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Abstract We investigate the application of our recent
holographic entanglement negativity conjecture for higher
dimensional conformal field theories to specific examples
which serve as crucial consistency checks. In this context we
compute the holographic entanglement negativity for bipar-
tite pure and finite temperature mixed state configurations
in d-dimensional conformal field theories dual to bulk pure
AdSd+1 geometry and AdSd+1-Schwarzschild black holes
respectively. It is observed that the holographic entanglement
negativity characterizes the distillable entanglement for the
finite temperature mixed states through the elimination of the
thermal contributions. Significantly our examples correctly
reproduce universal features of the entanglement negativity
for corresponding two dimensional conformal field theories,
in higher dimensions.

1 Introduction

The last decade has witnessed remarkable progress in the
understanding of entanglement in quantum information the-
ory and has found applications in diverse areas of theoretical
physics and other related disciplines from quantum phase
transitions to quantum gravity. For a bipartite (A ∪ B) pure
state |ψAB〉 of a quantum system with a factorizable Hilbert
space H = HA ⊗ HB , the quantum entanglement is char-
acterized by the entanglement entropy. This is described
by the von-Neumann entropy of the reduced density matrix
ρA = TrB (ρA∪B) of the subsystem A which may be com-
puted for quantum systems with finite degrees of freedom
with relative ease. On the other hand the issue of the char-
acterization of entanglement for extended quantum many
body systems with infinite number of degrees of freedom
has proved to be extremely complex and often intractable.
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For (1 + 1)- dimensional conformal field theories (CFT1+1)
however this issue is rendered tractable through the confor-
mal symmetry. As demonstrated by Calabrese and Cardy
[1,2] in a seminal contribution, the entanglement entropy
for such a CFT1+1 may be obtained through a replica tech-
nique. This technique is based on the idea of computing the
moments of the reduced density matrix Tr(ρn

A) with n being
a non-negative integer or equivalently the Rényi entropy of
order n which may be defined as

S(n)
A = ln

[
Tr

(
ρn
A

)]

1 − n
. (1)

The quantity Tr(ρn
A) in this computation corresponds to

the partition function on a n-sheeted Riemann surface with
branch points at the boundaries between the subsystems A
and B [1]. Note that the corresponding von Neumann entropy
may be obtained from the above expression for the Rényi
entropy through the replica limit n → 1 which has to be
understood in the sense of an analytic continuation. Fur-
thermore, the partition function for the subsystem on the
n-sheeted Riemann surface may be recast in terms of the cor-
relation functions of branch-point twist fields on the complex
plane [1,2] in this limit. The corresponding correlation func-
tions of these twist fields may then be computed directly in
the CFT1+1 to obtain the entanglement entropy.

Note that the entanglement entropy is essentially a mea-
sure for bipartite pure state entanglement. However, for
mixed states it ceases to be a valid entanglement measure
as it receives contributions from correlations irrelevant to the
entanglement of the given bipartite configuration. In quantum
information theory one refers to the process of purification
involving a tripartition where the system being considered
is embedded in a larger system in a pure state.1 In a classic

1 This procedure requires obtaining a mixed state by tracing out the
degrees of freedom of a larger system in a pure state. For instance if the
full system is divided in to three parts say A1, A2 and B then the required
density matrix ρA1∪A2 is obtained by tracing over the subsystem B.
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work Vidal and Werner [3] introduced a computable mea-
sure termed as the entanglement negativity which character-
izes the upper bound on the distillable entanglement for such
a bipartite quantum system in a mixed state. This measure
involves a partial transpose of the reduced density matrix
over one of the subsystems in the given bipartite system.
In order to define entanglement negativity it is required to
consider an extended quantum system which is divided into
two parts A1 and A2 . If |q1

i 〉 and |q2
i 〉 represent the bases

of Hilbert space corresponding to the subsystems A1 and A2

respectively, then the partial transpose with respect to the
degrees of freedom of the subsystem A2 is expressed as

〈q1
i q

2
j |ρT2

A1∪A2
|q1

k q
2
l 〉 = 〈q1

i q
2
l |ρA1∪A2 |q1

k q
2
j 〉, (2)

where ρA1∪A2 is the density matrix of the system (A =
A1 ∪ A2). This leads to the definition of the entanglement
negativity as

E ≡ log
(
Tr | ρ

T2
A1∪A2

| ) = log
(
Tr | ρ

T2
A | )

. (3)

Observe that from the above equation, the entanglement neg-
ativity may be expressed as the logarithm over the sum of the
absolute eigenvalues of the density matrix ρ

T2
A . This may be

written as follows

Tr | ρ
T2
A | =

∑

λi>0

|λi | +
∑

λi<0

|λi |, (4)

where λi correspond to the eigenvalues of the density matrix
ρ
T2
A . The entanglement negativity exhibits certain important

properties including those of non-convexity and monotonic-
ity proved by Plenio in [4].

Recently, the issue of obtaining the entanglement nega-
tivity in (1 + 1)-dimensional conformal field theories has
received considerable attention. In [5–7] the authors have
advanced a systematic procedure for this which involves the
replica technique mentioned earlier, to compute the entan-
glement negativity by relating it to the appropriate correla-
tion functions of the twist fields. Through this procedure,
the authors were able to demonstrate that the entanglement
negativity precisely characterizes the upper bound on the dis-
tillable entanglement.

In [8,9] Ryu and Takayanagi conjectured a holographic
prescription in the context of the AdS/CFT correspondence
which leads to the entanglement entropy in d-dimensional
holographic conformal field theories. Their prescription for
the entanglement entropy SA of a spatial region A (enclosed
by the boundary ∂A) involves the area of the minimal surface
(denoted by γA) extending into the (d+1)-dimensional bulk
and anchored on the subsystem A as follows

SA = Area(γA)

(4G(d+1)
N )

, (5)

where G(d+1)
N is the gravitational constant of the bulk space

time. Application of this holographic prescription to compute
the entanglement entropy for various holographic CFTs has
yielded interesting insights [10–18] (and references therein).

From the above discussion it is evident that a holographic
description in the context of the AdS/CFT correspondence,
for the entanglement negativity in conformal field theories
is a critical open issue. In this context, in [19] the authors
have computed the entanglement negativity for the pure state
described by the vacuum of a conformal field theory which
is dual to the bulk pure AdS spacetime. Furthermore in [20]
the authors have conjectured a generalized holographic c-
function which in the dual CFT may correspond to some
mixed state entanglement measure.

Very recently we have proposed a holographic entangle-
ment negativity conjecture for bipartite pure and mixed states
of a holographic CFT [21] in the AdS3/CFT2 scenario.
Interestingly, the holographic entanglement negativity may
be described through an algebraic sum of the lengths of space
like geodesics anchored on appropriate intervals in the dual
CFT. Curiously this reduces to a specific sum of the holo-
graphic mutual informations between the intervals in ques-
tion, upto a numerical factor.2 Our holographic conjecture
exactly reproduces the the universal part of the correspond-
ing replica technique results for the dual CFT described in
[7], in the large central charge limit for the following bipar-
tite pure and mixed state configurations. These involve the
pure vacuum state and the finite temperature mixed state con-
figurations dual to bulk pure AdS3 space-time and the bulk
Euclidean BTZ black hole respectively. The results for the
configurations mentioned above are strongly substantiated
by a large central charge analysis for the entanglement neg-
ativity of a holographic CFT1+1, utilizing the monodromy
technique as described in [22]. We mention here that despite
these significant consistency checks, a bulk proof for our con-
jecture along the lines of [23] remains a critical open issue
to be addressed.

Our holographic entanglement negativity conjecture for
bipartite quantum states of a CFT1+1 in the AdS3/CFT2

scenario naturally suggests a higher dimensional extension
following [8,9] in a more generic AdSd+1/CFTd scenario,
alluded to in [21]. As described there the higher dimensional
extension involves an algebraic sum of the areas of bulk
static minimal surfaces anchored on appropriate boundary
subsystems which is again proportional to a specific sum
of the holographic mutual information between appropriate
subsystems. Note that the higher dimensional extension of

2 Note that entanglement negativity and mutual information are com-
pletely distinct measures in quantum information theory. However their
universal parts which are dominant in the holographic (large central
charge) limit match for the bipartite configuration in question. See the
end of Sect. 3 for a more detailed discussion regarding this issue.
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our conjecture necessitates a formal bulk proof along the
lines of [24], which remains a non trivial open issue. Hence
it is important to first establish consistency checks through
the application of the conjecture to specific higher dimen-
sional examples in order to investigate the reproducibility
of universal features of entanglement negativity for CFT1+1

described in [7,21]. Such an exercise is expected to provide
crucial insights into the higher dimensional extension and to
a possible proof for the conjecture.

In this article we address the above issue and apply our
holographic conjecture in [21] (CMS) to compute the entan-
glement negativity for bipartite pure and mixed states of
specific higher dimensional CFTs. These involve the pure
vacuum state of a CFTd dual to a bulk pure AdSd+1 space-
time and finite temperature mixed state dual to a AdSd+1-
Schwarzschild black hole. These examples lead to extremely
interesting results described below. We observe that for
the pure state described by the CFTd vacuum, the holo-
graphic entanglement negativity is proportional to the holo-
graphic entanglement entropy. It is further observed that the
holographic entanglement negativity characterizes the upper
bound on the distillable entanglement for the finite temper-
ature mixed state of the CFTd , through the elimination of
the thermal contributions. Remarkably the above results fol-
lowing from our conjecture, constitute the exact reproduc-
tion of the universal features of entanglement negativity in
CFT1+1 described in [5–7], for higher dimensional holo-
graphic CFTd . Quite evidently the above results constitute
strong consistency checks for the higher dimensional exten-
sion of our conjecture despite the absence of a formal bulk
proof.

