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Abstract Teleparallel theory of gravity and its modifica-
tions have been studied extensively in literature. However,
gravitational waves has not been studied enough in the frame-
work of teleparallelism. In the present study, we discuss grav-
itational waves in general theories of teleparallel gravity con-
taining the torsion scalar T , the boundary term B and a scalar
field φ. The goal is to classify possible new polarizations
generalizing results presented in Bamba et al. (Phys Lett B
727:194–198, arXiv:1309.2698, 2013). We show that, if the
boundary term is minimally coupled to the torsion scalar and
the scalar field, gravitational waves have the same polariza-
tion modes of General Relativity.

1 Introduction

The observed late expansion of the universe can be described
by either introducing an exotic form of energy (dark energy)
or modifying gravity. In this framework, several modifica-
tions have been proposed [1–4] and, among them, the possi-
bility to consider teleparallel gravity [5]. Einstein introduced
the idea of teleparallelism soon after General Relativity
(GR) [6]. Teleparallel Lagrangian coincides with Einstein-
Hilbert Lagrangian up to a boundary term, i.e. T = −R+ B,
where T is the scalar torsion, R is the Ricci scalar and B is
a boundary term. Therefore, GR and Teleparallel Equivalent
General Relativity (TEGR) result in the same equations of
motion.

However, difference between them arise in modified
Lagrangians, where scalar fields coupled nonminimally to
gravity or arbitrary functions of T or R are taken into account
[5]. Such modifications of TEGR violate the local Lorentz
symmetry invariance and result in six extra degrees of free-
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dom [7]. In a more general case, the Lagrangian can be a
function of both T and R, i.e. f (T, R) [8,9]. This theory can
be studied as f (T, B), where B is the boundary term [10,11].

In both GR and TEGR, gravitational waves (GW) have
two independent polarizations, usually denoted as plus and
cross modes. However, extra polarizations appear in modified
theories. The perturbation theory in the post-Minkowski limit
is a way to study the number of GW polarizations.

The other way is the Newman-Penrose (NP) formal-
ism [12,13]. Adopting the NP formalism in a generic metric
theory, plane GWs have six independent modes of polariza-
tion: considering the z-direction as the propagation direction
of GWs, they are plus (+), cross (×), breathing (b), lon-
gitudinal (l), vector-x (x) and vector-y (y) modes. These
modes can be described by the independent NP quantities
{�2, �3, �4,�22}, where �3 and �4 are complex and each
one describes two polarization modes. The extra polarization
modes can be used to discriminate among modified theories
of gravity beyond GR (see, e.g. Ref. [14,15]). As shown in
[16], GWs in f (T ), and in its scalar-tensor representation,
are equivalent to that in GR and TEGR [17]. In f (R) gravity,
where the Lagrangian is an arbitrary function of Ricci scalar,
three modes exist [18–20]. Models f (R,�) and f (R,�φ)

were also studied in Ref. [21], where � and �φ are the traces
of the energy-momentum tensors of standard matter and of a
scalar field, respectively. The Authors studied different form
of function f , and have shown that the number of GW-modes
depends on the form of it [22].

An important remark is necessary at this point. Modified
theories of gravity are taken into account to achieve a com-
prehensive picture of cosmic dynamics ranging from early
inflation, up to large scale structure formation and current
acceleration of the universe [1–4]. The approach is aimed
to give, in principle, a full geometric description of cosmic
history consisting, for example, in extensions of GR, like
f (R), or of TEGR, like f (T ). The main task is explaining

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5967-x&domain=pdf
http://arxiv.org/abs/1309.2698
mailto:h.abedi@ut.ac.ir
mailto:capozziello@na.infn.it


