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Abstract The paper deals with collapse dynamics of a
spherically symmetric massive star in the framework of
non-equilibrium thermodynamic prescription through parti-
cle creation mechanism. The matter content in the star is in
the form of perfect fluid with barotropic equation of state,
and the dissipative phenomena due to non-equilibrium ther-
modynamics is in the form of bulk viscosity. For simplicity,
the thermodynamic system is chosen to be adiabatic so that
the effective bulk viscous pressure is linearly related to the
particle creation rate. As a result, the evolution of the collaps-
ing star also depends on the particle creation rate. By proper
choice of creation rate as a function of the Hubble parameter,
it is found that the end state of the collapse may be either a
black hole (BH) or a naked singularity (NS).

1 Introduction

It is found from Supernovae Type Ia (SNIa) data [1–4] that
our universe is going through an accelerated phase of expan-
sion. It is also indirectly supported by various indirect obser-
vations like temperature anisotropies of CMB [5], Baryon
Acoustic Oscillations (BAO) [6], Weak Lensing (WL) [7],
Integrated Sachs-Wolfe effect (ISW) [8] etc. Gravitational
collapse in the expanding universe is studied in literature [9].
Also, gravitational particle creation in expanding universe
studied in literature [10]. So, it may be interesting to study
the effect of particle creation in the context of astrophysical
collapse.

The study of gravitational collapse is an important issue in
classical general relativity. Usually, the stellar objects such
as white dwarfs and neutron stars are formed through a col-
lapsing process. Also in astrophysical collapse one should
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match the interior and exterior spacetime of the collapsing
object through the proper junction conditions.

The evolution of a star is an important astrophysical phe-
nomenon. The equilibrium configuration of a star during its
thermonuclear burning is the balance of the gravitational
attraction with the outward internal pressure. Subsequently,
after the nuclear burning is completed the star may have
again equilibrium configuration as white dwarf or neutron
star depending on the mass of the star. If M (mass of the
star) < 1.4M� (Chandrasekhar limit), then electron degener-
acy pressure will balance gravitational attraction and the star
becomes a white dwarf [11] while if 1.4M� < M < 2.5M�,
then neutron degeneracy pressure will balance the gravita-
tional attraction and the star becomes a neutron star [12].
However, for more massive stars (after nuclear burning) the
gravitational attraction can not be balanced by any outward
pressure and the star crunches to a singularity (by singularity
theorem of Penrose and Hawking [13]). On the other hand,
according to the Cosmic Censorship Conjecture (CCC), pro-
posed by Penrose [14] spacetime singularity evolved from
gravitational collapse must be hidden behind the horizon i.e.
BH is the only possible end state of collapse. Further, the
CCC has no formal mathematical proof in one hand while
several models related to the gravitational collapse of matter
so far has been constructed where one encounters a naked
singularity. Thus astrophysically, the end state of collapse of
a massive star is a challenging issue today.

Long back in 1939 Oppenheimer and Snyder [15] initiated
the study of gravitational collapse with interior spacetime
represented by Friedmann like dust solution with a static
Schwarzschild exterior. Subsequently several authors have
extended this study of gravitational collapse. In the follow-
ing, we shall mention some of the important and realistic
generalization of the above pioneering work: (1) Misner and
Sharp [16] considered the perfect fluid collapse with the same
static exterior, (2) using Vaidya’s [17] idea of outgoing radia-
tion of the collapsing body, Santos and collaborators [18–21]
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considered dissipative collapsing matter by allowing radial
heat flow (i.e. radiating collapse). On the other hand, Cissoko
et al. [22] and Goncalves [23] studied junction conditions of
a non-static collapsing object with a static interior. Gravi-
tational collapse in the presence of dark energy has been
investigated in [24] and [25].

The discovery of Hawking radiation has shown a nice
interrelationship between BH and thermodynamics. Subse-
quently, it is found that there is a deep inner relationship
between gravity and thermodynamics. So, it is interesting to
consider the thermodynamic analysis of a collapsing massive
star, which sinks under the attraction of its own gravity, and at
the end of its life cycle either BH will form, or it will appear
as a NS, depending on the nature of the initial data. In partic-
ular, it is curious to know the validity of the thermodynamic
laws for the collapsing astrophysical object.