This article is organized as follows. In Sect. 2, we briefly
collect the results in [7] for the entanglement negativ-
ity of both pure and mixed states in a CFT1+1 which is
reviewed in the Appendix. Subsequently in Sect. 3, we briefly
describe our conjecture in the context of the AdS3/CFT2

scenario [21] (CMS) and its subsequent generalization to
the AdSd+1/CFTd framework. In Sect. 3.1, we employ our
holographic conjecture to obtain the entanglement negativity
for both pure and mixed states in holographic CFTd involv-
ing a subsystem with rectangular strip geometry. In the last
section we provide a summary of our results and discuss
future open issues.

2 Entanglement entropy and entanglement negativity in
CFT1+1

In this section we begin by briefly reviewing the procedure
for computing the entanglement entropy for bipartite pure
and finite temperature mixed states of a CFT1+1 and discuss
its inadequacy as an entanglement measure for the mixed
states. Subsequently we briefly outline the results for the

entanglement negativity of both pure and finite temperature
mixed states in a CFT1+1. This is reviewed in detail in the
Appendix.

2.1 Entanglement entropy

For an extended bipartite quantum system which is biparti-
tioned into a subsystem A and it’s complement Ac, the entan-
glement entropy corresponding to the subsystem A is given
as

SA = lim
n→1

ln(Tr [ρn
A])

1 − n
= − lim

n→1

∂

∂n
Tr [ρn

A], (6)

where ρ is the full density matrix and ρA = TrAc (ρ) denotes
the reduced density matrix for the subsystem-A and n → 1 is
the replica limit. For a CFT1+1, the moments of the reduced
density matrix Tr(ρn

A) are related to the partition function on
a n-sheeted Riemann surface with branch points at the bound-
aries between regions A and Ac [1]. Alternatively, the parti-
tion function on a n-sheeted Riemann surface may be recast
as the correlation function of the branch-point twist/anti-twist
fields Tn and T n on the complex plane with the following
scaling dimensions

�n = c

12
(n − 1/n), (7)

where c is the central charge of the CFT. Hence following [1,
2] the general form for the quantity Trρn

A may be expressed
as follows

Trρn
A = 〈Tn(u1)T n(v1) · · · Tn(uN )T n(vN )〉, (8)

where A = ∪N
i=1[ui , vi ] indicates that the subsystem A has

been divided into N disjoint intervals. For the case when
N = 1 with the subsystem length |u − v| = �, the Eq. (8)
reduces to the following

Trρn
A = 〈Tn(u)T n(v)〉 = cn

(
�

a

)−c/6(n−1/n)

, (9)

where cn is some constant and a is theUV cut-off for the (1+
1)-dimensional CFT. The expression for the entanglement
entropy in Eq. (6) along with the Eq. (9) leads to the following
result

SA = c

3
ln

(
�

a

)
+ constant. (10)

The above result corresponds to the entanglement entropy of
a subsystem A with length � for the CFT1+1 vacuum. The
corresponding result for the finite temperature mixed state
requires the evaluation of the two point twist correlator in
Eq. (9) on a cylinder of circumference β = 1/T [1,2]. The
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above procedure leads to the following expression for the
entanglement entropy of the subsystem A as

SA = c

3
log

(
β

πa
sinh

π�

β

)
+ constant. (11)

Observe that from Eq. (11) the large temperature limit leads
to the purely thermal entropy indicating that the entanglement
entropy receives contribution from both the classical (ther-
mal) and the quantum correlations at finite temperatures. A
similar observation may also be made for the case of finite
temperature mixed states of higher dimensional conformal
field theories which are dual to bulk AdS black holes in the
context of the Ryu and Takayanagi conjecture [16,18]. This
is a generic issue in quantum information theory and hence
the entanglement entropy ceases to be valid measure to char-
acterize mixed state entanglement. This naturally leads to the
question of establishing appropriate measures to character-
ize the distillable quantum entanglement for a mixed state
which in this case is described by a finite temperature CFT .
As mentioned earlier this issue may be addressed through the
entanglement negativity measure introduced by Vidal and
Werner [3]. We now proceed to describe the computation
of the entanglement negativity for bipartite pure and mixed
states of a CFT(1+1).

2.2 Entanglement negativity in CFT(1+1)

In order to define entanglement negativity in (1 + 1)-
dimensional CFTs it is required to consider the tripartition
A1,A2 and Ac such that A1 and A2 correspond to finite inter-
vals [u1, v1] and [u2, v2] of lengths �1 and �2 respectively
whereas, Ac represents the rest of the system. Let ρA denote
the reduced density matrix of the subsystem A = A1 ∪ A2

such that ρA = ρA1∪A2 which is obtained by tracing out the
full density matrix ρ over the part Ac, i.e. ρA = TrAc (ρ). As
mentioned earlier in the Introduction, the entanglement neg-
ativity is then given by Eq. (3). The authors in [7] employed
the replica technique to show that the entanglement nega-
tivity E for (1 + 1)-dimensional CFTs may be expressed as
follows

E = lim
ne→1

ln
[
Tr(ρTA )ne

]
. (12)

Note that in the above equation ρ = ρA∪Ac corresponds
to the full density matrix. The replica limit ne → 1 indi-
cates that negativity is defined as an analytic continuation3

of an even sequence of n (ne represents even values of n) to

3 Note that a complete general construction for this analytic continu-
ation is still an open issue although this has been addressed for some
explicit examples of simple conformal field theories in [7,25,26] ( see
also Headrick [27]) and also in the condensed matter physics literature.

ne = 1. The computational details of the transition from a
tripartite configuration (A1, A2, Ac) to a bipartite configura-
tion (A, Ac,∅) are reviewed in the Appendix.

It follows that the entanglement negativity for the bipar-
tite pure state described by the CFT1+1 vacuum is obtained
through a specific two point twist correlator as follows

E = lim
ne→1

ln

[
〈T 2

ne(u)T 2
ne (v)〉C

]
(13)

As demonstrated by authors in [5,6], the twist fields T 2
ne con-

nect nthe sheet of the Riemann surface to (ne + 2)th sheet

of the Riemann surface whereas the twist field T 2
ne connects

nthe sheet to (ne − 2)th sheet of the Riemann surface. This
led the authors to conclude that the the correlator in Eq. (13)
factorizes due to the decoupling of ne even sheeted Riemann
surface into two ne/2 sheeted Riemann surfaces as follows

〈T 2
ne(u)T 2

ne (v)〉C = 〈T ne
2
(u)T ne

2
(v)〉2

C
. (14)

Therefore, the scaling dimension (�
(2)
ne ) of the operator T 2

ne
may be related to the scaling dimensions (�ne ) of the oper-
ator Tne as follows

�(2)
ne = 2�ne/2 = c

6

(
ne
2

− 2

ne

)
, (15)

�ne = c

12

(
ne − 1

ne

)
. (16)

Utilizing the well known form for the two point twist cor-
relator given in Eq. (14) and substituting it in Eq. (13), one
arrives at the following result

E = c

2
ln

(
�

a

)
+ constant = 3

2
SA + const. (17)

The result matches with the expectation from quantum infor-
mation theory that the entanglement negativity for a pure state
is the Rényi-entropy of order half and for the pure vacuum
state of the CFT1+1 the universal part is proportional to the
entanglement entropy. Furthermore, the authors also showed
that for the finite temperature mixed state, the entanglement
negativity is related to a specific four point twist correlator
as follows4

E = lim
L→∞ lim

ne→1
ln

[
〈Tne (−L)T 2

ne(−�)T 2
ne (0)T ne(L)〉β

]
,

(18)

4 Note that for the finite temperature mixed state the quantity Tr(ρTA )ne

is not described by the twist correlator in Eq. (14) because of certain
geometrical reasons described in [7] (see also Sect. 1 of the Appendix).
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where the subscript β indicates that the above four point
function has to be computed for a finite temperature on an
infinite cylinder with circumference β. Evaluating the four
point function given in Eq. (18) it could be shown that the
entanglement negativity for the finite temperature mixed state
may be expressed as

E= c

2

[
ln

{
β

πa
sinh(

π�

β
)

}
−π�

β

]
+ f (e−2π�/β)+ln(c2

1/2c1).

(19)

Here c1/2 and c1 are the normalization constants for the two-
point twist correlators (see Appendix for details of the above
computations). The function f (x) where x = e−2π�/β and
the constants are non universal and depend on the full opera-
tor content of the theory. For brevity the above Eq. (19) may
be re-expressed as

E = 3

2

[
SA − SthA

]
+ f (e−2π�/β) + const, (20)

where SA = c
3 ln

[
β
πa sinh

(
π�
β

)]
corresponds to the entan-

glement entropy and SthA = πc�
3β

to the thermal entropy of the
subsystem-A. This is an extremely significant result illustrat-
ing that for the finite temperature mixed state of a CFT1+1,
the negativity E characterizes the upper bound on the dis-
tillable entanglement through the elimination of the thermal
contributions. In the next subsection, we discuss the large
central charge (c) limit of the above result and its signifi-
cance in the context of the AdS/CFT correspondence.

2.3 Large central charge limit of the entanglement
negativity in CFT1+1

In this section, we discuss the the large central charge limit
(c → ∞) of the four point twist correlator which is related to
the entanglement negativity for the bipartite finite tempera-
ture mixed state of a CFT1+1, mentioned in Eq. (20). To this
end consider a four point function of the primary operators
Oi inserted at points zi (i = 1, 2, 3, 4) on the complex plane,
and their corresponding scaling dimensions denoted by �i .
Under the conformal transformation w = (z−z1)(z3−z4)

(z−z4)(z3−z1)
, the

four point function may be expanded in terms of the confor-
mal blocks as follows

〈O1(0)O2(x)O3(1)O4(∞)〉
=

∑

p

apΨ (hi , h p, x)Ψ (hi , h p, x). (21)

Here x is the cross ratio given by x = z12z34
z13z24

, hi and h̄i are the
holomorphic and the anti-holomorphic scaling dimensions
of the operation Oi . The summation in the above equation is
over all the primary operatorsOp with scaling dimensions h p

and h̄ p. Ψ (hi , h p, x) and Ψ (hi , h p, x) are the corresponding
conformal blocks.

