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Abstract It has been found that the zero mode of a five-
dimensional Elko spinor could be localized on branes by
introducing a Yukawa-type coupling between the Elko spinor
and the background scalar field or the Ricci scalar. However,
the Yukawa-type coupling is not appropriate for all brane
models. In this paper, we explore other localization mecha-
nism for the Elko spinor by introducing the non-minimal cou-
pling f (φ)LElko between the five-dimensional Elko spinor
and the background scalar field. We give the general expres-
sions of the Elko zero mode and the function f (φ). Through
two thick brane models and three concrete examples, we
show that the Elko zero mode can be localized on the branes
by this new mechanism. This provides us more possibilities
of localizing the Elko zero mode.

1 Introduction

Brane-world models have attracted more and more interests
since they were brought up [1–3]. They not only give a novel
viewpoint of our world, but also open a new way to inter-
pret many outstanding issues that the Standard Model (SM)
can not interpret sufficiently, such as the hierarchy problem
[1,2,4–7], cosmological constant problem [8–15], the nature
of dark matter and dark energy [16–19] and so on. Most of the
early brane world models like the famous Randall-Sandrum
(RS) branes were thin ones [1–3] neglecting the thicknesses
of branes. Subsequently, some more realistic branes with
thickness (i.e., thick brane models) were proposed, whose
energy densities have a distribution along the extra dimen-
sion. Usually, a thick brane can be generated dynamically by
bulk matter fields [20–38], or by pure gravity [39–41]. More
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details about various kinds of thick branes could be found in
Refs. [28,42].

In brane world scenarios, one of the most important and
interesting questions is to investigate the localization mecha-
nism of various matter fields in a higher-dimensional space-
time on a 3+1 brane. The investigation of the Kaluza–Klein
(KK) modes of various bulk matter fields can give us the way
to probe the extra dimensions by considering their coupling
with particles on the brane and the corrections to Newton’s
law and Coulomb’s law [3,43–46]. In general, the zero modes
of all five-dimensional matter fields, which correspond to
the four-dimensional massless particles on a brane, must be
localized on the brane to make sure the four-dimensional SM
can be rebuilt on the brane at least at low energy. There were
many works that studied the localization of various matter
fields on branes [46–66].

The localization of fields beyond SM have also been inves-
tigated. Elko spinor field, which was proposed by Ahluwalia
and Grumiller [67,68] in 2005, is a new quantum field with
spin-1/2 beyond the four-dimensional SM and is the eigen-
spinor of the charge conjugation operator. However, Elko
spinor field has some different properties compared with
Dirac spinor: (1) it satisfies the Klein–Gordon (KG) equation
rather than the Dirac equation, (2) for the five-dimensional
Elko spinor, its mass dimension is one, instead of 3/2 that
is suit for Dirac spinor. Hence the interactions between Elko
spinor and gauge fields in SM will be suppressed strongly (at
least one order of Plank scale), which means that Elko spinor
only interacts with itself, graviton and Higgs fields [67–75].
Elko spinor has been considered as a first-principle candi-
date of dark matter [67–71] and has also been investigated
extensively in cosmology [76–85] and mathematical physics
[86–92].

The localization of Elko spinor in five-dimensional brane
world models has been investigated in Refs. [93–95]. It was
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found that the zero mode of Elko spinor can be localized on
branes thought a Yukawa-type coupling with the background
scalar field [93,95], or the Ricci scalar [95]. However, the
Yukawa-type coupling is only appropriate for some kinds
of thick branes, and the coupling constant must be taken
as some particular expression determined by the parame-
ters in the brane models. This motivates us to consider the
other kinds of couplings to release the limits of coupling
constants and brane models. In Ref. [42], a general cou-
pling between the five-dimensional Dirac fermion and the
background scalar fields is introduced, which includes the
non-minimal coupling between the Dirac fermion and the
scalar fields. Inspired by this, in this paper, we will introduce
this new type of coupling, i.e., the non-minimal coupling
f (φ)LElko between the five-dimensional Elko spinor and
the background scalar field, where f (φ) is a function of the
backgound scalar field and LElko is the Lagrangian of the
five-dimensional Elko spinor. We will study the localization
of the Elko spinor with this new coupling on the Minkowski
thick branes which have been considered in Yukawa-type
coupling case [93] and compare the characteristics between
the Yukawa-type coupling and this new coupling. We will
show that localized Elko zero mode on the branes can be
realized for different forms of f (φ), which means that this
new coupling can provide us more possibilities of localizing
the Elko zero mode. By the way, the localization of the Elko
spinor in a six-dimensional string-like model was considered
in Ref. [96], recently.

The organization of the paper is listed as follows. In
Sect. 2, we give a briefly review of Elko spinor field. In
Sect. 2, we consider the localization of a five-dimensional
massless Elko spinor with a non-minimal coupling to the
background scalar field and give the equation of the Elko
zero mode. Then in Sect. 3, we discuss the localization of the
Elko zero mode on various thick branes. Finally, the conclu-
sion is given in Sect. 4.