474 Page 2 of 9 Eur. Phys. J. C (2018) 78 :474

dynamics by further degrees of freedom of gravitational field
(with respect to GR or TEGR) instead of invoking dark com-
ponents [23]. However, to achieve a self-consistent descrip-
tion, further scalar fields could be necessary. For example, as
discussed in [24], the flat rotation curve of galaxies is better
fitted considering a theory like f (R, φ), instead of a pure
f (R),because, in such a case, it is possible to reproduce the
so-called Sanders potential with better precision. In this case,
by a conformal transformation, it is shown that a model like
f (R, φ) is analogue to f (R,�R) so that the scalar field has
a straightforward geometric interpretation too. In general,
terms like �R, �2R and so on appear as UV corrections that
have effects also at IR scales (see [2] for a detailed discussion
of this topic). In this perspective, further scalar fields, having
a geometric or a matter origin, could be useful to describe
coherently cosmic dynamics at any scale. Here, we consider
TEGR extensions assuming not only general functions of the
torsion scalar T , but also boundary terms B and a scalar field
φ that, according to the discussion in [24], could be geomet-
rically interpreted. In particular, considering further scalar
fields is important for a full classification of GW modes and
polarizations.

The present paper is organized as follows. The field equa-
tions of our modified teleparallel theory are derived in Sect. 2.
Section 3 is devoted to study GWs in two modifications of
teleparallel gravity; first, we study the case of scalar field non-
minimally coupled to both the scalar torsion and the boundary
term. Then, we assume a Lagrangian as a nonlinear function
of the scalar torsion and the boundary term. In Sect. 4, we
obtain the number of GW-polarizations when the scalar field
kinetic term is coupled to the scalar torsion. We show that,
due to the local Lorentz Invariance violation, such a coupling
is not viable because of the extra degrees of freedom. In Sect.
5, we discuss the results and draw conclusions.

2 Teleparallel gravity and its extensions

In teleparallel theories, vierbein fields describe gravity. Con-
sidering a set of orthonormal basis in each point of a generic
manifold, the metric is given by

gμν = ηABe
A
μe

B
ν , (1)

where eAμ are vierbein fields and ηAB is the Minkowski met-
ric. Then, one can write eAμe

ν
A = δν

μ. With the rule of absolute

transport ∇̃μeν
A = 0, the Weitzenböck connection with van-

ishing Riemann tensor is defined by

	α
νμ := eα

A ∂μe
A
ν . (2)

∇̃μ is the covariant derivative is defined by the Weitzenbc̈k
connection. This connection results in nonvanishing torsion
tensor as follows

T α
μν = eα

A

(
∂μe

A
ν − ∂νe

A
μ

)
. (3)

Defining contorsion and superpotential, respectively,

Kμν := −1

2

(
Tμν

ρ − T νμ
ρ − Tμν

ρ

)
, (4)

Sμν
ρ := 1

2

(
Kμν

ρ + δμ
ρ T

αν
α − δν

ρT
αμ
α

)
, (5)

scalar torsion is

T := Sμν
ρ T ρ

μν. (6)

The scalar torsion (6) is related to the Ricci scalar constructed
by the Levi-Civita connection as follows

T = −R + B, (7)

where B = 2∇μT
νμ
ν is a boundary term in the teleparallel

Lagrangian. If a scalar field is nonminimally coupled to the
torsion scalar, the Einstein frame can be recovered by con-
sidering the boundary term B coupled to the scalar field [25].
Let us now take into account the following action

S = 1

2

∫
d4x e

[
f (T, B, φ) − ∂μφ ∂μφ

−2V (φ) + 2Lm
]
, (8)

where e = det
(
eAν

) = √−g, V (φ) is a generic potential
and Lm is the matter Lagrangian. The variation of action (8)
with respect to the vierbein fields yields the following field
equations

eμ
A� fB − eν

A∇μ∇ν fB

+1

2
B fBe

μ
A + 2∂ν ( fB + fT ) Sνμ

A

+2e−1∂ν

(
eSνμ

A

)
fT − 2 fT T

α
νAS

μν
α

−1

2
eμ
A

[
f − ∂αφ ∂αφ − 2V (φ)

] = �
μ
A, (9)

where �
μ
A = −δLm/δhA

μ is the stress-energy tensor of mat-
ter. Equation (9) in spacetime indices become