In recent years, there has been significant effort to deter-
mine the large central charge limit of the above mentioned
conformal blocks. Although there is no rigorous proof for
this, there is strong evidence that these blocks exponentiate
in the limit c → ∞ (as long as hi

c and h p
c are held fixed in

this limit) [28,29]. This exponentiation may be expressed as
follows

Ψ (hi , h p, x) ≈ exp

[
− c

6
g(

hi
c

,
h p

c
, x)

]
. (22)

Note that this result is valid in the large central charge limit
alone and there are both perturbative and non-perturbative
corrections in O[ 1

c ]. The method to determine the exponen-
tiated blocks involves examining their monodromy proper-
ties around the singularities of the stress tensor T (z) in var-
ious channels. This technique is based on earlier works by
Zamolodchikov et al. where they had examined the semi-
classical conformal blocks in the context of the Liouville
field theory [30–32].

The above mentioned technique has been used to investi-
gate the large central charge limit of the entanglement entropy
of two disjoint intervals in a CFT1+1 which is also described
by a specific four point twist correlator [23,27,29,33]. In
these articles the authors have shown that that the leading
large central charge contribution to the corresponding four
point function is universal (i.e it is independent of the oper-
ator content of the theory) and matches exactly with that
predicted from the Ryu-Takayanagi conjecture.

Observe that the above arguments also apply to to the four
point function twist correlator in a CFT1+1 that is related to
the entanglement negativity in Eq. (18).5 Hence we expect
that in the large central charge limit the non-universal term
given by the function f (x) in Eq. (19) for the entanglement
negativity is sub leading and the leading contribution arises
from the universal part which is expressed below

E = c

2

[
ln

{
β

πa
sinh(

π�

β
)

}
− π�

β

]
. (23)

From the above discussion it is clear that in the large cen-
tral charge limit, the entanglement negativity for the bipartite
finite temperature mixed state of aCFT1+1 assumes this uni-
versal form illustrating the elimination of the thermal con-
tribution and leading to the distillable entanglement. In the

5 In a recent article (arXiv:1712.02288) utilizing the monodromy tech-
nique, we have provided a proof of this assertion for the four point
function related to the entanglement negativity. Also note that for a
simpler case of a mixed state described by two adjacent intervals in a
CFT1+1 the large central charge result for the entanglement negativity
was obtained in [34] which bears out the above assertion.
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context of the AdS/CFT correspondence, the large cen-
tral charge limit essentially describes the large N limit of
the boundary CFT through the Brown–Henneaux formula
[35,36]. This leads us to the possibility of a corresponding
holographic conjecture for the entanglement negativity in the
AdS/CFT scenario. As mentioned earlier, in [21] (CMS)
we proposed such a holographic conjecture which exactly
reproduces the above result in Eq. (23) from a bulk com-
putation which involves a Euclidean BTZ black hole in the
AdS3/CFT2 scenario. Furthermore we also demonstrated
that our conjecture leads to the correct form for the negativ-
ity of a bipartite pure state described by the CFT1+1 vacuum
given in Eq. (104). This is briefly reviewed in the following
section.

3 Holographic prescription for the entanglement
negativity

In this section, we review the holographic prescription pro-
posed in [21] (CMS) for the entanglement negativity of
a bipartite (A ∪ Ac) quantum states of a CFT1+1 in the
AdS3/CFT2 scenario. To begin with let us consider the dual
CFT1+1 to be partitioned into the subsystem A and its com-
plement Ac. We denote B1 and B2 as two large finite intervals
adjacent to A on either side of it such that B = B1 ∪ B2 as
shown in Fig. 1. As mentioned in Sect. 2, the entanglement
negativity is defined in the limit B → Ac ( L → ∞) which
corresponds to extending the subsystems B1 and B2 to infin-
ity.

The form of the two point twist correlators in a CFT1+1

may be expressed as follows

〈Tne (zk)T ne(zl)〉C = cne

z
2�ne
kl

(24)

〈T 2
ne (u)T 2

ne(v)〉C = 〈T ne
2
(zi )T ne

2
(z j )〉2

C
= c2

ne/2

z
4� ne

2
i j

, (25)

where we have used the factorization given in Eq. (14),
zi j = |zi −z j | and cne is the normalization constant. Observe
that the universal part of the required four point twist corre-
lator6 given by Eq. (112) in the Appendix 1, that provides the
dominant contribution in the large central charge factorizes
as follows

〈Tne (z1)T
2
ne(z2)T 2

ne(z3)T ne(z4)〉C
= 〈T ne

2
(z2)T ne

2
(z3)〉2〈Tne(z1)T ne(z4)〉

6 Note that for the mixed state depicted in Fig. 1 the four point function
has to be evaluated on the complex plane for the CFT1+1 vacuum
whereas for the finite temperature case it has to be evaluated on an
infinite cylinder. See Eq. (108) in Appendix 1 for the transformation
relating the two.

Fig. 1 Schematic of geodesics anchored on the subsystems A, B1 and
B2 in the dual CFT1+1, which are relevant for our holographic conjec-
ture

×
〈T ne

2
(z1)T ne

2
(z2)〉〈T ne

2
(z3)T ne

2
(z4)〉

〈T ne
2
(z1)T ne

2
(z3)〉〈T ne

2
(z2)T ne

2
(z4)〉

+ O[1

c
] (26)

Note that as discussed in the previous section the sub leading
non-universal term that depends on the full operator content
of the theory, given by the function f (x) = lim

ne→1
ln[Fne(x)]

has been neglected in the semi classical large central charge
limit (c → ∞) in the above equation. From the AdS/CFT
dictionary the two point functions in Eqs. (25) and (24) on
the boundary CFT1+1 may be related to the length of the
geodesic Li j anchored on the points (zi , z j ) and extending
into the bulk AdS2+1 space time as follows

〈Tne(zk)T ne(zl)〉C ∼ e− �neLkl
R (27)

〈T ne
2
(zi )T ne

2
(z j )〉C ∼ e−

� ne
2

Li j

R , (28)

where R is the AdS radius of the bulk AdS2+1 space time.
From Fig. 1 one may identify that

L12 = LB1 , L23 = LA, L34 = LB2 ,

L13 = LA∪B1 , L24 = LA∪B2 , L14 = LA∪B . (29)

With the identification in Eq. (29)and substituting Eqs.
(28) and (27) in , reduces to the following form in terms of
the geodesic lengths as

〈 Tne(z1)T
2
ne (z2)T 2

ne (z3)T ne(z4)〉C∼exp

[−�ne X−� ne
2
Y

R

]
,

(30)

where

X = LA∪B (31)

Y = 2LA + LB1 + LB2 − LA∪B1 − LA∪B2 (32)
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From Eqs. (15) and (16),observe that in the replica limit7

ne → 1, we have �ne → 0 and �
(2)
ne → − c

4 . It is also
to be noted that the central charge ‘c’ of CFT1+1 is related
to the AdS length R through the Brown–Henneaux formula
c = 3R

2G3
N

, where G3
N is the (2 + 1)-dimensional gravi-

tational constant [37]. Therefore, utilizing the above men-
tioned Brown–Henneaux formula, Eqs. (30) and (26) one
may express the holographic entanglement negativity for the
bipartite system (A ∪ Ac) as follows

E = lim
B→Ac

3

16G3
N

[
(2LA +LB1 +LB2 −LA∪B1 −LA∪B2)

]
.

(33)

In the AdS3/CFT2 scenario the Ryu and Takayanagi conjec-
ture relates the geodesic length to the entanglement entropy
as given in Eq. (5). This enables us to express the above
Eq. (33) which describes our holographic conjecture for the
entanglement negativity as follows

E = lim
B→Ac

3

4

[
2SA + SB1 + SB2 − SA∪B1 − SA∪B2

]
, (34)

Note that the holographic mutual information between the
pair of intervals (A, Bi )(i = 1, 2) as follows

I(A, Bi ) = SA + SBi − SA∪Bi ,

= 1

4G(3)
N

(LA + LBi − LA∪Bi ), (35)

Quite interestingly, using Eq. (35) in Eq. (34) we may re-
express our conjecture in terms of the holographic mutual
information as

E = lim
B→Ac

3

4

[
I(A, B1) + I(A, B2)

]
, (36)

It is to be emphasized here that the mutual information and
the entanglement negativity are distinct quantum informa-
tion theoretic measures. Entanglement negativity is the upper
bound on the distillable entanglement whereas the mutual
information is the upper bound on the total correlations of
a bipartite system. However in the large central charge limit
their leading universal parts match exactly for the bipartite
configuration in question whereas the sub leading non univer-
sal terms are distinct. This matching between the universal
parts of these two measures has also been observed for both
global and local quench for the case of the mixed state of
adjacent intervals in a CFT1+1 [38,39]. Choosing the corre-
sponding subsystems as shown in the Fig. 1, the Eq. (33) may

7 Note that the negative scaling dimension in the replica limit has to
be understood only in the sense of analytic continuation. Construction
of such an analytic continuation is an extremely complex problem. See
also footnote (3).

now be used to compute the entanglement negativity of the
bipartite systems described by (1+1)-dimensional boundary
CFT purely in terms of the bulk quantities. In the next section
we will briefly review our results given in [21] where we have
demonstrated that the above expression exactly matches with
the large-c limit of the entanglement negativity in CFT1+1

as given in [5–7].

3.1 Holographic entanglement negativity in AdS3/CFT2

In this section we briefly review the application of our conjec-
ture to compute the holographic entanglement negativity for
both a pure state described by the CFT1+1 vacuum which is
dual to a bulk pure AdS3 geometry, and the finite temperature
mixed state dual to a bulk Euclidean BTZ black hole.