In recent years, a lot of works [26–32] have been done
in cosmology in the perspective of non-equilibrium thermo-
dynamics within the framework of particle creation mecha-
nism. The main motivation of these works is to explain the
well known observational evidence that our universe is going
through an accelerating phase since recent past. It is found
[27,29] that by proper choice of the particle creation rate
(as function of Hubble parameter) the late time accelerated
expansion can be described in the context of Einstein’s gen-
eral relativistic theory (GRT) without introduction of any
exotic matter (dark energy). Also recently [26] it is shown
that the above models not only describe the late phase of the
evolution but also describe the entire cosmic evolution since
inflation to �CDM model.

The present work is also related to the particle creation
mechanism but in the context of well known astrophysical
problem namely the final fate of a massive collapsing star.
We shall address the question whether the particle creation
mechanism favours formation of BH or helps the collapsing
star to become a NS.

Usually, physical laws breakdown as one approaches to
a spacetime singularity (where density, curvature and other
physical quantities diverge), so such regions are not consid-
ered in the spacetime manifold. Hence it is speculated [50]
that the thermodynamic properties on the manifold may not
be smooth (i.e. regular) in the limit of approaching the sin-
gularity. As a result, the CCC [14] may be assumed to be
related to the thermodynamic nature of the spacetime mani-
fold near NS [50]. Further in the context of dynamical BHs,
Hayward [51–53] introduced the notion of trapping horizon
and the idea of unified first law. Subsequently, this general-
ization has been extended to universal thermodynamics with
FRW cosmological model and it is found that there is nice
equivalence between gravity and thermodynamics at cosmo-
logical scenario [54,55]. Due to equivalence of trapping hori-
zon and apparent horizon for FRW model, it is sufficient to
consider thermodynamic behavior at the apparent horizon

(formed inside the collapsing sphere) in the limit of approach
to the singularity.

The plan of the paper is as follows: In Sect. 2, the basic
idea of collapsing mechanism has been presented, collapsing
solutions and relevant physical properties for various choices
of the particle creation rate has been shown in Sect. 3. Sec-
tion 4 deals with junction conditions and relevant physical
interpretations with Schwarzschild-de Sitter as the exterior
spacetime. The thermodynamics of the collapsing star has
been discussed in Sect. 5. A field theoretic description has
been shown in Sect. 6. The paper ends with a brief discussion
and concluding remarks in Sect. 7.

2 The basic idea of collapsing mechanism

In the present work, the matter of the collapsing star is chosen
in the form of perfect fluid with barotropic equation of state
p = (γ − 1)ρ, while the dissipative phenomena due to non-
equilibrium thermodynamics is in the form of bulk viscosity.
As an astrophysical object is an element within the universe,
so the non equilibrium thermodynamics of the universe will
have its imprint on an astrophysical object. For simplicity,
the thermodynamic system is chosen as adiabatic in nature
so that the entropy per particle is chosen as constant. As a
result, the effective bulk viscous pressure is determined by
the particle creation rate [26–29,33] as

� = − �

3H
(p + ρ), (1)

where � is the particle creation rate, � is the effective bulk
viscous pressure (due to dissipation), and H = ȧ

a is the
Hubble parameter (an overdot stands for differentiation with
respect to cosmic time t). It is to be noted that the particles
created inside the core of the collapsing astrophysical object
should be perfect fluid particles due to adiabatic nature of the
thermal process.

As the dissipative phenomena of the matter field inside the
massive core is bulk viscous in nature, so the spacetime inside
core should be homogeneous and isotropic. Hence the inside
geometry is characterized by the flat Friedmann–Robertson–
Walker (FRW) model

ds2− = dt2 − a2(t)(dr2 + r2d�2
2), (2)

and it is a particular case of the inhomogeneous Oppen-
heimer–Snyder model [15]. Here a(t) is the scale factor, and
d�2

2 = dθ2 + sin2 θdφ2 is the metric on unit 2-sphere. In
spite of the very ideal situation of the present collapsing pro-
cess it is speculated that present model captures the main fea-
tures of the gravitational collapse, similar to Oppenheimer–
Snyder model [15] that gives most of the main properties of
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a collapsing star in an otherwise flat background. Further,
in analogy to cosmology where the curvature effects are not
important at the early stages of the evolution [34,35], and it
is assumed that the same thing happens for the late stages
of the collapsing core. The main question that we shall have
to address is the end state of collapse – a BH or NS, i.e. the
singularity is covered by an apparent horizon or not. Further,
it is to be noted that this open spacetime model will be con-
sidered as the interior region bounded by Schwarzschild-de
Sitter spacetime in the following section. The boundary is
described by r = constant . So for the junction condition
there will be no effect even if we consider the closed FRW
model.