2 Review of Elko spinor field

Elko spinor field is a spin-1/2 matter field, but it is very differ-
ent from the Dirac fermion spinor. Elko spinor field belongs
to non-standard Wigner classes and can not be expressed
in Weinberg’s formalism [67,71]. Elko spniors satisfy the
unusual property (CPT )2 = −I, where the charge conjuga-
tion C is defined as

C =
(

O i�
−i� O

)
K . (1)

Here K is the complex conjugation operator, and � is the
spin one half Wigner time reversal operator which satis-
fies �(σ/2)�−1 = −(σ/2)∗. Elko spinors are eigenspinors
of the charge conjugation operator: Cλ(kμ) = ±λ(kμ)

with kμ a polarization vectorx. The plus sign generates the
self-conjugate spinors which are denoted by ς(kμ) and the
minus sign generates the anti-self-conjugate spinors which
are denoted by τ(kμ). Both of the two kinds of spinors have
two possible helicities χ±(kμ), which can be expressed as

χ+(kμ) = e−iφ/2√m

(
1

0

)
, χ−(kμ) = eiφ/2√m

(
0

1

)
. (2)

Thus there exist four types of Elko spinors which are written
as

ς±(kμ) =
(

i�[χ±(kμ)]∗
χ±(kμ)

)
, (3)

τ±(kμ) = ±
(−i�[χ∓(kμ)]∗

χ∓(kμ)

)
. (4)

By using a transformation operator �, kμ can be transformed
as a general vector pμ which represents (E , px , py , pz). Here
the � is given by [71]

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
m

E−pz
px−ipy√
m(E−pz)

0 0

0
√

E−pz
m 0 0

0 0
√

E−pz
m 0

0 0 − px+ipy√
m(E−pz)

√
m

E−pz

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Then by taking the massless limit in the expression of Elko
spinor λ(pμ), the four-dimensional massless Elko spinor can
be got. We can find that the ς−(pμ) and τ+(pμ) will vanish
but ς+(pμ) and τ−(pμ) will not in the massless limit. In
addition, the dual spinors of Elko spinors are defined as

¬
ς±(pμ) = ±[ς∓(pμ)]†γ 0,

¬
τ±(pμ) = ±[τ∓(pμ)]†γ 0.

(6)

Elko spinors can not be expressed in Weinberg’s formalism.
Thus they do not satisfy the usual Dirac equation. By using
the Dirac operator γμ pμ to act on Elko spinors, one can get

γμ p
μς±(pμ) = ∓mς∓(pμ), γμ p

μτ±(pμ) = ±mτ∓(pμ).

(7)

Here the gamma matrices γ μ satisfy the relation {γ μ, γ ν} =
2ημν

Iwith ημν = diag(−,+,+,+). At the same time, when
γ 5 acts on Elko spinors, the results are

γ 5ς±(pμ) = ±τ∓(pμ), γ 5τ±(pμ) = ∓ς∓(pμ). (8)

Then the following equations can be obtained by the Fourier
transformation:

γ μ∂μς±(x) = ∓imς∓(x), γ μ∂μτ±(x) = ±imτ∓(x); (9)

γ 5ς±(x) = ±τ∓(x), γ 5τ±(x) = ∓ς∓(x). (10)

It should be noticed that it is γ μ∂μψ ∝ ψ , where ψ is
a usual Dirac spinor. Although Elko spinors do not sat-
isfy the usual Dirac equation, they satisfy the KG equa-

123



Eur. Phys. J. C (2018) 78 :493 Page 3 of 11 493

tion: (ημν∂μ∂ν − m2)λ(x) = 0. Thus, the Lagrangian den-
sity of a free Elko in four-dimensional flat space-time reads

LElko = − 1
2∂μ

¬
λ ∂μλ − 1

2m
2

¬
λ λ. And for a general curved

space-time, the Lagrangian for a free massless Elko should
read [68,79,80]

LElko = −1

4
gμν(Dμ

¬
λDνλ + Dν

¬
λDμλ), (11)

where Dμ represents covariant derivative.