3.1.1 Pure AdS3

In the context of AdS3/CFT2 correspondence it is well
known that the vacuum state of a holographic CFT1+1 is
dual to pure AdS3 space time whose metric in Poincare coor-
dinates is given below

ds2 = R2

z2 (−dt2 + dz2 + dx2). (37)

where z corresponds to the inverse radial coordinate extend-
ing into the bulk, R is the AdS length scale and (x, t) rep-
resent the coordinates on the boundary CFT1+1. The length
of bulk geodesic Lγ anchored to the subsystem γ in the dual
CFT1+1 in this spacetime is given by [8,9]

Lγ = 2R ln

[
lγ
a

]
. (38)

The above expression for the length of geodesics which
are anchored on various subsystems γ = {A, B1, B2, A ∪
B1, A∪B2} as depicted in the Fig. 1, may then be substituted
in Eq. (36) to obtain the holographic entanglement negativity
as

E = 3R

4GN
ln

[
l

a

]
. (39)

Note that the contributions from various geodesics in Eq. (33)
cancel exactly in the bipartite limit L → ∞ except twice the
length of the geodesic anchored to the subsystem-A. Hence,
upon utilizing the Brown–Hennaux formula c = 3R

2G(3)
N

the

above expression for the negativity reduces to

E = c

2
ln

[
l

a

]
= 3

2
SA, (40)
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Remarkably, the above expression exactly matches with the
universal part of the replica technique result for the CFT1+1

vacuum given in Eq. (104) [5,6].

3.1.2 Euclidean BTZ black hole

In this subsection we review the computation of the holo-
graphic entanglement negativity for the bipartite (A ∪ Ac)

finite temperature mixed state of a CFT1+1 which is dual to
a bulk Euclidean BTZ black hole [21]. The metric for this
Euclidean BTZ black hole is given by

ds2 = (r2 − r2
h )dτ 2

E + R2

(r2 − r2
h )

dr2 + r2dφ2, (41)

where τE is the compactified Euclidean time (τE ∼ τE +
2πR
rh

). The coordinate φ is a periodic for the BTZ black hole
i.e (φ +2π) and is uncompactified for the case of BTZ black
string. The length of the bulk geodesic Lγ that is anchored
on the interval γ in the boundary CFT1+1 is well known in
these Euclidean Poincare co-ordinates [9] and may be given
as follows

Lγ = 2R ln

[
β

πa
sinh[πlγ

β
]
]
, (42)

here a is the UV cut-off for the boundary CFT1+1, R is
the AdS3 length scale and lγ represents the length of the
subsystem-γ . In the AdS3/CFT2 scenario as shown in Fig.
1 the geodesic length Lγ given by Eq. (42) may be iden-
tified for the intervals γ = {A, B1, B2, A ∪ B1, A ∪ B2}.
Using the expression for the geodesic length given by Eq.
(42) and substituting it in Eq. (33), the holographic entan-
glement negativity for the finite temperature mixed state of
a dual CFT1+1 may be obtained as follows

E = c

2

[
ln

{
β

πa
sinh(

π�

β
)

}
− π�

β

]
, (43)

where we have made use of the previously mentioned Brown–
Henneaux formula. Remarkably Eq. (43) obtained from the
bulk computation using our conjecture, matches exactly with
the large-c limit of the entanglement negativity for the finite
temperature mixed state of a CFT1+1 given by Eq. (23). The
above expression for the holographic entanglement negativ-
ity may be concisely expressed as

E = 3

2

[
SA − SthA

]
. (44)

Here, SA is the entanglement entropy and SthA is the ther-
mal entropy of the subsystem A for the finite temperature

mixed state of a CFT1+1. Quite clearly, the above expres-
sion demonstrates that the holographic entanglement nega-
tivity obtained from our conjecture captures the distillable
quantum entanglement for the bipartite finite temperature
mixed state of the dual CFT1+1, through the elimination of
the thermal contribution.

4 Holographic entanglement negativity in
AdSd+1/CFTd

In [21] we have proposed that the observations in the pre-
vious section lead to a higher dimensional extension of
our holographic entanglement negativity conjecture for a
CFTd dual to bulk AdSd+1 configurations, in a generic
AdSd+1/CFTd scenario. To understand this, it is required
to partition the CFTd into two subsystems A and its com-
plement Ac. Subsequently we consider two other subsystems
B1 and B2 adjacent to A and on either either side of it such
that B = (B1 ∪ B2). We denote Aγ as the area of the co-
dimension two static minimal surface in the bulk AdSd+1

geometry, anchored on the subsystems γ . The holographic
entanglement negativity for the bipartite (A ∪ Ac) quantum
state of a CFTd is then given by the following expression

E = lim
B→Ac

3

16Gd+1
N

[
2AA+AB1 +AB2 −AA∪B1 −AA∪B2

]

(45)

where Gd+1
N is the (d + 1)-dimensional Newton constant

and the bipartite limit (B → Ac) in Eq. (45) corresponds to
extending the subsystems B1 and B2 such that B = (B1∪B2)

reduces to the complement Ac. Once again upon making use
of the Ryu–Takayanagi conjecture in Eq. (5), the expression
for the holographic negativity in Eq. (45) reduces to the fol-
lowing form

E = lim
B→Ac

3

4

[
2SA + SB1 + SB2 − SA∪B1 − SA∪B2

]
, (46)

Re-expressing the above expression as the sum of holo-
graphic mutual informations I(A, Bi ), we obtain

E = lim
B→Ac

3

4

[
I(A, B1) + I(A, B2)

]
(47)

where the holographic mutual information I(A, Bi ) (i =
1, 2) are given as follows

I(A, Bi ) = SA + SBi − SA∪Bi ,

= 1

4G(d+1)
N

(AA + ABi − AA∪Bi ). (48)

In the following subsections, using the above mentioned
holographic conjecture we will obtain the entanglement neg-

123



Eur. Phys. J. C (2018) 78 :499 Page 9 of 17 499

ativity for both a pure state described by the CFTd vac-
uum which is dual to the bulk pure AdSd+1 space time and
the finite temperature mixed state dual to a bulk AdSd+1-
Schwarzschild black hole. It will be demonstrated that the
holographic entanglement negativity for both of these exam-
ples, exhibits certain universal features that are indepen-
dent of the dimensionality of the conformal field theory.
As mentioned in the Introduction this serves as a strong
consistency check for the higher dimensional extension of
our holographic conjecture although a bulk proof along the
lines of [24] is an outstanding open issue which needs to be
addressed.

4.1 Pure vacuum state of a CFTd dual to pure AdSd+1

In this section we employ our conjecture in the AdSd+1/CFTd
scenario, to compute the holographic entanglement negativ-
ity for a bipartite pure state described by the CFTd vacuum
which is dual to the pure AdSd+1 spacetime. We consider the
partitioning of the CFTd into the subsystem A of rectangu-
lar strip geometry and its complement Ac. We then consider
two other finite subsystems B1 and B2 of rectangular strip
geometries adjacent to the subsystem A and on either either
side of it, such that B = (B1 ∪ B2). The metric of pure
AdSd+1 space time in Poincare coordinates is given by

ds2 = 1

z2

(
− dt2 +

d−1∑

i=1

(dxi )2 + dz2
)

, (49)

where z is the inverse radial coordinate and (xi , t) are the
coordinates on the boundaryCFTd (i = 1, 2 . . . , d−1). Note
that the AdS length scale has been set to unity. We consider
the subsystem A to be a rectangular strip with the following
dimensions x1 ≡ [− l

2 , l
2 ] xk = [− L

2 , L
2 ], k = 2, . . . , (d−

1) and the rest of the system is denoted as Ac. In analogy with
the AdS3/CFT2 scenario we consider two large but finite
subsystems B1 and B2 adjacent to the subsystem A, defined
by the coordinates x1 ∈ [−L ,− �

2 ], xk ∈ [−L2
2 , L2

2 ] and x1 ∈
[ �

2 , L], xk ∈ [−L2
2 , L2

2 ] respectively. In order to determine the
area of the required bulk static minimal surfaces anchored to
the boundary subsystem, the following area functional has to
be extremized [9].

Aγ = Ld−2
2

∫ x1
i

x1
j

dx1

√
1 + ( dz

dx1 )2

zd−1 . (50)

The Euler–Lagrange equation for the extremization of the
above area functional is then given as

dz

dx1 =
√
z2(d−1)∗ − z2(d−1)

zd−1 , (51)

where z = z∗ is the turning point of the minimal surface. The
areas of minimal surfaces AA,AB1 and AA∪B1 may then be
obtained through the integral given in Eqs. (50) and (51) as
described in [9]

AA = 2

d − 2

(
L2

a

)d−2

− s0

(
L2

l

)d−2

(52)

AB1 = 2

d − 2

(
L2

a

)d−2

− s0

(
L2

L − l
2

)d−2

(53)

AA∪B1 = 2

d − 2

(
L2

a

)d−2

− s0

(
L2

L + l
2

)d−2

, (54)

where s0 is a constant given as follows

s0 = 2d−1π(d−1)/2

d − 2

(
�( d

2(d−1)
)

�( 1
2(d−1)

)

)d−1

. (55)

Note that the subsystem A has been chosen to be symmetric
along the partitioning direction leading to the equality of
the minimal areas AB1 = AB2 and AA∪B1 = AA∪B2 . This
identification reduces the expression given in Eq. (45), for the
holographic entanglement negativity to the following form

E = lim
B→Ac

3

8Gd+1
N

[
AA + AB1 − AA∪B1

]
. (56)

Having obtained the required expressions for the areas of
minimal surfaces given by Eqs. (52), (53) and (54), we may
now utilize Eq. (56) to determine the holographic entangle-
ment negativity to be

E = lim
L→∞

3

8Gd+1
N

[
2

d − 2

(
L2

a

)d−2

− s0

{(
L2

l

)d−2

+
(

L2

L − l
2

)d−2

−
(

L2

L + l
2

)d−2}]
(57)

This leads us to the following expression

E = 3

8Gd+1
N

[
2

d − 2

(
L2

a

)d−2

− s0

(
L2

l

)d−2]
(58)

Quite interestingly, upon utilizing the Ryu–Takayanagi con-
jecture given in Eq. (5) the above expression for holographic
entanglement negativity of the pure vacuum state of the
CFTd reduces to the following form

E = 3

2
[SA] (59)

Remarkably, this result is identical in form to entanglement
negativity for the pure state described by the CFT1+1 vac-
uum, as given in Eq. (40) for the corresponding AdS3/CFT2

example. Hence, this result serves as a first consistency check
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for the higher dimensional extension of our holographic con-
jecture proposed in [21].