Apparent horizons are spacelike surfaces with future point
converging null geodesics on both sides of the surface [36,
37]. In fact, the apparent horizon is a trapped surface lying
in a boundary of a particular surface S. In particular, if S is
a two-sphere embedded in a 3D-slice 
 of 4D spacetime M ,
and let sμ be the outward-pointing spacelike unit normal to 


and nμ, the future pointing time-like unit normal to 
, so that
kμ = sμ +nμ is a null vector, then the surfaces will be called
marginally trapped surface if kμ

;μ = 0 holds everywhere on
S [37].

For the present FRW model, the apparent horizon is char-
acterized by [38–40]

R,i R, j g
i j ≡ (r ȧ)2 − 1 = 0, (3)

where R(t, r) = ra(t) is the area radius and the comma
in the l.h.s. indicates partial derivatives. Here Greek indices
run over 0 to 3 while Latin indices ranges over 0 and 1 with
x0 = t, x1 = r . As the matter fields are co-moving in the
spacetime described by the above metric Eq. (2) and the star is
assumed to be untrapped initially, so the comoving boundary
surface of the star is spacelike: r|
 = constant, say r
 . Thus
we have on 
:

R,i R, j g
i j ≡ {r
 ȧ(t)}2 − 1 < 0, (4)

i.e. 0 < Ri Hi < 1, where Ri , Hi are the initial area radius
and Hubble parameter of the collapsing core. Here r
 denotes
the boundary of the collapsing star and we have on 
:

ds2

 = dτ 2 − R2(τ )d�2

2,

where τ = t and R(τ ) = r
a(τ ) is the area radius of the
bounding surface. The metric outside the collapsing star in
general can be written in the form [25,41]

ds2+ = A2(T, R)dT 2 − B2(T, R)(dR2 + R2d�2
2).

In view of the exterior spacetime, the surface 
 can be
expressed as R = R0(T ). Israel’s junction conditions on the

boundary have been discussed in details by Cai and Wang
[25,41]. Once dependence of A and B on T and R is known,
it is possible to determine the time evolution of T, R0, A, and
B along the hypersurface 
.

For gravitational collapse ȧ < 0, and R(t, r) ≡
ra(t) denotes the geometric radius of the two spheres:
(t, r) =constant. The mass function due to Cahill and McVit-
tie [42] is defined as

m(r, t) = R

2
(1 + R,αR,βg

αβ) = 1

2
RṘ2.

Thus the total mass of the collapsing cloud is

m(τ ) = m(r
, τ) = 1

2
R(τ )Ṙ2(τ ). (5)

Note that the inequality (4) should hold at the initial epoch
so that the collapsing process starts from regular initial data.
Further, if the above inequality holds throughout the collaps-
ing process, then the collapse will evidently not form BH.

It should be noted that although the total mass given by
(5) and the global structure of the BH depends on the space-
time geometry outside the star (and also on the matching
conditions) but the basic question of BH formation depends
crucially on the development of apparent horizon inside the
core – not on the matching conditions and the choice of space-
time outside the star. Although in the present work we shall
address the question whether a collapsing massive star will
become a BH or not at the end stages of its collapse, still we
shall explicitly mention the junction conditions to compare
the collapse dynamics for Schwarzschild and Schwarzschild-
de Sitter model as the exterior of the collapsing star.

Further, it should be mentioned that supermassive BHs (as
at the galactic centre) or recently discovered quasar at red-
shift z = 7.085 and mass M = 2 × 109M� [43], which is
speculated to be formed from huge massive collapsing star
cores of population III, has extremely large mass due to cos-
mological accretion mechanism and mergers in the course
of their evolution. We only concentrate ourselves to the dis-
cussion related to BHs and NSs, formed from collapsing star
cores.