3 Localization of five-dimensional Elko spinor with
non-minimal coupling

In order to localize a five-dimensional Elko spinor on a brane
with codimension one, a Yukawa-type coupling between the
Elko spinor and the background scalar field or the scalar
curvature R has been considered in Refs. [93,95]. However,
the Yukawa-type coupling is not appropriate for all brane
models and the expression of the coupling constant will be
determined exactly by the parameters in the models. There-
fore, we will focus on the non-minimal coupling between a
five-dimensional Elko spinor and the background scalar field
in this section. The five-dimensional line-element is assumed
as

ds2 = e2A(y)ĝμνdx
μdxν + dy2. (12)

Here, e2A(y) is the warp factor and ĝμν is the induced metric
on the brane. Performing the following coordinate transfor-
mation

dz = e−A(y)dy, (13)

the metric Eq. (12) can transform to be

ds2 = e2A(ĝμνdx
μdxν + dz2), (14)

which is more convenient for discussing the localization of
various matter fields on branes. As the same as the localiza-
tion mechanism of the Dirac fermion field on brane consid-
ered in [42], the action of a five-dimensional massless Elko
spinor with non-minimal coupling to background scalars is
written as

S =
∫

d5x
√−g f (φ)LElko,

LElko = −1

4
gMN

(
DM

¬
λDNλ + DN

¬
λDMλ

)
. (15)

Here f (φ) is a function of the background scalar field φ

and φ is a function of the extra dimension. λ represents a

five-dimensional Elko field and
¬
λ is the dual one. The cap-

ital Latin letters (M, N = 0, 1, 2, 3, 5) and the Greek ones
(μ, ν = 0, 1, 2, 3) denote the five-dimensional and four-
dimensional space-time indices, respectively. In addition, we

let Ā, B̄ . . . = 0, 1, 2, 3, 5 anda, b . . . = 0, 1, 2, 3 denote the
five-dimensional and four-dimensional local Lorentz indices,
respectively. The covariant derivatives are

DMλ = (∂M + �M )λ, DM
¬
λ = ∂M

¬
λ − ¬

λ �M . (16)

Here the spin connection �M is given by

�M = − i

2

(
eĀPe

N
B̄

�P
MN − e N

B̄
∂MeĀN

)
S ĀB̄,

S ĀB̄ = i

4
[γ Ā, γ B̄], (17)

where eĀM is the vierbein and satisfies the orthonormality

relation gMN = eĀMeB̄Nη Ā B̄ . So the non-vanishing compo-
nents of the spin connection �M for the metric Eq. (14) are:

�μ = 1

2
∂z Aγμγ5 + �̂μ, (18)

where the γμ and γ5 are the four-dimensional gamma
matrixes on the brane and the γμ satisfy {γμ, γν} = 2ĝμν ,
and �̂μ is the the spin connection on the brane.

The equation of motion for the Elko can be got from the
action Eq. (15)

1√−g f (φ)
DM (

√−g f (φ)gMNDNλ) = 0. (19)

With the conformally metric Eq. (14) and the non-vanishing
components of the spin connection Eq. (18), the above Eq.
(19) becomes

1√−ĝ
D̂μ(

√
−ĝĝμνD̂νλ) +

[
− 1

4
A′2 ĝμνγμγνλ

+1

2
A′(D̂μ(ĝμνγνγ5λ) + ĝμνγμγ5D̂νλ

)

+e−3A f −1(φ)∂z(e
3A f (φ)∂zλ)

]
= 0, (20)

where D̂μ denotes the four-dimensional covariant deriva-
tives on the brane and it satisfies D̂μλ = (∂μ + �̂μ)λ. With
D̂μêaν = 0, one has D̂μĝλρ = D̂μ(ê λ

a êaρ) = 0. Thus, the
above equation can be simplified as

1√−ĝ
D̂μ(

√
−ĝĝμνD̂νλ) −A′γ 5γ μD̂μλ−A′2λ

+ e−3A f −1(φ)∂z(e
3A f (φ)∂zλ) = 0. (21)

As what we have done in our previous work [93,95], we intro-
duce the KK decomposition of the five-dimensional Elko
spinor

λ± = e−3A/2 f (φ)−
1
2
∑
n

(
αn(z)ς

(n)
± (x) + αn(z)τ

(n)
± (x)

)

= e−3A/2 f (φ)−
1
2
∑
n

αn(z)λ̂
n±(x). (22)
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Here and after we omit the ± subscript of the αn functions
for simplicity. The functions ςn±(x) and τ

(n)
± (x) are four-

dimensional linear independent Elko spinors, which satisfy

γ μD̂μς±(x) = ∓iς∓(x), γ μD̂μτ±(x) = ±iτ∓(x), (23)

γ 5ς±(x) = ±τ∓(x), γ 5τ±(x) = ∓ς∓(x). (24)

At the same time the four-dimensional Elko spinor should
satisfy the K-G equation

1√−ĝ
D̂μ(

√
−ĝĝμνD̂νλn) = m2

nλn (25)

with mn the mass of the Elko spinor on the brane. Therefore,
the equation of the KK mode αn can be got

α′′
n −

[
− 1

4
f −2(φ) f ′2(φ) + 3

2
A′ f −1(φ) f ′(φ)

+1

2
f −1(φ) f ′′(φ) + 3

2
A′′ + 13

4
(A′)2 − m2

n + imn A
′
]
αn = 0.