4.2 Finite temperature mixed state of a CFTd dual to
AdSd+1 Schwarzschild black hole

In this section we apply our holographic conjecture to another
higher dimensional example in the AdSd+1/CFTd scenario.
In this context, we compute the holographic entanglement
negativity for a bipartite finite temperature mixed state of
a holographic CFTd dual to a bulk AdSd+1-Schwarzschild
black hole. In this case, the CFTd is partitioned into the sub-
system A of rectangular strip geometry and its complement
Ac. Once again we consider two finite subsystems B1 and B2

of rectangular strip geometries adjacent to the subsystem A
and on either either side of it, such that B = (B1 ∪ B2)

as shown schematically in the Fig. 2. The metric for a
AdSd+1-Schwarzschild black hole with a planar horizon in
the Poincare coordinates is given by

ds2 = −r2
(

1 − rdh
rd

)
dt2 + dr2

r2(1 − rdh
rd

)

+ r2dx2, (60)

where rh is the horizon radius of the black hole with the
Hawking temperature T = rhd/4π and x ≡ (x, xi ) are
the spatial co-ordinates on the boundary and i = 1..(d − 2).
Here we set the AdS length scale R to unity. The holographic
entanglement negativity in this case is given by the Eq. (45) in
terms of the areas of the bulk co dimension two static minimal
surfaces anchored on the corresponding subsystems (see Fig.
2). As is evident from Fig. 2 the subsystem A corresponds to a
spatial region on the d-dimensional boundary defined by the
coordinates x ∈ [− �

2 , �
2 ], xi ∈ [−L2

2 , L2
2 ] where L2 >> �.

Similarly, the spatial region describing the subsystems B1

and B2 are defined by the coordinates x ∈ [−L ,− �
2 ], xi ∈

[−L2
2 , L2

2 ] and x ∈ [ �
2 , L], xi ∈ [−L2

2 , L2
2 ] respectively such

that L >> �. Note that from the above the spatial region
corresponding to the subsystem A ∪ B1 is defined by the
coordinates x ∈ [ − L , �

2 ], xi ∈ [−L2
2 , L2

2 ].
Notice that the subsystem A has been chosen to be sym-

metric along the partitioning direction as shown in the Fig. 2.
This leads to the equality of the minimal areas AB1 = AB2

andAA∪B1 = AA∪B2 . This identification reduces the expres-
sion for the holographic entanglement negativity in Eq. (45),
to the following form

E = lim
B→Ac

3

8G(d+1)
N

[
AA + AB1 − AA∪B1

]
. (61)

The expression for the area of the surface which is anchored
to a subsystem in the CFTd dual to a bulk planar AdSd+1-
Schwarzschild black hole is given in [16] as

Fig. 2 Schematic of static minimal surfaces anchored on the subsys-
tems A, B1 and B2 in the low temperature regime

Fig. 3 Schematic of static minimal surfaces anchored on the subsys-
tems A, B1 and B2 in the high temperature regime

A = Ld−2
2

∫
drrd−2

√√
√√r2x ′2 + 1

r2(1 − rdh
rd

)

. (62)

Extremizing the above area integral leads to the following
Euler–Lagrange equation

∫ x2

x1

dx = 2

rc

∫ 1

0

ud−1du
√

(1 − u2d−2)
(1 − rdh

rdc
ud)−

1
2 , (63)

here, x1 and x2 represent the end point of the subsystem
under consideration, rc represents the turning point of the
static minimal surface and the integration variable is given
by u = rc

r . After integration, the resulting equation may
be inverted to obtain the turning radius rc. This may then
be substituted in the expression for the area of the minimal
surface. The area integral in Eq. (62) written in terms of the
variable u may be expressed as

A = 2Ld−2
2 rd−2

c

∫ 1

0

du

ud−1
√

(1 − u2d−2)

(
1 − rdh

rdc
ud

)− 1
2

.

(64)

The integrals in Eqs. (63) and (64) are not analytically solv-
able. Therefore to compute these integrals we adopt the
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method developed in [16] where the authors employ a cer-
tain expansion technique in terms of Gamma functions to
compute these integrals order by order. Denoting the turning
points of the static minimal surfaces whose areas are given
as AB1 ,AA and AA∪B1 to be rc1, rc2 and rc3 respectively, it
is possible to obtain the expression for the subsystem lengths
using Eq. (63) as follows [16]

L − �

2
= 2

rc1

∞∑

n=0

gn

(
rh
rc1

)nd

, (65)

� = 2

rc2

∞∑

n=0

gn

(
rh
rc2

)nd

, (66)

L + �

2
= 2

rc3

∞∑

n=0

gn

(
rh
rc3

)nd

. (67)

Here gn is given by

gn =
(

1

dn + 1

)
�(n + 1

2 )

�(n + 1)

�(
d(n+1)
2(d−1)

)

�(
(dn+1)
2(d−1)

)
. (68)

The expressions for the minimal surfaces AB1 ,AA and
AA∪B1 may be expressed as

AB1 = 2

d − 2

(
L2

a

)d−2

+ 2Ld−2
2 rd−2

c1

∞∑

n=0

an

(
rh
rc1

)nd

,

(69)

AA = 2

d − 2

(
L2

a

)d−2

+ 2Ld−2
2 rd−2

c2

∞∑

n=0

an

(
rh
rc2

)nd

,

(70)

and

AA∪B1 = 2

d − 2

(
L2

a

)d−2

+2Ld−2
2 rd−2

c3

∞∑

n=0

an

(
rh
rc3

)nd

.

(71)

Here an is given by

an = 1

2(d − 1)

�(n + 1
2 )

�(n + 1)

�(
d(n−1)+2

2(d−1)
)

�(
(dn+1)
2(d−1)

)
(72)

It is to be noted that the integral for the area in Eq. (64) is
divergent and has to be regulated by an infrared cut-off of
the bulk (say rin) which is related to the UV cut-off (a) of
the d-dimensional boundary CFT as rin = 1/a [16]. Having
performed all the integrals we substitute Eqs. (69), (71) and
(70) in Eq. (61) to arrive at the expression for the holographic
entanglement negativity as

E = lim
L→∞

3

8G(d+1)
N

[
2

d − 2

(
L2

a

)d−2

+2Ld−2
2 rd−2

c1

∞∑

n=0

an

(
rh
rc1

)nd

+2Ld−2
2 rd−2

c2

∞∑

n=0

an

(
rh
rc2

)nd

−2Ld−2
2 rd−2

c3

∞∑

n=0

an

(
rh
rc3

)nd]
. (73)

Notice that it is required to invert the expressions in Eqs. (65),
(66) and (67) to obtain rc1, rc2, rc3 and then substitute those
in the above equation to obtain the holographic negativity
as a function of the temperature and the length (�) of the
subsystem A.

4.3 Low temperature regime

In this section, we compute the holographic entanglement
negativity for the bipartite finite temperature mixed state of
the CFTd in the low temperature regime. This regime cor-
responds to the temperature T � << 1, which in the bulk
translates to the case where the horizon is at a large dis-
tance from the turning point rc2 of the static minimal surface
anchored on the subsystem A. This is equivalent to the con-
dition rc2 >> rh as shown in the Fig. 2. As rh� << 1, the
expression for the turning point rc2 may be obtained pertur-
batively employing the technique described in [16] as follows

rc2 = b0

�

[
1 + b1(rh�)

d + O[r2d
h �2d ]

]
, (74)

where b0, b1 are constants given by

b0 = 2
√

π�( d
2(d−1)

)

�( 1
2(d−1)

)
, (75)

b1 = 1

2(d + 1)

2
1

d−1 −d�(1 + 1
2(d−1)

)�( 1
2(d−1)

)d+1

π
d+1

2 �( 1
2 + 1

(d−1)
)�( d

2(d−1)
)d

. (76)

We find the area AA by substituting the expression for rc2

given by Eq. (74) in the Eq. (70) while keeping only the
leading terms in (rh�)d as follows

AA = 2

d − 2

(
L2

a

)d−2

+ s0

(
L2

�

)d−2

[
1 + s1(rh�)

d + O[(rh�)2d ]
]
, (77)
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where s0 and s1 are given by

s0 = 2d−2π
d−1

2 �(− d−2
2(d−1)

)�( d
2(d−1)

)d−2

(d − 1)�( 1
2(d−1)

)d−1
, (78)

s1 = �( 1
2(d−1)

)d+1

2d+1π
d
2 �( d

2(d−1)
)d�( d+1

2(d−1)
)

×
(

�( 1
d−1 )

�(− d−2
2(d−1)

)
+ 2

1
d−1 (d − 2)�(1 + 1

2(d−1)
)√

π(d + 1)

)
.

(79)

The subsystems B1 and A ∪ B1 in the boundary CFTd with
lengths (L − �/2) and (L + �/2) along the x direction are
very large in the limit B → Ac (L → ∞). Therefore, the
minimal surfaces described by the areas AB1 and AA∪B1 will
extend deep into the bulk approaching the black hole hori-
zon even at low temperatures i.e., (rc1 ∼ rh) and (rc3 ∼ rh).
Hence, in order to compute the expressions for the areas AB1

and AA∪B1 we employ the method developed by the authors
in [16] for the case when the minimal surfaces approach the
black hole horizon as described earlier. Through this proce-
dure we obtain the expression for the turning point rc1 for
the minimal surface anchored on the subsystem B1 as fol-
lows

rc1 = rh(1 + ε1), (80)

ε1 = k2 e−
√

d(d−1)
2 rh(L− �

2 )
, (81)

where k2 is a constant given by

k2 = 1

d
e

√
d(d−1)

2 c1, (82)

c1 = 2
√

π�( d
2(d−1)

)

�( 1
(d−1)

)
+

∞∑

n=1

×
(

2

(1 + nd)

�(n + 1
2 )

�(n + 1)

�(
d(n+1)
2(d−1)

)

�( dn+1
2(d−1)

)
−

√
2√

d(d − 1)n

)
.