− fT Gμν + (
gμν� − ∇μ∇ν

)
fB

+1

2
( fB B + fT T − f )gμν

+2Sα
νμ ∂α( fT + fB) − gμν

[
1

2
∂αφ ∂αφ + V (φ)

]

+∂μφ ∂νφ = �μν, (10)

where we have used

Gν
σ = −2

(
e−1∂μ(eSμν

A ) − T ρ
μAS

νμ
ρ − 1

4
eν
AT

)
eAσ . (11)

The variation of the action (8) with respect to the scalar field
results in

�φ + 1

2
f ′ − V ′ = 0, (12)
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where prime denotes the derivative with respect to the scalar
field φ. In the weak field approximation, the metric can be
written as

gμν = ημν + hμν, (13)

where hμν is small and first order, O (
h2

) � 1 with respect
to the background. Thus, up to first order, one can write

eAμ = δAμ + hA
μ. (14)

and

R(1)
μν = 1

2

(
∂ρ∂νh

ρ
μ + ∂ρ∂μhνρ − �hμν − ∂μ∂νh

)
, (15)

R(1) = ∂ρ∂μhρ
μ − �h. (16)

where h = ημνhμν and � = ημν∂μ∂ν . The indices are low-
ered and raised by the Minkowski background metric ημν .
The boundary term B is second order in perturbations; there-
fore, up to first order we have R(1) = −T (1).

3 Nonminimal coupling

3.1 The role of scalar field

In order to develop our considerations, we can specify the
function in (8) as

f (T, B, φi ) = [−1 + ξ F(φ)] T + χ E(φ) B, (17)

where F and E are two arbitrary functions of scalar field.
For ξ = 0 = χ it reduced to TEGR. Field equations get the
following form

( − 1 + ξF)Gμν + χ
(
gμν� − ∇μ∇ν

)
E

+ 2Sα
νμ∂α (ξF + χE) − gμν

(
1

2
∂αφ ∂αφ + V

)

+ ∂μφ ∂νφ = �μν. (18)

At first order we have

( − 1 + ξF0)

(
R(1)

μν − 1

2
ημνR

(1)

)

+ χE ′
0

(
ημν∂

2 − ∂μ∂ν

)
δφ

− hμνV0 − ημνV
′
0 δφ = �(1)

μν . (19)

Taking the trace of Eq. (19), we get

− (−1 + ξF0)R
(1) + 3ξE ′

0�δφ − hV0 − 4V ′
0 δφ = �(1).

(20)

According to these considerations, we can define

h̄μν = hμν − 1

2
ημνh + χE ′

0

−1 + ξF0
ημν δφ, (21)

h̄ = −h + 4χE ′
0

−1 + ξF0
δφ, (22)

hμν = h̄μν − 1

2
ημν h̄ + χE ′

0

−1 + ξF0
ημν δφ, (23)

and, in vacuum, we have

�h̄μν = 0. (24)

With the plane wave ansätz, its solution in Fourier space is

h̄μν(k) = Aμν(k) exp
(
ikαxα

) + c.c. (25)

One can assume φ̄ as the minimum of the potential, i.e.

V � V0 + 1

2
γ (δφ)2 . (26)

The above scalar field equation, with the choice (17), gets
the following form

�φ + 1

2

(
ξT F ′ + χBE ′) − V ′ = 0. (27)

At first order, it becomes

�δφ − 1

2
ξF ′

0R
(1) − V ′′

0 δφ = 0, (28)

where we have used B = O(h2) and T (1) = −R(1). Then,
we get

(
� − m2

)
δφ = 0, m2 = 2V ′′

0 (−1 + ξF0)

2(−1 + ξF0) − 3ξχF ′
0E

′
0
,

(29)

where m2 defines an effective mass. We assumed V ′
0 = 0.