(26)

By introducing the following orthonormality conditions for
αn∫

α∗
nαmdz = δnm, (27)

we can get the action of the four-dimensional massless and
massive Elko spinors from the action Eq. (15)

S = −1

4

∫
d5x

√−g f (φ)gMN (DM
¬
λDNλ + DN

¬
λDMλ)

= −1

2

∑
n

∫
d4x(∂μ

¬̂
λn∂μλ̂n + m2

n

¬̂
λn λ̂n), (28)

where λ̂n are the four-dimensional Elko spinors.
It is obvious that this term imn A′ in Eq. (26) will bring us

difficulty to investigate the massive Elko KK modes, which
will be discussed in our future work. In this paper we just
focus on the localization of the zero mode, which denotes
the four-dimensional massless Elko spinor on the brane (i.e.,
mn = 0). Thus, Eq. (26) for the massless case m0 = 0 can
be simplified as

[−∂2
z + V0(z)]α0(z) = 0, (29)

with the effective potential given by

V0(z) = − 1

4

f ′2(φ)

f 2(φ)
+ 3

2
A′ f ′(φ)

f (φ)
+ 1

2

f ′′(φ)

f (φ)

+ 3

2
A′′ + 13

4
A′2. (30)

The orthonormality condition for the Elko zero mode is∫
α∗

0α0dz = 1. (31)

Since there exist three types of functions (the negative power
and derivative of f (φ), the derivative of A) in the effective

potential Eq. (30), we define a new function B(z) = f ′(φ(z))
f (φ(z))

to transform Eq. (30) as

V0(z) = 1

4
B2 + 3

2
A′B + 1

2
B ′ + 3

2
A′′ + 13

4
A′2. (32)

From Ref. [93], it is know that there exist many similarities
between the Elko field and scalar field. For a five-dimensional
free massless scalar field, the Schrödinger-like equation for
the scalar field zero mode h0(z) reads as [50]

[−∂2
z + V�]h0 =

[
−∂2

z + 3

2
A′′ + 9

4
A′2
]
h0

=
[
∂z + 3

2
A′
] [

−∂z + 3

2
A′
]
h0

= 0. (33)

The scalar zero mode can be solved as

h0(z) ∝ e
3
2 A(z), (34)

and it always satisfies the orthonormality relation for any
brane embedded in a five-dimensional Anti-de Sitter (AdS)
space-time. It is the result of the fact that the coefficient of
A′2 is the square of the coefficient of A′′. Come back to the
case of the Elko spinor with non-minimal coupling, it is not
difficult to find that Eq. (29) can be rewritten as

[−∂2
z + V0]α0

=
[
−∂2

z + 1

4
B2 + 3

2
A′B + 1

2
B ′ + 3

2
A′′ + 13

4
A′2
]

α0

=
[
∂z +

(
3

2
A′ + 1

2
B

)][
−∂z +

(
3

2
A′ + 1

2
B

)]
α0 + A′2α0

= 0. (35)

Note that although the term A′2α0 will make the trouble, the
form of B(z) is arbitrary, which means that we can choice
an appropriate B(z) to eliminate the term A′2α0. To this end,
we introduce two new functions C(z) and D(z) that satisfy
the following equations

D′′ + D′2 = 1

4
B2 + 3

2
A′B + 1

2
B ′ + 3

2
A′′ + 13

4
A′2, (36)

D′ = 3

2
A′ + 1

2
B + C. (37)

Substituting Eq. (37) into Eq. (36), we can get the relation
between C(z) and B(z)

B(z) = −3A′ + A′2

C
− C − C ′

C
. (38)

Therefore, Eq. (29) can be written as

[−∂2
z + V0]α0 = [−∂2

z + D′′ + D′2]α0

= [
∂z + D′] [−∂z + D′]α0

= 0, (39)
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and the zero mode of the Elko spinor can be solved as

α0(z) ∝ eD(z)

= exp

⎡
⎣1

2

z∫
0

(
A′2

C
− C ′

C
+ C

)
dz̄

⎤
⎦ . (40)

In order to obtain the localized zero mode, the function C(z)
is required to be an odd one. We introduce

K (z) = C ′

C
− C, (41)

which is an odd function and is positive as z > 0. Thus the
zero mode can be written as

α0(z) = exp

⎡
⎣1

2

z∫
0

(
A′2

C
− K

)
dz̄

⎤
⎦

= exp

⎡
⎣1

2

z∫
0

A′2

C
dz̄

⎤
⎦ exp

⎡
⎣−1

2

z∫
0

Kdz̄

⎤
⎦ . (42)

And the function f (φ(z)) is expressed as

f (φ(z)) = e

z∫
0
B(z̄)dz̄

= exp

⎡
⎣

z∫
0

(
−3A′ + A′2

C
− C − C ′

C

)
dz̄

⎤
⎦

= exp

[∫ z

0

(
−3A′ + A′2

C
− K − 2

C ′

C

)
dz̄

]

= e−3AC−2exp

⎡
⎣

z∫
0

A′2

C
dz̄

⎤
⎦ exp

⎡
⎣

z∫
0

Kdz̄

⎤
⎦ .