(83)

Substituting the expressions given by Eqs. (80) and (81) in
Eq. (69) we obtain the area AB1 as an expansion in ε1 up to
O[ε1] as

AB1 = 2

d − 2

(
L2

a

)d−2

+
[
Ld−2

2 rd−1
h

(
L − �

2

)
+ Ld−2

2 rd−2
h

×
(
k1 −

√
2(d − 1)

d
ε1

)
+ O[ε2

1 ]
]
, (84)

where k1 is a constant defined as

k1 = 2

[
−

√
π(d − 1)�( d

2(d−1)
)

(d − 2)�( 1
2(d−1)

+
∞∑

n=1

1

1 + nd

(
d − 1

d(n − 1) + 2

)
�(n + 1

2 )

�(n + 1)

�(
d(n+1)
2(d−1)

)

�(
(dn+1)
2(d−1)

)

]
.

(85)

Repeating the above procedure we find the expressions for
rc3 and AA∪B1 from Eqs. (67) and (71) as follows

rc3 = rh(1 + ε3), (86)

ε3 = k2 e−
√

d(d−1)
2 rh(L+ �

2 )
, (87)

AA∪B1 = 2

d − 2

(
L2

a

)d−2

+
[
Ld−2

2 rd−1
h (L + �

2
)

+Ld−2
2 rd−2

h

(
k1 −

√
2(d − 1)

d
ε3

)
+ O[ε2

3 ]
]

.

(88)

Now we substitute the expressions given by Eqs. (84), (77)
and (88) for the areas of minimal surfaces AB1 ,AA and
AA∪B1 obtained in the low temperature regime, in Eq. (61).
This leads to the following expression for the entanglement
negativity E in the low temperature regime as

E = 3

8G(d+1)
N

[
2

d − 2

(
L2

a

)d−2

+ s0

(
L2

�

)d−2

× [1 + s1(rh�)
d ] − Vrd−1

h

]
, (89)

where V = �Ld−2
2 is the (d − 1)-dimensional volume of

the subsystem-A. The above expression for the holographic
entanglement negativity in the low temperature regime may
be re expressed in a concise form as

E = 3

2

[
SA − SthA

]
. (90)

In the above expression SA is the entanglement entropy
for the subsystem A of rectangular strip geometry for the
finite temperature mixed state of a CFTd dual to a AdSd+1-

Schwarzschild black hole and SthA = Vrd−1
h

4G(d+1)
N

represents the

thermal entropy of the subsystem-A. Remarkably, from the
above equation we observe that the entanglement negativity
captures the distillable quantum entanglement through the
removal of the thermal contribution in this regime and is iden-
tical in form to the corresponding AdS3/CFT2 result. This
is very significant as our conjecture reproduces the universal
feature of the entanglement negativity for the finite tempera-
ture mixed state of a holographic CFT1+1, in higher dimen-
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sions. Naturally this provides a strong consistency check for
the higher dimensional extension of our holographic neg-
ativity conjecture for the low temperature regime in the
AdSd+1/CFTd scenario. We now extend the above analysis
to the high temperature regime in the next subsection.

4.4 High temperature regime

At high temperatures, the turning point rc2 of the minimal
surface with the area AA approaches close to the black hole
horizon which is described by the condition rc2 ∼ rh as
shown in Fig. 3. Note that the high temperature regime also
implies a large horizon radius (rh) for the bulk AdSd+1-
Schwarzschild black hole. Following [16] we obtain AA in
a near horizon expansion in ε2 up to O[ε2] by considering
rc2 = rh(1 + ε2) as follows.

rc2 = rh(1 + ε2), (91)

ε2 = k2 e−
√

d(d−1)
2 rh�, (92)

AA = 2

d − 2

(
L2

a

)d−2

+
[
Ld−2

2 rd−1
h (�) + Ld−2

2 rd−2
h

×
(
k1 −

√
2(d − 1)

d
ε2

)
+ O[ε2

2 ]
]
. (93)

We now turn to the evaluation of the other two minimal sur-
faces described by the areas AB1 and AA∪B1 . Note that as
described earlier these surfaces always probe the near horizon
regime both at low and at high temperatures due to the limit
B → Ac or equivalently L → ∞. Hence we may use the
general expression for these minimal areas given in Eqs. (84)
and (88) in the high temperature regime as well. Following
this we substitute the areas of all the three minimal surfaces
given by Eqs. (93), (84) and (88) in the expression for the
holographic entanglement negativity given by eq (61). This
leads us to the expression for the holographic entanglement
negativity in the high temperature regime as follows

E = 3

8GN

[
2

d − 2

(
L2

a

)d−2

+Ld−2
2 rd−2

h

(
k1 −

√
2(d − 1)

d
k2 e−

√
d(d−1)

2 rh(�)
)]

.

(94)

Observe that as earlier for the low temperature regime we
may re express the above equation in the high temperature
regime also in the following concise form

E = 3

2

[
SA − SthA

]
. (95)

From the above expression notice that as earlier for the
low temperature regime, the entanglement negativity for

the high temperature regime also leads to the distillable
quantum entanglement through the removal of the thermal
contribution. Significantly, we once again observe that the
above expression is identical in form to the corresponding
AdS3/CFT2 result given in Eq. (44). Hence, in the high
temperature regime also our conjecture reproduces the uni-
versal feature of the entanglement negativity for the finite
temperature mixed state of a holographic CFT1+1, in higher
dimensions. Clearly, the results of the last two sections serve
as strong consistency checks for the universality of our con-
jecture and its relevance to d-dimensional CFTs in a generic
AdSd+1/CFTd scenario.

5 Summary and conclusions

To summarize, in this article we have examined the consis-
tency of the higher dimensional AdSd+1/CFTd extension
of our holographic entanglement negativity conjecture pro-
posed in the AdS3/CFT2 context [21] (CMS), through the
application to specific examples. In this connection, utiliz-
ing the higher dimensional AdSd+1/CFTd extension of our
conjecture we have computed the holographic entanglement
negativity for bipartite pure and finite temperature mixed
states of dual CFTds. These include the bipartite pure state
of the CFTd vacuum dual to a bulk pure AdSd+1 geometry
and the finite temperature mixed state dual to a AdSd+1-
Schwarzschild black hole. We have demonstrated that holo-
graphic entanglement negativity for the pure vacuum state is
proportional to the holographic entanglement entropy. Very
significantly the expression for the holographic entanglement
negativity is identical in form ( same proportionality con-
stant) to the corresponding case of the pure vacuum state in
a holographic CFT1+1 [21]. Furthermore, the holographic
entanglement negativity for the finite temperature mixed state
in question computed from our conjecture correctly leads to
the distillable entanglement through the elimination of the
thermal contribution. Significantly, once again this is iden-
tical in form to the AdS3/CFT2 result [21]. Interestingly,
our results exactly reproduce (in form) the universal features
of the entanglement negativity of CFT1+1 in higher dimen-
sions and hence, constitute very strong consistency check for
the higher dimensional extension of our conjecture despite
a bulk proof along the lines of [24] being a significant open
issue which needs attention.

It is well known that mixed state entanglement has signif-
icant implications for understanding diverse fields including
quantum information theory, condensed matter physics and
issues of quantum gravity such as black hole formation and
collapse and the information loss paradox. As described ear-
lier, the entanglement negativity serves as a measure to char-
acterize such mixed state entanglement. Hence, we expect
that our entanglement negativity conjecture for holographic
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conformal field theories to lead to wide ramifications in dis-
parate fields. For example entanglement negativity is related
to the topological order and topological entanglement in
diverse condensed matter systems described by conformal
field theories. Furthermore, entanglement negativity is also
expected to have significant import for the investigation of
high temperature superconductivity, quantum phase transi-
tions, quantum quenches and thermalization which involve
entanglement evolution. In particular our conjecture should
be significant in studying strongly coupled many body sys-
tems in the context of the AdS condensed matter theory
(AdS/CMT ) correspondence. It is also well known that
entanglement entropy and mutual information have played
an important role in the investigation of the information
loss paradox and the associated black hole firewall problem.
Interestingly, our conjecture directly relates the holographic
entanglement negativity and the associated distillable quan-
tum entanglement with the holographic mutual information.
Naturally, this indicates that our conjecture ( or a covariant
version thereof) should also have crucial implications for the
study of the Information Loss Paradox and the black hole fire-
wall problem. We hope to return to these interesting issues
in the near future.
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Appendix:Areviewof entanglementnegativity inCFT1+1

In this appendix, we review the procedure for obtaining
the entanglement negativity in a CFT1+1 described by the
authors Calabrese et al. in [7]. As discussed in the intro-
duction, the entanglement negativity of a mixed described
by the bipartite system consisting of subsystems A1 and
A2 (A = A1 ∪ A2) embedded in a larger tripartite system
A1 ∪ A2 ∪ Ac may be given as

E = log

(
Tr | ρ

T2
A |

)
, (96)

here ρA = TrAc (ρ) is reduced density matrix and the super-
script T2 represents the operation of the partial transpose on
this reduced density matrix ρ

T2
A as described in Eq. (2).