3 Collapsing solutions

The basic Friedmann equations for the present model are

3H2 = 8πGρ and 2Ḣ = −8πG(ρ + p + �), (6)

where the energy-momentum tensor for the matter distribu-
tion is

Tμν = (ρ + p + �)uμuν + (p + �)gμν,
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having conservation equation (i.e. Tμ
ν ;μ = 0)

ρ̇ + 3H(ρ + p + �) = 0.

Here uμ is the unit time-like vector (normalized velocity
vector) and semicolon stands for covariant differentiation.
Now eliminating the dissipative effect from the Friedmann
equations (6) by using the Eq. (1), the collapse dynamics is
characterized by the particle creation rate as

2Ḣ

3H2 = −γ
(

1 − �

3H

)
, (7)

where equation of state for the perfect fluid namely p =
(γ − 1)ρ has been used (assuming γ �= 0). In the present
work, we shall choose � as

� = �3 + 3�0H + �1

H
, (8)

with �0, �1 and �3 as real constants and � �= 0 . This choice
of � is chosen from the recent study [29] where it describes
the unified evolution of the universe from matter dominated
era to late time acceleration (up to phantom barrier, asymp-
totically). As in course of the evolution of the universe the
stars are formed in the matter dominated era so the collaps-
ing process occurs at matter dominated era or at later stage
of evolution of the universe [described by the particle cre-
ation rate (8)]. Hence the above choice of � is justified in
the present astrophysical context. Also in [26] it has been
shown that � ∝ H and � ∝ 1

H corresponds respectively
to matter dominated and late time accelerating phase of the
universe. Hence in the present study �0 and �1 may symbol-
ically represent the decelerated and accelerated expansion
phases respectively. Now, using Eq. (8) in (7), the evolution
equation for the scale factor becomes

ä

a
+

{3γ

2

(
1 − �0

)
− 1

} ȧ2

a2 − γ�3

2

ȧ

a
− γ�1

2
= 0, (9)

which on integration gives

H = [−H−1
2 + μ tanh T ]−1 (10)

and integrating once more, we obtain

( a

a0

)μα1 = elT
[
H2

{
�3

2�1
cosh T − μ sinh T

}]m
. (11)

In the above solution, we have chosen μ2 =
{
12�1(1−�0)+�2

3

}
4�2

1
,

α1 = γ�1
2 , m = μ[

μ2−(
�3

2�1
)2

] , l = H−1
2[

μ2−H−2
2

] , T = μα1(t −

t0), H2 =
(

�3
2�1

)−1
, and a0, t0 are constants of integration

(with �0 �= 1). The time of collapse tc whena = 0 is obtained
from the above Eq. (11) as

tc = t0 + 1

μα1

[
tanh−1

( 1

H2μ

)]
.

Using this collapsing time the scale factor and Hubble param-
eter can respectively be written in compact form as
(
a

a0

)μα1

= elT (cosh T )m
[

1 − tanh T
tanh Tc

]m
,

H = −H2

[
1 − tanh T

tanh Tc

]−1

,

with Tc = μα1(tc − t0).
The negativity of H characterizes the collapsing process

under consideration. If taH is the time of formation of appar-
ent horizon then from (3) the condition for appearance of
apparent horizon takes the form

R0H
a

a0
= −1,

i.e.

R0H2e
( l

μα1
)TaH

(
cosh TaH

)n+1
[

1 − tanh TaH
tanh Tc

]n
= 1,

(12)

with TaH = μα1(taH − t0), R0 = a0r and n = m
μα1

− 1.
As tanhx is an increasing function of x , so for real solution
of the above equation for taH , we must have the following
possibilities:

1. tc > taH for any real value of n (except n to be a positive
integer).

2. tc < taH or tc > taH , if n is an even integer. Note that
limiting situation (i.e. tc = taH ) is not possible for Eq.
(12). Thus, depending on the value of n i.e. the values
of the coefficients in the expression for particle creation
rate [i.e. Eq. (8)], it is possible to have either a BH (i.e.
tc > taH ) or a NS (i.e. tc < taH ).

Therefore, the final fate of collapse of a massive star depends
strongly on the choice of the particle creation rate.