(43)

It should be noticed that here the function C(z) can be
expressed by the function K (z) according to Eq. (41):C(z) =

e
∫ z
1 K (z̄)dz̄

constant−∫ z
1 e

∫ ẑ
1 K (z̄)dz̄d ẑ

. Thus Eqs. (42) and (43) give the gen-

eral expressions of the zero mode α0 and the function f (φ).
For a given K (z) the zero mode α0 is obtained by integrating
the Eq. (42). Then, the scalar field function f (φ(z)) is deter-
mined by integrating the Eq. (43). We will find that the role of
K (z) is similar to the auxiliary superpotential W (φ), which
is introduced in order to solve the Einstein equations in thick
brane models. As the superpotentialW (φ) does in thick brane
models, different K (z) could lead to different solutions. To
illustrate this, next we will review two kinds of thick brane
solutions and obtain the zero mode by considering different
forms of K (z), for example.

4 Localization of the Elko zero mode with non-minimal
coupling on thick branes

In this section, we consider two brane models as exam-
ples: one is constructed by a standard canonical scalar
field [20,25,28] and the other is generated by a scalar
field non-minimally coupled to the Ricci scalar curvature
[27,28,31,33]. Both of them are Minkowski thick branes
embedded in asymptotically AdS space-time and have been
investigated in our previous work [93]. By considering the
localization of the five-dimensional Elko spinor on these
thick branes, we can compare the Yukawa-type coupling and
non-minimal coupling. The thick brane action of a standard
canonical scalar coupled to gravity can be written as

S =
∫
d5x

√−g

[
1

2
R − 1

2
(∂φ)2 − V (φ)

]
. (44)

By considering the above action and the Minkowski brane
metric [which means ĝμν = ημν in Eq. 12]

ds2 = e2A(y)ημνdx
μdxν + dy2, (45)

the Einstein and scalar field equations are given by

∂V (φ)

∂φ
= φ′′ + 4A′φ′, (46a)

6A′2 = 1

2
φ′2 − V (φ), (46b)

A′′ = −1

3
φ′2. (46c)

By introducing the auxiliary superpotential W (φ), the scalar
field potential is given as

V (φ) = −6W (φ)2 + 9

2

(
∂W (φ)

∂φ

)2

. (47)

And we have

φ′ = 3
∂W (φ)

∂φ
, A′ = −W (φ). (48)

Thus, for a given superpotential W (φ), the scalar field and
the warp factor can be obtained by integrating the above
equations. We will find that the role of K (z) is similar to the
superpotential W (φ). By choosing a simple superpotential
[28]

W (φ) = c sin(bφ), (49)

the corresponding scalar potential is a sine-Gordon one

V (φ) = 3

2
c2[3b2 cos2(bφ) − 4 sin2(bφ)] (50)

and the brane solution is given by [20,25,28]

eA(y) =
[
cosh(cb2y)

]− 1
3b2

, (51a)

φ(y) = 2

b
arctan tanh

(3

2
cb2y

)
, (51b)

123



493 Page 6 of 11 Eur. Phys. J. C (2018) 78 :493

where b and c are parameters related to the brane thickness.
The potential approaches the negative values V (±∞) =
−6c2. Thus the bulk is asymptotically AdS. For simplicity,
we define the parameters 1

3b2 = b̄, cb2 = a. Then, the brane
solution becomes

A(y) = −b̄ ln cosh(ay), (52a)

φ(y) = φ0 arctan tanh

(
3ay

2

)
, (52b)

where φ0 = 2
√

3b̄. If we take the solution Eq. (51) into to
Eq. (46), we will find that it is indeed the solution to the
Einstein and scalar field equations.

In addition, the thick brane solution of a scalar field non-
minimally coupled to the Ricci scalar curvature was dis-
cussed in Refs. [27,28,33]. The action can be written as

S =
∫

d5x
√−g

[
F(φ)R − 1

2
(∂φ)2 − V (φ)

]
, (53)

where F(φ) is a function of the scalar field φ. By the con-
formal transformation gMN → 2g̃MN F(φ), the action is
conformally corresponded to the Einstein frame one. For the
Minkowski brane metric and the coupling function F(φ) =
1
2 (1 − ξφ2) with ξ 	= 0, the Einstein equations are given by

V (φ) = −3

2

(
1

2
− 1

2
ξφ2

)
(2A′2 + A′′)

+7

2
ξ A′φ′φ + ξφ′′φ + ξφ′2, (54a)

1

2
φ′2 = −3

2

(
1

2
− 1

2
ξφ2

)
A′′

−1

2
ξ A′φ′φ + ξφ′′φ + ξφ′2. (54b)

By choosing the warp factor as

eA(y) = [
cosh(ay)

]−γ
, (55)

the solution was obtained [27,28,33]

φ(y) = φ0 tanh(ay), (56)

where γ = 2( 1
ξ

− 6) and φ0 = a−1φ(0) =
√

3(1−6ξ)
ξ(1−2ξ)

. Note
that the parameter ξ satisfies 0 < ξ < 1/6, which leads to
γ > 0. And the scalar curvature R approaches a negative
value when y → ∞. It means that the bulk is asymptotically
AdS.