Note that for extended quantum many body systems like
quantum field theories just as for entanglement entropy the
computation of the entanglement negativity involves an infi-
nite dimensional density matrix. Hence, the application of
the above formula for the entanglement negativity becomes
problematic. However, for this issue may be addressed in
the framework of the replica technique proposed in [7] men-
tioned earlier. Using this technique the authors were able to
compute the entanglement negativity for bipartite quantum
states of a CFT1+1, by relating it to the quantity Tr(ρT2

A )n .
From the computation of the entanglement entropy it is well
known that the quantity Tr(ρA)n is given by the following
four point twist correlator

Tr(ρA)n = 〈Tn(u1)T n(v1)Tn(u2)T n(v2)〉. (97)

In this regard, the operation of the partial transpose (ρ
T2
A ) of

the reduced density matrix ρA has the effect of exchanging
upper and lower edges of the branch cut along the inter-
val A2 on a ne-sheeted Riemann surface. Thus the quantity
Tr(ρT2

A )n may be expressed in terms of a four point twist
correlator as

Tr(ρT2
A )n = 〈Tn(u1)T n(v1)T n(u2)Tn(v2)〉. (98)

It is to be noted that Tr(ρT2
A )n shows different functional

dependence on |λi | (λi ’s are the eigenvalues of ρ
T2
A ) depend-

ing on parity of n. Therefore, the required expression for
the entanglement negativity may be obtained as an analytic
continuation of the even sequences n to ne → 1 (where ne
represents even values of n) [7]. Thus, by making use of the
replica technique given in Eq. (98), the authors defined the
entanglement negativity for the bipartite mixed state of two
disjoint intervals in a CFT1+1 as

E = lim
ne→1

ln(Tr [(ρT2
A )ne ]) (99)

= lim
ne→1

ln
[〈Tne(u1)T ne (v1)T ne(u2)Tne(v2)〉

]
. (100)

A.1 Entanglement negativity for the bipartite pure vacuum
state

Here we explain the systematic method developed by the
authors in [5,6] in order to obtain the entanglement negativity
for the bipartite (A∪ Ac) pure state described by theCFT1+1

vacuum. In order to reduce a tripartite system (A1, A2, Ac)

to a bipartite configuration (A, Ac,∅), the authors make the
identification u2 → v1 and v2 → u1 in Eq. (99) such that
the interval corresponding to the subsystem A is now a single
interval denoted by [u, v]. With this identification, the correct
form for the entanglement negativity of the subsystem A is
given in terms of the two point twist correlator as
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E = lim
ne→1

ln
[
Tr(ρTA )ne

]
= lim

ne→1
ln

[
〈T 2

ne(u)T 2
ne(v)〉

]
,

(101)

where ρ = ρA∪Ac corresponds to the density matrix of the
full system. In order to compute the two point twist correlator
given in the equation above, the authors in [7] use the fact
that the operator T 2

j connects the j-th sheet of the Riemann
surface to the ( j + 2)-th sheet . When the parity of n is
even i.e n = ne, the ne-sheeted Riemann surface dissociates
into two ne/2 sheeted Riemann surfaces which simplifies
the expression for the entanglement negativity in Eq. (101)
as follows

E = lim
ne→1

ln
[
(〈Tne/2(u)T ne/2(v)〉)2

]
. (102)

Here the scaling dimension-�(2)
ne of the operator T 2

ne is related
to the scaling dimension-(�ne ) of the operator Tne as

�(2)
ne = 2�ne/2 = c

6

(
ne
2

− 2

ne

)
,

�ne = c

12

(
ne − 1

ne

)
. (103)

Since the form of the two point twist correlator in Eq. (102)
is fixed in a CFT1+1, it follows that the expression for the
entanglement negativity is given as follows

E = c

2
ln

(
�

a

)
+ constant, (104)

where � =| u − v | is the length of the subsystem-A and a is
the UV cutoff for the (1 + 1)- dimensional conformal field
theory. From the above discussion one may observe that for
the pure state described by the CFT1+1 vacuum, the entan-
glement negativity is equal to the Rényi entropy of order-1/2
which is a well known result in quantum information theory
[3,6].

A.2 Entanglement negativity for the bipartite finite
temperature mixed state

In this section, we review the procedure for the computation
of entanglement negativity for the finite temperature mixed
state of a CFT1+1 as described in [7]. Note that the method
for obtaining the entanglement negativity for the finite tem-
perature mixed state is subtle and the authors in [7] demon-
strated that the naive application of Eq. (101) is incorrect. The
reason for this subtlety may be associated with the fact that
the decoupling of the ne sheeted Riemann surface into two
ne/2 sheeted Riemann surfaces leads to a simplified expres-
sion for the entanglement negativity given by Eq. (102). The
authors showed that this simplification is suitable only for
the pure state scenario when the CFT1+1 is on the complex

plane. For the finite temperature bipartite mixed state where
the partial transpose is over an infinite cylinder, the expres-
sion in Eq. (102) is unsuitable to compute the entanglement
negativity. The authors in [7] noted that the entanglement
negativity of the bipartite (A ∪ Ac) finite temperature mixed
state of a CFT1+1 is related to the following four point twist
correlator

E = lim
L→∞ lim

ne→1
ln

[
Tr(ρTA )ne

]
(105)

= lim
L→∞ lim

ne→1
ln

[
〈Tne (−L)T 2

ne(−�)T 2
ne (0)T ne (L)〉β

]
.

(106)

In the above equation, the interval corresponding to
subsystem-A is given by [u, v] = [−�, 0] whereas, Tne(−L)

and Tn(L) correspond to the twist fields located at the end
points of the subsystems denoted as B1 = [−L ,−�] and
B2 = [0, L] at some large distance L from the interval A.
Moreover, if we denote B = B1 ∪ B2 then the the limit
L → ∞ in Eq. (106) corresponds to B → Ac. Here, it is
also to be noted that in order to get the correct result from
Eq. (106), the limit (L → ∞) should be applied only after
taking the replica limit (ne → 1). The subscript β indicates
that at finite temperatures it is required to evaluate the four
point function in Eq. (106) on an infinitely long cylinder of
circumference β = 1/T . This cylindrical geometry may be
obtained from the 2-dimensional complex plane by the fol-
lowing conformal transformation

z → ω = β

2π
ln z, (107)

where z denotes the coordinates on the complex plane and ω

denotes the coordinates on the cylinder. Under the conformal
transformation given by Eq. (107), the required four-point
function of a CFT1+1 on the infinite cylinder is related to the
four point function on the complex plane as follows

〈Tne(w1)T
2
ne(w2)T 2

ne(w3)T ne(w4)〉β
=

∏

j

|z′(w j )|� j 〈Tne(z1)T
2
ne(z2)T 2

ne(z3)T ne (z4)〉C,

(108)

here z′(w j ) = dz
dw

|z=w j and � j is the scaling dimension
of operator inserted at w j . The form of the four point twist
correlator on the complex plane is given as follows

〈Tne(z1)T
2
ne (z2)T 2

ne (z3)T ne (z4)〉C
= 1

z
2�ne
14 z

2�
(2)
ne

23

Gne (x)
x�ne+�

(2)
ne

, (109)

where the cross ratio x = z12z34
z13z24

. In the above equation
the zi ’s correspond to arbitrary complex numbers such that
zi j = |zi − z j | with 〈.〉 standing for the expectation value.
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From Eq. (109) it may be observed that the four point twist
correlator is only fixed up to an undetermined functionGne (x)
of the cross-ratio x . The cross ratio x of the four points has
two limits x → 0 and x → 1, which correspond to high and
low temperature limits respectively [7]. The behavior of the
four point function mentioned above at low and high temper-
atures may be obtained through the OPE of Tne (u)T ne(v),

T 2
ne (u)T 2

ne(v) and Tne (u)T 2
ne(v). For low temperatures one

has x → 1 i.e z3 → z2, z4 → z1 which leads to the following
form of the four point correlator in Eq. (109)

〈Tne (z1)T
2
ne(z2)T 2

ne(z3)T ne (z4)〉
= 〈Tne (z1)T ne(z4)〉〈T 2

ne (z2)T
2
ne(z3)〉 + · · · . (110)

On the other hand the high temperatures limit is given by
x → 0 i.e z2 → z1, z4 → z3, which results in the following
form for the four point twist correlator

〈Tne (z1)T
2
ne(z2)T 2

ne(z3)T ne(z4)〉 = C2
necne

(z12z34)
�

(2)
ne z

2�ne
13

+ · · ·

(111)

Here cne and Cne are constants that appear as the coefficients
of the leading term in the OPE of the two point twist cor-

relators Tne(u)T ne (v) and Tne (u)T 2
ne(v) respectively. The

high and low temperature behavior given in Eqs. (110) and
(111) leads to following suggestive form for the four point
correlator

〈Tne (z1)T
2
ne(z2)T 2

ne(z3)T ne(z4)〉C = cnec
2
ne/2

z
2�ne
14 z

2�
(2)
ne

23

Fne(x)

x�
(2)
ne

,

(112)

where cne and c2
ne/2 are constants. Following [7] , one may

also obtain the constraints on the function Fne(x) in the two
limits x → 1 and x → 0 as follows

Fne(1) = 1, Fne(0) = C2
ne

c2
ne/2

. (113)

Rewriting zi ’s in Eq. (112) in terms of the required coordi-
nates on the infinite cylinder i.e (z1, z2, z3, z4) →
(e−2πL/β, e−2π�/β, 1, e2πL/β) and then using the transfor-
mation given by Eq. (108) one may obtain the required four
point correlator. Thus, the entanglement negativity for the
bipartite (A∪Ac) finite temperature mixed state of aCFT1+1

due to Calabrese et al. [7] may be expressed as follows

E= c

2
ln

[
β

πa
sinh

(
π�

β

)]
−πc�

2β
+ f (e−2π�/β)+ln(c2

1/2c1).

(114)

The function f (x) in the above expression is defined in the
replica limit (ne → 1) as follows

f (x) = lim
ne→1

ln[Fne(x)], lim
L→∞ x = e−2π�/β (115)

Note that the second term in the Eq. (114) corresponds to the
thermal entropy of the subsystem A up to a numerical factor.
Therefore, Eq. (114) clearly indicates that the entanglement
negativity characterizes the distillable entanglement for the
finite temperature mixed state of aCFT1+1 through the elim-
ination of the contribution from the thermal correlations.