The solution at first order is then

δφ(q) = a(q) exp
(
iqαxα

) + c.c. (30)

Let us now consider z as the direction of wave traveling.
Taking � as the angular frequency, we have

q =
(
�, 0, 0,

√
�2 − m2

)
, (31)

and the group velocity is

vG =
√

�2 − m2

�
. (32)

Assuming the speed vG constant, we get

m =
√

(1 − v2
G)�. (33)

The effect of gravitational polarization can be studied by the
geodesic deviation,

ẍi = −Rit j t x j . (34)
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Only the “electric part” of the Riemann tensor, i.e. Rit j t ,
affects the geodesic deviation. In absence of modes that are
described by Eq. (25), i.e. h̄i j = 0, we have

hμν = χE ′
0

−1 + ξF0
ημν δφ. (35)

Then, geodesic deviation becomes

ẍi = χE ′
0

2 (−1 + ξF0)

(
ηi j ¨δφ + (δφ),i j

)
x j . (36)

Expressing (36) in components, one gets

ẍ = − χE ′
0�

2

2 (−1 + ξF0)
δφ x,

ÿ = − χE ′
0�

2

2 (−1 + ξF0)
δφ y,

z̈ = − χE ′
0m

2

2 (−1 + ξF0)
δφ z. (37)

If � � m, the displacement in longitudinal direction is
smaller than the transverse one, z̈/z = (m/�)2 ẍ/x . In very
low frequency band, l and b modes can be of the same order.
Considering the weak field limit, we can adopt the NP for-
malism. To obtain the independent NP quantities, one can
use the solution (30), that is

R(1)
μν =

[(
− 1

−1 + ξF0
+ 3

2

)
ημν�

+ 1

−1 + ξF0
∂μ∂ν

]
χE ′

0δφ. (38)

Defining a set of tetrads
(
et , ex , ey, ez

)
, the null tetrads are

k = 1√
2
(et + ez), l = 1√

2
(et − ez),

m = 1√
2
(ex + iey), m̄ = 1√

2
(ex − iey),

(39)

where m and m̄ are complex but l and k are real. The null
tetrads satisfy following relations

− k · l = m̄ · m = 1,

k · l = k · m̄ = l · m = l · m̄ = 0. (40)

Then the non-vanishing NP quantities become

�4 = −Rlm̄lm̄ ∼ + and × modes, (41)

�3 = −1

2
Rlm̄ ∼ x and y modes, (42)

�2 = 1

6
Rlk ∼ l mode, (43)

�22 = −1

2
Rll ∼ b mode. (44)

Then, we have

�3 = 0, (45)

�2 = χE ′
0m

2a exp (iqαxα)

12

[
1

−1 + ξF0
− 3

2

]
(46)

�22 = − χE ′
0

2(−1 + ξF0)
exp

(
iqαx

α
)
(qt − qz)

2 (47)

therefore, in general, we have four independent polarizations:
×, +, b and l modes. However, the NP formalism can be used
for massless waves. Considering V ′′

0 = 0 we have

�2 = 0 = �3, �4 	= 0 	= �22 (48)

therefore there exists just three modes: ×, + and b. The case
in which χ = 0 results in �22 = 0, consequently, the two
polarization modes of GR remain. Consider that these two
polarizations are obtained also in TEGR. It is worth noticing
that the massless scalar field, coupled with the boundary term,
leads to the breathing mode.

3.2 The f (T, B) theory

Let us consider now the following action

S = 1

2

∫
d4x e f (T, B). (49)

The field equations are

− fT Gμν + (
gμν� − ∇μ∇ν

)
fB

+1

2
gμν ( fB B + fT T − f )

+2Sα
νμ ∂α ( fT + fB) = 0. (50)

Supposing f (T, B) being an analytic function of T and B,
one can expand it as follows

f (T, B) = f (T0, B0) + fT (T0, B0) T + fB(T0, B0) B

+ fT B(T0, B0) T B + · · · . (51)

Then the field equations at first order become

− fT0G
(1)
μν + fT0B0

(
ημν� − ∂μ∂ν

)
T (1) = 0. (52)

Up to first order we have again R(1) = −T (1). Therefore, we
get

fT0

(
R(1)

μν − 1

2
ημνR

(1)

)
+ fT0B0

(
ημν� − ∂μ∂ν

)
R(1) = 0.

