.58 − 0.624375 0.054 − 0.0823 0.420 0.082
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Table 2 Energy density (ρ), radial pressure (Pr ) and mass (m) varia-
tion from center to boundary of realistic star 4U 1820-30

r ρ Pr M dpr
dρ

0.0 0.420 0.082 0.000 0.195

0.1 0.420 0.082 0.002 0.195

0.2 0.419 0.017 0.014 0.194

0.3 0.419 0.080 0.047 0.192

0.4 0.417 0.078 0.112 0.188

0.5 0.413 0.074 0.218 0.180

0.6 0.406 0.068 0.347 0.167

0.7 0.394 0.012 0.587 0.145

0.8 0.378 0.042 0.860 0.112

0.9 0.354 0.023 1.192 0.006

1.0 0.320 0.000 1.580 0.000

0.2 0.4 0.6 0.8 1.0
r

0.32

0.34

0.36

0.38

0.40

Fig. 1 Energy density for r = 1 and α = 1.95 and b = −10.69

0.2 0.4 0.6 0.8 1.0
r

0.005

0.010

0.015

Pr

Fig. 2 Radial pressure for r = 1 and α = 1.95 and b = −10.69

are mentioned in column 1, 2 and 3 of Table 1. The acceptable
values for ρ0 and Pr0 are also given in Table 1.

By choosing α = 1.95 and b = −10.69, we regained
mass 1.58M⊙ for star 4U1820 − 30. Table 2 contains vary-

ing values of ρ, Pr , M and dPr
dρ from center of star to its

boundary. Graphical analysis shows that density, radial pres-

0.2 0.4 0.6 0.8 1.0
r

0.5

1.0

1.5

m

Fig. 3 Mass function for r = 1 and α = 1.95 and b = −10.69

0.2 0.4 0.6 0.8 1.0
r

0.01

0.02

0.03

0.04

Fig. 4 speed of sound for r = 1 and α = 1.95 and b = −10.69

sure and speed of sound are decreasing functions of r , while
mass function is increasing. Graphs clearly shows that all
quantities are well behaved and physically acceptable (Figs.
1, 2, 3, 4).

6 Conclusion and discussion

In this work, we have established new polytropic models to
the EFEs by utilizing GPEoS, which may be used to model
anisotropic relativistic compact objects. We calculated the
exact solutions to EFEs with the help of isotropic coordinates
have been used which makes the system as much euclidian as
possible. In isotropic coordinates all spatial coordinates are
treated as same, isotropic coordinates are helpful in modeling
of such objects whose gravity has symmetries and does not
distinguish between x , y and z coordinates. We have made
specific choice for gravitational potential L = ax2+bx+c to

integrate the field equations with GPEoS (Pr = βρ+αρ1+ 1
n ),

for different values of model parameters, “a”, “b” and “c”.
The parametric values along with gravitational potential are
chosen in a way that our model remains physically viable and
no singularity is observed at any stage. For the selected val-
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ues of parameters, energy density (ρ) and radial pressure Pr
remains positive inside the star, radial pressure (Pr ) should
vanishes at the boundary of star, degree of anisotropy (
)

was chosen so that gradient pressure
(
dpr
dr

)
should be less

then zero, for r = 0, 
 must be zero, at the center of star
central density (ρc) must be finite, metric quantities A(r) and
B(r) remains positive and non-singular inside the star.

For the acceptance of any model its stability analysis is the
most important factor. To check stability of any model energy
conditions plays a vital role. With the help of energy condi-
tions one can check the stability of model without polytropic
EoS. Table 2 in our work contain values of energy density
(ρ) and radial pressure (Pr ) which satisfies energy condi-
tions and make our system physically acceptable. A number
of techniques are present in the literature for stability analysis
of models, we have used speed of sound as a criteria to check
stability of our model. The speed of sound remains positive
inside the star for the corresponding values of parameters we
have used.

It is important to mention that we have regained the
masses of five stars PSR J1614-2230, Vela X-1, Vela 4U,
PSR J1903+327 and 4U 1820-30 as mentioned in Table 1. We
have generally demonstrated the behavior of compact objects
by plotting there graphs for r = 1, graphs of energy den-
sity, radial pressure, mass function and speed of sound were
plotted for unit radius, energy density ρ and radial pressure
Pr remains positive and monotonically decreasing inside the
star and becomes zero at the surface of the star which satisfies
the basic requirements condition of stability. Mass function
m increases for increasing r while speed of sound decreases
and vanishes at the boundary of star. Graphs were clearly rep-
resenting that all the models are well behaved and physically
viable.
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