References

1. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field
theory. J. Stat. Mech. 0406, P06002 (2004). arXiv:hep-th/0405152
[hep-th]

2. P. Calabrese, J. Cardy, Entanglement entropy and conformal field
theory. J. Phys. A 42, 504005 (2009). arXiv:0905.4013 [cond-
mat.stat-mech]

3. G. Vidal, R. F. Werner, Computable measure of entanglement,
Phys. Rev. A 65, 032314 (2002)

4. M. B. Plenio, Logarithmic negativity: a full entanglement mono-
tone that is not convex. Phys. Rev. Lett.95(9), 090503 (2005).
arXiv:quant-ph/0505071 [quant-ph]

5. P. Calabrese, J. Cardy, E. Tonni, Entanglement negativity in
quantum field theory. Phys. Rev. Lett. 109, 130502 (2012).
arXiv:1206.3092 [cond-mat.stat-mech]

6. P. Calabrese, J. Cardy, E. Tonni, Entanglement negativity in
extended systems: a field theoretical approach. J. Stat. Mech. 1302,
P02008 (2013). arXiv:1210.5359 [cond-mat.stat-mech]

7. P. Calabrese, J. Cardy, E. Tonni, Finite temperature entangle-
ment negativity in conformal field theory, J. Phys. A48(1), (2015)
015006. arXiv:1408.3043 [cond-mat.stat-mech]

8. S. Ryu, T. Takayanagi, Holographic derivation of entanglement
entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006).
arXiv:hep-th/0603001 [hep-th]

9. S. Ryu, T. Takayanagi, Aspects of holographic entanglement
entropy. JHEP 08, 045 (2006). arXiv:hep-th/0605073 [hep-th]

10. T. Takayanagi, Entanglement entropy from a holographic view-
point. Class. Quant. Grav. 29, 153001 (2012). arXiv:1204.2450
[gr-qc]

11. P. Calabrese, J. Cardy, B. Doyon, Entanglement entropy in extended
quantum systems. J. Phys. A Math. Theoret. 42(50), 500301 (2009)

12. M. Cadoni, M. Melis, Holographic entanglement entropy of
the BTZ black hole. Found. Phys. 40, 638–657 (2010).
arXiv:0907.1559 [hep-th]

13. M. Cadoni, M. Melis, Entanglement entropy of ads black holes.
Entropy 12(11), 2244 (2010)

14. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT. JHEP
07, 093 (2012). arXiv:1203.1044 [hep-th]

15. T. Nishioka, S. Ryu, T. Takayanagi, Holographic entangle-
ment entropy: an overview. J. Phys. A 42, 504008 (2009).
arXiv:0905.0932 [hep-th]

16. W. Fischler, S. Kundu, Strongly coupled gauge theories: high and
low temperature behavior of non-local observables. JHEP 05, 098
(2013). arXiv:1212.2643 [hep-th]

17. W. Fischler, A. Kundu, S. Kundu, Holographic mutual informa-
tion at finite temperature. Phys. Rev. D 87(12), 126012 (2013).
arXiv:1212.4764 [hep-th]

123

http://arxiv.org/abs/hep-th/0405152
http://arxiv.org/abs/0905.4013
http://arxiv.org/abs/quant-ph/0505071
http://arxiv.org/abs/1206.3092
http://arxiv.org/abs/1210.5359
http://arxiv.org/abs/1408.3043
http://arxiv.org/abs/hep-th/0603001
http://arxiv.org/abs/hep-th/0605073
http://arxiv.org/abs/1204.2450
http://arxiv.org/abs/0907.1559
http://arxiv.org/abs/1203.1044
http://arxiv.org/abs/0905.0932
http://arxiv.org/abs/1212.2643
http://arxiv.org/abs/1212.4764


Eur. Phys. J. C (2018) 78 :499 Page 17 of 17 499

18. P. Chaturvedi, V. Malvimat, G. Sengupta, Entanglement thermody-
namics for charged black holes. Phys. Rev. D 94, 066004 (2016).
arXiv:1601.00303 [hep-th]

19. M. Rangamani, M. Rota, Comments on entanglement negativity in
holographic field theories. JHEP 10, 60 (2014). arXiv:1406.6989
[hep-th]

20. S. Banerjee, P. Paul, Black hole singularity, general-
ized (holographic) c-theorem and entanglement negativity.
arXiv:1512.02232 [hep-th]

21. P. Chaturvedi, V. Malvimat, G. Sengupta, Holographic quantum
entanglement negativity. arXiv:1609.06609 [hep-th]

22. V. Malvimat, G. Sengupta, Entanglement negativity at large central
charge. arXiv:1712.02288 [hep-th]

23. T. Faulkner, The entanglement Renyi entropies of disjoint intervals
in AdS/CFT. arXiv:1303.7221 [hep-th]

24. A. Lewkowycz, J. Maldacena, Generalized gravitational entropy.
JHEP 08, 090 (2013). arXiv:1304.4926 [hep-th]

25. P. Calabrese, J. Cardy, E. Tonni, Entanglement entropy of two
disjoint intervals in conformal field theory. J. Stat. Mech. 0911,
P11001 (2009). arXiv:0905.2069 [hep-th]

26. P. Calabrese, J. Cardy, E. Tonni, Entanglement entropy of two dis-
joint intervals in conformal field theory II. J. Stat. Mech. 1101,
P01021 (2011). arXiv:1011.5482 [hep-th]

27. M. Headrick, Entanglement Renyi entropies in holographic theo-
ries. Phys. Rev. D 82, 126010 (2010). arXiv:1006.0047 [hep-th]

28. A.L. Fitzpatrick, J. Kaplan, M.T. Walters, Universality of long-
distance AdS physics from the CFT bootstrap. JHEP 08, 145
(2014). arXiv:1403.6829 [hep-th]

29. T. Hartman, Entanglement entropy at large central charge.
arXiv:1303.6955 [hep-th]

30. A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an
explicit recurrence formula for the conformal partial wave ampli-
tude. Commun. Math. Phys. 96, 419–422 (1984)

31. A. B. Zamolodchikov, A. B. Zamolodchikov, Structure constants
and conformal bootstrap in Liouville field theory. Nucl. Phys.B477
(1996) 577–605. arXiv:hep-th/9506136 [hep-th]

32. D. Harlow, J. Maltz, E. Witten, Analytic continuation of liouville
theory. JHEP 12, 071 (2011). arXiv:1108.4417 [hep-th]

33. P. Banerjee, S. Datta, R. Sinha, Higher-point conformal blocks
and entanglement entropy in heavy states. JHEP 05, 127 (2016).
arXiv:1601.06794 [hep-th]

34. M. Kulaxizi, A. Parnachev, G. Policastro, Conformal blocks
and negativity at large central charge. JHEP 09, 010 (2014).
arXiv:1407.0324 [hep-th]

35. M. Henningson, K. Skenderis, The holographic Weyl anomaly.
JHEP 07, 023 (1998). arXiv:hep-th/9806087 [hep-th]

36. A. Karch, B. Robinson, Holographic black hole chemistry. JHEP
12, 073 (2015). arXiv:1510.02472 [hep-th]

37. J.D. Brown, M. Henneaux, Central charges in the canonical realiza-
tion of asymptotic symmetries: an example from three-dimensional
gravity. Commun. Math. Phys. 104(2), 207–226 (1986)

38. A. Coser, E. Tonni, P. Calabrese, Entanglement negativity after a
global quantum quench, J. Stat. Mech.1412(12), P12017 (2014).
arXiv:1410.0900 [cond-mat.stat-mech]

39. X. Wen, P.-Y. Chang, S. Ryu, Entanglement negativity after a local
quantum quench in conformal field theories, Phys. Rev. B92(7),
075109 (2015). arXiv:1501.00568 [cond-mat.stat-mech]

123

http://arxiv.org/abs/1601.00303
http://arxiv.org/abs/1406.6989
http://arxiv.org/abs/1512.02232
http://arxiv.org/abs/1609.06609
http://arxiv.org/abs/1712.02288
http://arxiv.org/abs/1303.7221
http://arxiv.org/abs/1304.4926
http://arxiv.org/abs/0905.2069
http://arxiv.org/abs/1011.5482
http://arxiv.org/abs/1006.0047
http://arxiv.org/abs/1403.6829
http://arxiv.org/abs/1303.6955
http://arxiv.org/abs/hep-th/9506136
http://arxiv.org/abs/1108.4417
http://arxiv.org/abs/1601.06794
http://arxiv.org/abs/1407.0324
http://arxiv.org/abs/hep-th/9806087
http://arxiv.org/abs/1510.02472
http://arxiv.org/abs/1410.0900
http://arxiv.org/abs/1501.00568

	Entanglement negativity, holography and black holes
	Abstract 
	1 Introduction
	2 Entanglement entropy and entanglement negativity in CFT1+1
	2.1 Entanglement entropy
	2.2 Entanglement negativity in CFT(1+1)
	2.3 Large central charge limit of the entanglement negativity in CFT1+1

	3  Holographic prescription for the entanglement negativity
	3.1 Holographic entanglement negativity in AdS3/CFT2
	3.1.1 Pure AdS3
	3.1.2 Euclidean BTZ black hole


	4 Holographic entanglement negativity in AdSd+1/CFTd
	4.1  Pure vacuum state of a CFTd dual to pure AdSd+1
	4.2  Finite temperature mixed state of a CFTd dual to AdSd+1 Schwarzschild black hole
	4.3 Low temperature regime
	4.4 High temperature regime

	5 Summary and conclusions
	Acknowledgements
	Appendix: A review of entanglement negativity in CFT1+1
	A.1 Entanglement negativity for the bipartite pure vacuum state
	A.2 Entanglement negativity for the bipartite finite temperature mixed state 

	References