(53)

Using the transformation

hμν = h̄μν − 1

2
h̄ημν − fT0B0

fT0

R(1)ημν, (54)

we get

�h̄μν = 0. (55)
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The trace of Eq. (52) is

fT0 R
(1) − 3 fT0B0�R(1) = 0. (56)

Then we have

�R(1) + m2R(1) = 0, (57)

where

m2 = − fT0

3 fT0B0

, (58)

is the effective mass. The solution of this equation is

R(1) = R̂
(
qρ

)
exp

(
iqρx

ρ
)
. (59)

One can study different cases:

• If fT0B0 = 0 (for example F(T ) + G(B)), then, from
Eq. (56), we get

R(1) = 0. (60)

• In order to respect the local Lorentz symmetry invariance,
we have to consider f (T, B) = F(R). In this case, the
field equations reduce to

FRGμν + (
gμν� − ∇μ∇ν

)
FR

+ 1

2
gμν (FRR − F) = 0. (61)

By considering a situation similar to the paper [26],

F(R) = R + αR2 + βR3, (62)

the mass (58) reduces to m2 = − 1
6α

and then results for
F(R) gravity can be easily recovered.

Furthermore, the action (49) can be written as

S = 1

2

∫
d4x e

[
f,φT + f,ψ − 2U (φ,ψ)

]
, (63)

where the new potential is 2U (φ,ψ) = f,φ + f,ψψ −
f (φ,ψ). Varying the action with respect to φ and ψ by
assuming f,φφ 	= 0 and f,ψψ 	= 0, we get the identifications
φ = T and ψ = B that can be used as Lagrange multipliers,
that is

S = 1
2

∫
d4x e

[
f + f,φ (T − φ) + f,ψ (B − ψ)

]

= 1
2

∫
d4x e

[
f − f,φ

(
(3)R + φ

) − f,ψψ

− f,φ
(
�̄i j �̄i j − �̄2

) + ( f,φ + f,ψ )DT + f,ψDR
]
.

(64)

Finally, we get

S =
∫

d4x N
√
h

{
1

2
f − 1

2
f,φ

(
(3)R + φ

)

−1

2
f,ψψ − 1

2
f,φ

(
�̄i j �̄i j − �̄2

)

+ �̄

N

(
N j D̄

j fψ − f,ψψψ̇ − f,ψφφ̇
)

×D̄ j fψ D̄ j ln N + hi j T α
jα D̄i ( f,φ + f,ψ )

−D̄ j ( f,φ + f,ψ ) D̄ j ln N + Aμ ∇μ( f,φ + f,ψ )

}
, (65)

where

Aμ = nμ D̄iω
i + nμ

N
D̄i

(
NbBi

b

)

+nμ

2

(
Bi j D̄ jωi + ω j D̄i B

ji
)

. (66)

We have used the integration by parts. One can simply write
the momentum conjugates of degrees of freedom as

πφ = ∂S

∂φ̇
= √

h
[
−�̄ f,ψφ + A0N

(
f,φφ + f,ψφ

)]
, (67)

πψ = ∂S

∂ψ̇
= √

h
[
−�̄ f,ψψ + A0N

(
f,φψ + f,ψψ

)]
, (68)

πN = ∂S
∂ Ṅ

= 0, πNi = ∂S
∂ Ṅ i = 0. (69)

The only term that contains time derivative of teleparallel
extra degrees of freedom is the second one in the second line
of the action; according to our definition of torsion, we have

T α
jα = T 0

j0 + T i
ji = − 1

N
∂ j

(
N + Naωa

)

+ωa

N
∂ j

(
Na + ωaN + NbBa

b

)

+ 1

N
∂0ω j − ωa

N
∂0

(
haj + Ba

j

)

+
(

ωi + Ni

N

) (
∂ jωi − ∂iω j

)

+
(
Bi
a + Ni

N
ωa + hia

)

×
[
∂i

(
haj + Ba

j

)
− ∂ j

(
hai + Ba

i

)]
. (70)