We shall now discuss the collapse dynamics for the choice
�0 = 1. Note that this choice and the subsequent choices of
� are particular cases of the general choice (8) and these
choices are made purely for mathematical simplicity. Thus,
the evolution Eq. (9) simplifies to

Ḣ = γ

2
(�3H + �1), (13)
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Fig. 1 The figure on the left side represents accelerating collapsing
process given by first equation of (15) and the figure on the right side
represents evolution of the Hubble parameter given by (10) against time
t , respectively for �0 �= 1. Here the dimension of ä

a is s−2 and that of
t is s. In both the figures the curves in the solid line represent ä

a and

H , respectively for α1 = −0.05 (in this case n (= 15) is odd). The
curves in the dashed line represent ä

a and H , respectively for α1 = − 1
3

(in this case n (= 1.4) is a positive non integer) and the curves in the
dash-dotted line represent ä

a and H , respectively for α1 = − 4
15 (in this

case n (= 2) is even). In all the cases we have considered μ =
√

3
2

which has the solution

H = −δ + (H0 + δ)e− γα
2 (t−t0), (14)

a = a0e
−δ(t−t0) exp

[
− 2(H0 + δ)

γ α

{
e− γα

2 (t−t0) − 1
}]

,

where as before a0, H0 (which is negative) are the values of
the scale factor and the Hubble parameter at t = t0. Here,
we have chosen α = −�3, μ = −�1 and δ = �1

�3
. From

the above expression for the scale factor, we see that the
present physical process, i.e. collapse of a star will take an
infinite time for collapse, i.e. tc = ∞. Using Eq. (3), the
time of formation of apparent horizon is determined from
the relation

R0e
−δT̃aH

[
δ − (H0 + δ)e− γα

2 T̃aH
]

exp
[

− 2(H0 + δ)

γ α

{
e− γα

2 T̃aH − 1
}]

= 1

with T̃aH = taH − t0. The above equation shows that taH
always has a finite solution, and hence the apparent horizon
forms much earlier than the time of collapse. So the collaps-
ing process inevitably leads to formation of a BH. Thus the
end state of collapse depends not only on the choice of the
particle creation rate but also on the numerical values of the
coefficients of different powers of H .

Further, for the present collapsing process the measure of
acceleration is given by

ä
a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{1 − μ2α1sech2T }H2, for �0 �= 1[
− δ + (H0 + δ)e− γα

2 (t−t0) − γα
4

]2

−
(

γ 2α2

16 − γμ2

2

)
, for �0 = 1.

(15)

The collapsing process (for �0 �= 1) will be acceler-
ating if T > cosh−1(μ

√
α1) or T < − cosh−1(μ

√
α1)

(see Fig. 1) and the collapsing process will be decelerat-
ing if − cosh−1(μ

√
α1) < T < cosh−1(μ

√
α1). Similarly

for the choice �0 = 1 (see Fig. 2), the collapsing process

will be accelerating if t > t0 + 2
γα

ln

(
δ+H0

δ+ γα
4 −

√
γ 2α2

16 − γμ
2

)

or t < t0 + 2
γα

ln

(
δ+H0

δ+ γα
4 +

√
γ 2α2

16 − γμ
2

)
and the process will

be decelerating if t0 + 2
γα

ln

(
δ+H0

δ+ γα
4 +

√
γ 2α2

16 − γμ
2

)
< t <

t0 + 2
γα

ln

(
δ+H0

δ+ γα
4 −

√
γ 2α2

16 − γμ
2

)
.

We shall now discuss the following particular choices for
particle creation rate (�3 = 0) which may be interesting for
the present collapse dynamics of a massive star.
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Fig. 2 The figure on the left side represents accelerating collapsing
process against time t given by second equation of (15) and the figure
on the right side denotes evolution of the Hubble parameter (H ), which
is given by (14) against t , respectively for �0 = 1. In both the figures,

the curves in the solid line represent ä
a and H , respectively for γ = 4

3 .