It is obvious that the warp factors of the two solutions have
the same form:

e2A(y) = cosh(ay)−2b. (57)

Here a is an arbitrary constant parameter and b a positive real
constant. For the first brane model it means b̄ = b according
to Eq. (52) and for the second one it means γ = b according
to Eq. (55). It is easy to check that it is the solution to the
Einstein Eqs. (46) and (54) by bringing the solution back to

Fig. 1 The shape of the warp factor e2A(z) in the coordinate z. The
parameters are set to a = 1 and b = 1

Eqs. (46) and (54). With the coordinate transformation Eq.
(13), we can get the conformal coordinate

z(y) = − i

√
π�( 1+b

2 )

2|a|�(1 + b
2 )

+ isign(ay)
[cosh(ay)]1+b

a(1 + b)
F, (58)

where F is the hypergeometric function

F = 2F1

[
1

2
,

1 + b

2
,

3 + b

2
, cosh2(ay)

]
. (59)

For simplicity, we just chose the simple case of b = 1. In
this case, we have

z =
y∫

0

cosh(a ȳ)d ȳ = 1

a
sinh(ay), (60)

and

A(z) = − ln(cosh(arcsinh(az))) = −1

2
ln(1 + a2z2). (61)

Figure 1 shows the shape of the warp factor e2A(z) in the coor-
dinate z. As what we have discussed in the previous section,
the role of K (z) is similar to the superpotential W (φ) in thick
brane models. Thus for different forms of K (z), there exist
different zero mode solutions and configurations of f (φ).
For example, next we will focus on three kinds of K (z) and
investigate the localization of the zero mode Eq. (42).

4.1 K (z) = k C ′
C

Firstly, we consider K (z) = k C ′
C with k ≥ 0. It is easy to get

C(z) = − 1 − k

z + C2
. (62)

123
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Fig. 2 The shape of the Elko zero mode α0(z) in Eq. (63) in the thick
brane models with A(z(y)) = −b ln cosh(ay). The parameters are set
to b = 1, a = 1 and k = 1

2

Here C2 is a constant and we can always let C2 = 0. The zero
mode is rewritten as

α0(z) ∝ eD(z)

= exp

⎡
⎣1

2

z∫
0

(
A′2

C
− k

C ′

C

)
dz̄

⎤
⎦

= −(|C |−1)
k
2

⎡
⎣1

2

z∫
0

A′2(z̄) z̄

1 − k
dz̄

⎤
⎦

∝ |z| k2 e
− 1

4(1−k)(1+a2z2)

(1 + a2z2)
1

4(1−k)

(63)

with the condition 1−k > 0. In this case, the orthonormality
condition Eq. (31) reads

∫
α2

0dz ∝
∫ |z|k e

− 1
2(1−k)(1+a2z2)

(1 + a2z2)
1

2(1−k)

dz < ∞. (64)

It is clear that the express 1
1+a2z2 tends to zero and |z|k(1 +

a2z2)
− 1

2(1−k) → |z|k(az)− 1
(1−k) as z → ∞. Since the inte-

gral
∫
(1 + z)ndz will be convergent only for n < −1,

the orthonormality condition requires k − 1
1−k < −1, i.e.,

0 < k < 1. The shape of the zero mode α0(z) in Eq. (63) is
shown in Fig. 2.

It is obvious that this kind of zero mode can be localized
on the branes under the condition 0 < k < 1. However, this
kind of zero mode is uncommon. It is clear that there exists
a split at the point z = 0, which divides the zero mode into
two halves. This split comes from the absolute value func-
tion |C |−1 in Eq. (63) and it also exists in the non-minimal
coupling function f (φ) (see Eq. (65)), which will provide an

interesting and uncommon coupling f (φ). In this case, the
non-minimal coupling function f (φ) reads

f (φ(z)) = e
∫ z

0 B(z̄)dz̄

= exp

⎡
⎣

z∫
0

(
−3A′ + A′2

C
− (2 − k)

C ′

C

)
dz̄

⎤
⎦

= exp

⎡
⎣−3A − (2 − k) ln |C | +

z∫
0

A′2

C
dz̄

⎤
⎦

=
(

1

1 − k

)2−k

e−3A|z|2−k

×exp

⎡
⎣− 1

(1 − k)

z∫
0

A′2 z̄d z̄

⎤
⎦ . (65)