Then, using

∂T α
jα

∂ω̇k
= 1

N δkj ,
∂T α

jα

∂ Ḃb
k

= −ωb
N δkj . (71)

we have

πωk = ∂S

∂ω̇k
= √

hhik D̄i
(
f,φ + f,χ

)
, (72)

π Ba
k = ∂S

∂ Ḃb
k

= −√
hhikωa D̄i

(
f,φ + f,χ

)
. (73)
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The momentum conjugate of hi j becomes

πkl = ∂S

∂ ḣkl
=

√
h

2

[
− f,φ

(
�̄kl − hkl�̄

)

+hkl

N

(
N j D̄

j f,ψ − f,ψψψ̇ − f,ψφφ̇
)

−2hikhalωa D̄i
(
f,φ + f,ψ

) ]
. (74)

It is worth noticing that quantities constructed from hi j do
not contain any extra degrees of freedom. Its trace becomes

π =
√
h

2

[
2 f,φ�̄ + 3

N

(
N j D̄

j f,ψ − f,ψψψ̇ − f,ψφφ̇
)

−2halωa D̄i
(
f,φ + f,ψ

) ]
. (75)

In summary, we have classified all possible momenta related
to the degrees of freedom.

4 Kinetic coupling

In action (8) we have considered that gravity couples mini-
mally to kinetic term. In this section, we study such coupling
in view of GW polarizations. Let us consider the ADM line
element,

ds2 = −N 2 dt2 + hi j
(

dxi + Ni dt
) (

dx j + N j dt
)

, (76)

where N , Ni and hi j are the lapse function, the shift function
and the metric of three-dimensional space, respectively. One
can write extrinsic curvature as follows

�̄i j = 1

N

(
ḣi j − D̄i N j − D̄ j Ni

)
. (77)

where D̄i the 3-Levi-Civita covariant derivative. Then the
Ricci scalar is given by

R = (3)R + �̄i j �̄i j − �̄2 + DR, (78)

where �̄ = �̄i j hi j is the trace of the extrinsic curvature and

DR = 2
N

√
γ
∂t

(√
γ �̄

) − 2
N D̄i

(
�̄Ni + γ i j∂ j N

)
. (79)

In GR, R coupled to ∂μφ ∂μφ changes the number of dynam-
ical degrees of freedom (see [27] for a discussion). In view
of this, let us onsider the action with the following term

S ⊃
∫

d4x
√−gRX, (80)

where X = 1
2∂αφ ∂αφ is the kinetic term. By using the ADM

decomposition, we have

X = − 1

2N 2 φ̇2 + Ni

N 2 φ̇ ∂iφ + 1

2

(
hi j − Ni N j

N 2

)
∂iφ ∂ jφ,

(81)

and then the action contains the following term

S ⊃
∫

d4x
√−g

(
− 1

2N 2 φ̇2
) [−2∇μ(�̄nμ)

]

=
∫

d4x
φ̇2 ˙̄�
N 2 . (82)

According to this development, the lapse function is a dynam-
ical variable. Therefore, it is unstable and hence not viable
for GWs. However, some fine tuned combination of geometry
and scalar field derivatives exists which includesGμν∂μφ∂νφ

where Gμν is the Einstein tensor (see [28]). These extra
degrees of freedom cancel out and allow the models to be sta-
ble and avoiding the Ostrogradskij instability. In the telepar-
allel approach, the vierbein fields, related to the ADM line
element (76) can be written as [29]

e0
μ = (N , 0), eaμ = (Na, hai ),
eμ

0 = (1/N ,−Ni/N ), eμ
a = (0, hia).

(83)

The torsion becomes

T = −(3)R − �̄i j �̄i j + �̄2 + DT , (84)

where [29]

DT = − 2

N
D̄k(NT ik

i ). (85)

is the boundary terms in T . Therefore we can split B in a
curvature and torsion component, that is

B = DR + DT . (86)

Clearly DT has no time derivative while DR contains time
derivative of �̄. This means, in general, that the boundary
term B contains time derivative. One can conclude that the
coupling of DR or B to the kinetic term will result in insta-
bility.