The curves in the dashed line represent ä
a and H , respectively for γ = 2

3
and the curves in the dash-dotted line represent ä

a and H , respectively
for γ = 1

3 . For all the curves we have considered α = 3 and δ = 1
3

• � = 3�0H + �1
H : In this case the evolution equation for

the scale factor takes the form (�0 �= 1)

ä

a
+

{
3γ

2
(1 − �0) − 1

}
H2 − γ�1

2
= 0, (16)

whose solution gives the scale factor and the Hubble param-
eter as

a = a0

[
1 + 3γ H0

2
(1 − �0)(t − t0)

] 2
3γ (1−�0)

,

H = H0[
1 + 3γ H0

2 (1 − �0)(t − t0)
] , (17)

for �0 �= 1, �1 = 0 and

a = a0

[
cosh

{3γ

2

√
�2(1 − �0)(t − t0)

}

+ H0√
�2

sinh
{3γ

2

√
�2(1 − �0)(t − t0)

}] 2
3γ (1−�0)

H = √
�2 tanh

[
tanh−1

(
H0√
�2

)
+ 3γ

2

√
�2(1 − �0)(t − t0)

]
,

(18)

for �0 �= 1, �1 �= 0 with �2 = �1
3(1−�0)

. One may note that,
the solution (17) can be obtained from the solution (18) in
the limiting situation �1 → 0.

The time of collapse (tc) can be obtained from these solu-
tion (by putting a = 0) as

tc =
⎧⎨
⎩
t0 − 2

3γ H0(1−�0)
, for �1 = 0

t0 − 2
3γ

√
�2(1−�0)

coth−1
(

H0√
�2

)
, for �1 �= 0.

The time of formation of apparent horizon (which is charac-
terized by RH |t=taH = −1) for the present model is given
by

taH = t0 + 2

3γ H0(1 − �0)

[
− 1 +

(
− 1

R0H0

) 1
l
]
,

l = 2

3γ (1 − �0)
− 1, �1 = 0,

while for �1 �= 0, taH is obtained implicitly from the follow-
ing relation

R0
√

�2 tanh
[

tanh−1
(

H0√
�2

)
+ 3γ

2

√
�2(1 − �0)(taH − t0)

]

×
[

cosh
{

3γ
2

√
�2(1 − �0)(taH − t0)

}

+ H0√
�2

sinh
{

3γ
2

√
�2(1 − �0)(taH − t0)

}] 2
3γ (1−�0) = −1.

From the above relation it is not possible to obtain an explicit
expression for taH . However, in particular, if 2

3(1−�0)
is cho-

sen as unity, then from above relation
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Fig. 3 The figure on the left side depicts accelerating collapsing pro-
cess [given by the first case of (19)] and the figure on the right side
depicts evolution of the Hubble parameter (H ) given by (17), respec-
tively against time t for �1 = 0. The curves in the solid line represent

ä
a and H , respectively for �0 = −0.9, the dashed lines represent for
�0 = −0.8 and the dash-dotted lines represent for �0 = 0.1, respec-
tively. In all the figures we have considered γ = 1

3

taH = t0 + 1√
�2

sinh−1

⎡
⎣

√
�2 ± H0

√
1 − H2

1 R
2
0

R0H2
1

⎤
⎦ ,

provided H0 <
√

�2 + 1
R2

0
and we have H2

1 = H2
0 − �2.

Thus, the time difference between the formation of apparent
horizon and the time of collapse (for the choice 3γ (1−�0)

2 = 1)
is given by

taH − tc =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
H0

(
− 1

R0H0

) 1
l
, for �1 = 0

1√
�2

sinh−1
[√

�2±H0

√
1−H2

1 R
2
0

R0H2
1

]

+ 1√
�2

coth−1
(

H0√
�2

)
, for �1 �= 0.

As H0 is negative so taH < tc for �1 = 0 i.e. the collaps-
ing star will inevitably lead to BH in this case. However no
definite conclusion can be made about the nature of the col-
lapsing singularity for �1 �= 0. The measure of acceleration
for the present choice is given by

ä

a
=

⎧⎪⎨
⎪⎩

{1− 3γ
2 (1−�0)}H2

0[
1+ 3γ H0

2 (1−�0)(t−t0)

]2 , for �1 = 0

�2, for �1 �= 0 (with 3γ
2 (1 − �0)= 1).

(19)

For �1 = 0 the collapsing process will be accelerating if
3γ
2 (1 − �0) < 1 and the process will be decelerating other-

wise (see Fig. 3), while for �1 �= 0 with 3γ
2 (1 − �0) = 1

the collapsing process will be accelerating if �2 > 0 and
decelerating if �2 < 0.