Thus, the function f (φ) for the canonical-scalar-generated
brane model reads

f (φ) = |�|2−k e
�2

2(1−k)(1+�2)

(a(1 − k))2−k
(1 + �2)

2−3k
2(1−k) , (66)

where � = sinh
(

2
3 arctanh tan

(
φ
φ0

))
. The function f (φ)

for the second brane model reads

f (φ) = ˜|φ|2−k
e

φ̃2

2(1−k)

(a(1 − k))2−k
(1 − φ̃2)

− 4+k(k−6)
2(1−k) , (67)

where φ̃ = φ
φ0

. We can find that both forms of f (φ) are
complex. They are different because of different solutions of
the scalar φ. This result shows that the non-minimal coupling
function f (φ) will be different for different kinds of brane
worlds, even though the zero mode has the same form.

4.2 K (z) = kz

Next, we consider the case of K (z) = kz with k > 0. The
form of C(z) reads

C(z) = −
e
kz2

2

√
2k
π

erf

(√
k
2 z

) . (68)

Here erf

(√
k
2 z

)
is the imaginary error function. Thus the

zero mode is changed to be

α0(z) ∝ exp

⎡
⎣1

2

z∫
0

A′2

C
dz̄

⎤
⎦ exp

⎡
⎣−1

2

z∫
0

Kdz̄

⎤
⎦

= exp

[
− 1

2

√
π

2k

∫ z

0
erf

(√
k

2
z̄

)
a4 z̄2 e−kz̄2/2

(1 + a2 z̄2)2 dz̄
k

4
z2
]
.

(69)

123
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Fig. 3 The shape of the Elko zero mode Eq. (69) in the thick brane
models. The parameters are set to a = k = 1

It is a fact that the integral
∫ z

0 erf

(√
k
2 z̄

)
a4 z̄2 e−kz̄2/2

(1+a2 z̄2)2 dz̄ is

a finite function of z. So we have α0(z) ∝ exp
[− k

4 z
2
]

as
|z| → ∞. The zero mode Eq. (69) is plotted in Fig. 3 with
a = k = 1.

In this case, the orthonormality condition
∫

α2
0dz < ∞ is

satisfied. Thus this kind of zero mode can be localized on the
thick branes. The function f (φ) can be solved as

f (φ) = π

2k
exp

⎡
⎢⎣−

√
πa2

2k

�
a∫

0

erf

(√
k

2

�̄

a

)
�̄2 e

−k�̄2

2a2

(1 + �̄2)2
d�̄

⎤
⎥⎦

×(1 + �2)
3
2 erf 2

(√
k

2

�

a

)
e
k�2

2a2 , (70)

for the first brane model and

f (φ) = π

2k
exp

⎡
⎢⎢⎣−

√
π

2k

φ̃
a∫

0

erf
(J (φ̄)

)
aφ̄2(1 − φ̄2)e−J (φ̄)dφ̄

⎤
⎥⎥⎦

×(1 − φ̃2)−
3
2 erf 2

(
J (φ̃)

)
eJ

2(φ̃), (71)

for the second one, where � = sinh
(

2
3 arctanh tan

(
φ
φ0

))
,

J (φ̃) =
√
kφ̃

a
√

2(1−φ̃2)
, and φ̃ = φ

φ0
. It is obvious that the forms

of the function f (φ) are more complex than the ones in the
case of K (z) = k C ′

C so that they can not be written as an
elementary function. However, the absolute value function
|C |−1 in the zero mode and the function f (φ) disappears in
this case, which means that it can be eliminated by adopting
an appropriate form of K (z). At the same time, it is worth
pointing out that the parameter k is related with the coupling
constant, and its range is larger than that in the previous case

Fig. 4 The shape of the Elko zero mode α0(z) Eq. (73) in the thick
brane model. The parameters are set to a = 1 and k = 1

in this paper. For this case, the zero mode can be localized
on branes for any positive k.

4.3 K (z) = k tanh(kz)

Finally, we take K (z) = k tanh(kz) with k > 0. The form of
C(z) can be solved as

C(z) = −k coth(kz) (72)

and the zero mode reads

α0(z) ∝ sech
1
2 (kz) exp

[
−
∫ z

0

a4 z̄2 tanh(kz̄)

2k(1 + a2 z̄2)2 dz̄

]
. (73)

It is easy to see that the function
∫ z

0
a4 z̄2

(1+a2 z̄2)2 tanh(kz̄)dz̄

trends to ∓ 1
z as z → ±∞. So the second factor in Eq.