Let us consider now the following action

S =
∫

d4x e

[
R + 1

2
∂μφ ∂μφ − V (φ)

+1

2
(ξT + χB)∂μφ ∂μφ

]
, (87)

where ξ and χ represent coupling constant to the torsion
scalar and the boundary term. ξ + χ = 0 is the case that has
been studied in Ref. [28], then it was assumed χ = ξ = 0.
However, in action (87), it is enough to consider χ = 0, in
order to avoid ghost instabilities. The action we are going to
study contains a torsion scalar nonminimaly coupled to the
kinetic term as follows

S =
∫

d4x e

[
−T

2
(1 + ξ∂μφ ∂μφ) + 1

2
∂μφ ∂μφ

−V (φ) + Lm

]
. (88)
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For ξ = 0, the action (88) is equivalent to GR minimally
coupled to a scalar field. Varying with respect to the vierbein
fields yields

−2
(
1 + ξ∂μφ ∂μφ

) [
e−1∂α

(
eSαν

A

) − T ρ
βAS

νβ
ρ

]

+1

2
eν
AT − 2ξ Sαν

A ∂α

(
∂γ φ ∂γ φ

)

−eν
A

[
1

2
∂γ φ ∂γ φ − V (φ)

]
+ ∂νφ ∂Aφ = �ν

A. (89)

contracting with eAσ , we get

Gν
σ

(
1 + ξ∂μφ ∂μφ

) − 2ξ Sαν
σ ∂α

(
∂γ φ ∂γ φ

)

−δν
σ

[
ξT ∂γ φ ∂γ φ + 1

2
∂γ φ ∂γ φ − V (φ)

]

+∂νφ ∂σ φ = �ν
σ . (90)

The trace of Eq. (89) is

−2(1 + ξ∂μφ ∂μφ)
[
e−1eAμ∂α(eS αν

A ) + T
]

+ 2T

−2ξ S αν
ν ∂α(∂γ φ ∂γ φ) − ∂γ φ ∂γ φ + 4V = �. (91)

This modification is not local Lorentz invariant. Variation of
the action with respect to the scalar field also results in

�φ + V,φ = ξ ∂μφ ∂μT . (92)

Action (88) has been studied in Ref. [30]. In a Friedman-
Robertson-Walker background, we have T = G00 = 6H2.
This implies that the derivative coupling T ∂μφ ∂μφ, on such
a background, gives the same cosmological evolution as the
derivative coupling of the scalar field to the Einstein tensor
Gμν∂νφ ∂μφ. However, beyond background level, they will
differ (see also [31]). Equations (90) and (92), at first order,
results in

[
Gν

σ − δν
σ

(
1

2
∂γ φ ∂γ φ − V (φ)

)
+ ∂νφ ∂σ φ

](1)

= (
�ν

σ

)(1)
,

(93)

and

(
�φ + V,φ

)(1) = 0. (94)

These equations are exactly the same as equations of motion
for a scalar field minimally coupled to the Ricci scalar. There-
fore, the number of GW polarizations are the same as in the
Einstein gravity.

Under local Lorentz transformation eAμ = �A
B (xν) eB ,

some quantities of teleparallel gravity are not invariant, e.g.
torsion tensor becomes T α

μν + �A
Be

α
A

(
eCν ∂μ − eCμ∂ν

)
�C .

The infinitesimal local Lorentz transformation is �A
B(x) =

(eω)AB � δAB + ωA
B . By breaking this symmetry, six extra

degrees of freedom appear [32], i.e.