(73) has only a constant contribution at boundaries of the
extra dimension, but the first one has an important role, i.e.,

α0(z) ∝ e− 1
2 k|z| as z → ±∞. The zero mode Eq. (73) is

shown in Fig. 4 with a = 1 and k = 1.
It is clear that the orthonormality condition is also satis-

fied, and so the zero mode can be localized on the branes for
any positive k. The function f (φ) for the two brane models
are

f (φ) = 1

k2 (1 + �2)
3
2 tanh

(
k

a
�

)
sinh

(
k

a
�

)

×exp

⎡
⎢⎣−a

k

�
a∫

0

�̄2 tanh( ka �̄)

(1 + �̄2)2
d�̄

⎤
⎥⎦ (74)
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and

f (φ) =
tanh

(
K(φ̃)

)
sinh

(
K(φ̃)

)

k2(1 − φ̃2)
3
2

×exp

⎡
⎢⎢⎣−a

k

φ̃
a∫

0

φ̄2(1 − φ̄2) tanh
(K(φ̄)

)
dφ̄

⎤
⎥⎥⎦ , (75)

respectively, wehre � = sinh
(

2
3 arctanh tan

(
φ
φ0

))
, K(φ̃) =(

kφ̃

a
√

1−φ̃2

)
, and φ̃ = φ

φ0
.

5 Conclusion and discussion

In this paper, we reconsidered the localization of a five-
dimensional Elko spinor on thick branes. In our previous
work [93], the Yukawa-type coupling between the Elko
spinor and the background scalar field has been introduced
to realize the localization of the Elko zero mode. It was
shown that the localized Elko zero mode can just be obtained
for some kinds of thick branes, only if the coupling con-
stant is taken as some particular expression determined by
the parameters in the brane models. Here, we introduced
new localization mechanism, i.e., the non-minimal coupling
f (φ)LElko between the five-dimensional Elko spinor and
the background scalar field. The Schrödinger like equation
for the Elko zero mode was derived. The result shows that
the effective potential depends on the form of f (φ) and the
warp factor e2A. For convenience, we introduced a series of
new functions, especially the function K (z), to obtain the
Elko zero mode. We gave the general expressions of the zero
mode α0 and the function f (φ) by using K (z). It was found
that the role of K (z) is similar to the superpotential W (φ)

in thick brane models. The zero mode α0 and the scalar field
function f (φ(z)) can be obtained by a given K (z). Thus
an appropriate form of K (z) is needed to confine the Elko
zero mode on branes and different forms of K (z) will lead
to different zero mode solutions and configurations of f (φ).

Next we reviewed two kinds of Minkowski thick brane
models. One is for a standard canonical scalar field and the
other is for a non-minimally coupled scalar field. In Ref.
[93] we had investigated the localization of the Elko spinor
with Yukawa-type coupling on these thick branes. For these
branes, the warp factor has the same form while the solutions
of the background scalar field are different. In order to illus-
trate the effect of K (z) on the zero mode α0 and the function
f (φ), we took three different forms of K (z) as examples.
Firstly, we focused on the case of K (z) = k C ′

C with k ≥ 0.
Here the parameter k is related with the coupling constant.
It was found that the Elko zero mode can be localized on the

branes with the limit of 0 < k < 1. It is very interesting
that a split at the point z = 0 divides the Elko zero mode
into two halves, which comes from the absolute value in the
form of the zero mode as well as the function f (φ). The
forms of f (φ) are very complex and different for the two
different thick brane models. It is clear that there will exist
different non-minimal couplings for different brane models,
even though the zero modes have the same form.

Secondly, we took K (z) = kz with k > 0. In this case,
the zero mode is so complex that it is hard to be written as an
explicit function. Fortunately, the complex part of the zero
mode just acts an unimportant role and the zero mode has the
same behaviors as exp

(− k
4 z

2
)

at the boundaries of the extra
dimension. Thus the zero mode can also be localized in this
case. The absolute value in the zero mode and the function
f (φ) disappears and the range of the parameter k is larger
than that in the first case. The result in this case shows that
different choices of K (z) will lead to different configurations
of solutions.

Finally, we adopted K (z) = k tanh(kz) with k > 0. In
this case, the zero mode also has a complex form and can
not be written as an elementary function. As the second case,
the complex part does not affect the asymptotic behavior of
the Elko zero mode and the zero mode has the same prop-

erty of sech
1
2 (kz), i.e., α0(z) ∝ sech

1
2 (kz) at the boundaries

of the extra dimension. Such zero mode can be localized on
both thick branes with any positive k. The forms of the func-
tion f (φ) are still very complex and they are inequable for
different kinds of thick branes.

In this paper, we considered two kinds of Minkowski thick
branes and obtained three different expressions of bounded
Elko zero modes. The result shows that the non-minimal cou-
pling can provide us more possibilities of localizing the Elko
zero mode. In addition, it may give us new way to solve the
localization problem of Elko massive KK modes, which will
be investigated in our further work.
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