ω0
B = (0, ωB), ωa

B = (ωa, Ba
b ), (95)

where Ba
b is antisymmetric. Considering these new degrees

of freedom, the vierbein fields (83), up to first order, get the
following form

e0
μ = (N + Naωa, ωi ),

eaμ = (Na + Nωa + NbBa
b , hai + Ba

i ),

eμ
0 = (1/N , −Ni/N − ωi ),

eμ
a =

(
−ωa/N , hia + Bi

a + Ni

N
ωa

)
. (96)

Up to second order in extra degrees of freedom, after some
simple calculations, one gets [32]

T = − (3)R + �̄2 − �̄i j �̄i j + 2

N
D̄i D̄

i N

− 2

N
D̄i

(
hi j NT α

jα

)

− 2∇̄μ

[
nμ D̄iω

i + nμ

N
D̄i (N

bBi
b)

]

− ∇̄μ

[
nμ(Bi j D̄ jωi + ω j D̄i B

i j )
]
. (97)

Now, let us consider an action with the following coupling
term

∫
d4x eT X. (98)

The action contains

S ⊃
∫

d4x
φ̇2

N 2 ∂0

[
D̄iω

i

N
+ D̄(NbBi

b)

N 2 + Bi j D̄ jωi

N

+ω j D̄i Bi j

N

]
. (99)

Therefore, on considering extra degrees of freedom, the tor-
sion scalar coupled into kinetic term results in instability.

4.1 Gμν coupled to field derivatives

Finally, let us consider the action containing the following
term

Gμν ∇μφ ∇νφ. (100)

At first order, we get
(
� − m2

)
δφ = 0, (101)

R(1)
μν − 1

2
ημνR

(1) = 0. (102)
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where the massive term is m2 = V,φ0φ0 . Therefore, the num-
ber of GW polarization is the same as in GR plus a scalar
mode related to the presence of the scalar field.

5 Conclusions

The number of GW polarizations depends on the consid-
ered theory of gravity. In present work we have studied GWs
in extended teleparallel gravity where a boundary term B
and a further scalar field φ are taken into account beside
the torsion scalar T . The conclusions we reached are the
following. There is no extra polarization in TEGR and in
f (T ) theory with respect to GR as already shown in [16].
Here we demonstrated that a scalar field, non-minimally cou-
pled to torsion, has only the two polarization of GR plus the
scalar mode related to the scalar field itself. However, new
polarizations appear when the scalar field is coupled to the
boundary term B, beside the standard two modes of GR.
One can also write the Lagrangian as a function of scalar
torsion T and Ricci scalar R, however in order to study
GW polarizations, it is better to decouple the Ricci scalar
R = −T + B and then using f (T, B). In f (T, B), extra
massless and massive modes arise when the scalar torsion and
the boundary term are non-minimally coupled as in the theory
of f (R) = f (−T + B). The detection of these extra modes
could be a fundamental feature to discriminate between met-
ric and teleparallel approaches (see [5] for a discussion).

In this perspective, the GW170817 event [33] has set
important constraints and upper bounds on viable theories
of gravity. In fact, besides the multi-messenger issues, the
event provides constraints on the difference between the
speed of electromagnetic and gravitational waves. This fact
gives a formidable way to fix the mass of further gravita-
tional modes which results very light (see [34] for details).
Furthermore the GW170817 event allows the investigation of
equivalence principle (through Shapiro delay measurement)
and Lorentz invariance. The limits of possible violations of
Lorentz invariance are reduced by the new observations, by
up to ten orders of magnitude [34]. This fact is extremely
relevant to discriminate between metric and teleparallel for-
mulation of gravitational theories. Finally, GW170817 seems
to exclude some alternatives to GR, including some scalar-
tensor theories like Brans–Dicke gravity, Horava–Lifshitz
gravity, and bimetric gravity [35]. Considering the present
study, the reported data seem in favor of the tensor modes
excluding the scalar ones. This means that f (T ) gravity,
showing the same gravitational modes as GR [16], should be
favored with respect to other teleparallel theories involving
further degrees of freedom. Starting from these preliminary
results, it seems possible a complete classification of modi-
fied theories by gravitational waves. However, more events
like GW170817 are necessary in order to fix precisely gravi-

tational parameters and not giving just upper bounds. In this
context, the present study could constitute a sort of paradigm
in order to classify gravitational modes and polarizations (see
also [14,15]). In a forthcoming paper, the comparison with
gravitational wave data will be developed in detail.
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