We shall now consider the choice �0 = 1. For this choice,
the evolution Eq. (16) simplifies to

Ḣ = γ�1

2
, (20)

which integrating once, we obtain

H = H0 + γ�1

2
(t − t0). (21)

As collapsing phase of the star is under consideration, so we
choose �1 < 0. Hence the scale factor evolves as

a = a0 exp
[
H0(t − t0) + γ�1

4
(t − t0)

2
]
.

It is evident from the above expression of the scale factor that
the star requires an infinite time to reach the collapsing sin-
gularity (i.e. tc = ∞). The time of formation of the apparent
horizon (taH ) satisfies the relation

R0

[
H0 + γ�1

2
TaH

]
exp

[
H0TaH + γ�1

4
T 2
aH

]
= −1,

for which finite solution is possible. Thus, in this case, the
star will become a BH in a finite time. From the expression
for acceleration i.e.

ä

a
=

{
H0 + γ�1

2
(t − t0)

}2

+ γ�1

2
, (22)
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Fig. 4 The figure on the left side shows accelerating collapsing pro-
cess given by (22) and the figure on the right side shows evolution of
Hubble parameter given by (21), respectively against time t . In both
the figures the curves in the solid line represent ä

a for �1 = − 0.7,

the dashed lines represent for �1 = − 0.6, and the dash-dotted lines
represent for �1 = − 0.5, respectively. In all the cases here we have
considered γ = 1

3 , t0 = 0

we see that the above collapsing process will be decelerating

if −
√

− γ�1
2 − H0 <

γ�
2 (t − t0) <

√
− γ�1

2 − H0, otherwise
it is accelerating (see Fig. 4).

• Particular choice of the particle creation parameter
(�1 = 0 in (8)) i.e. � = 3�0H +�3: The evolution equation
for the scale factor can be obtained from Eq. (9) (by putting
�1 = 0) as

ä

a
+

{
3γ

2
(1 − �0) − 1

}
ȧ2

a2 − γ�3

2

ȧ

a
= 0. (23)

The relevant physical parameters are given by (�3 > 0, �0 =
1)

a = a0 exp

[
2H0

γ�3

{
e

γ�3
2 (t−t0) − 1

}]
,

H = H0 exp
[γ�3

2
(t − t0)

]
,

tc = ∞, (24)

and taH is determined by the relation

R0H0e
γ�3

2 (taH−t0) exp

[
2H0

γ�3

{
e

γ�3
2 (taH−t0) − 1

}]
= −1.

So the collapsing process will inevitably lead to the formation
of BH. The acceleration is given by

ä

a
= H0e

γ�3
2 (t−t0)

[
H0e

γ�3
2 (t−t0) + γ�3

2

]
. (25)

The present collapsing process will be accelerating if t > t0+
2

γ�3
ln

(
− γ�3

2 H0

)
, otherwise it is decelerating (see Fig. 5).

However, when �0 �= 1, then the expressions for the above
parameters are given by (�3 > 0, 0 < �0 < 1)

a = a0

[
H0

{
α2eδ(t−t0) − β2

}] 1
α2δ ,

H−1 = α2 − β2e−δ(t−t0), (26)

ä

a
=

{
1 − δβ2e−δ(t−t0)

}

{
α2 − β2e−δ(t−t0)

}2 ,

tc = t0 + 1

δ
ln

(
β2

α2

)
, (27)

where α2 = 3(1−�0)
�3

, β2 = α2 − 1
H0

, δ = γ�3
2 and taH is

determined by the relation

R0(H0)
( 1

α2δ
)
eδ(taH−t0)

[
α2eδ(taH−t0) − β2

]( 1
α2δ

−1) = −1.

Now using the expression for tc in the determining equa-
tion for taH , we have

R0

α2

(
H0α

2
)(

1
α2δ

)
eTaH

[
eTaH − eTc

]( 1
α2δ

−1
)

= −1.

The above equation will be consistent only if n = 1
α2δ

is an
integer. Further, if n is an odd integer we always have TaH >

Tc i.e. the collapse leads to NS. However, if n is an even
integer then we always have TaH < Tc i.e. the singularity is
covered by the apparent horizon, so BH will form. For this
case, the collapsing process will be accelerating if t > t0 +
1
δ
ln

(
δβ2

)
and decelerating if t < t0 + 1

δ
ln

(
δβ2

)
(see Fig. 6).

123



Eur. Phys. J. C (2018) 78 :488 Page 9 of 18 488

Fig. 5 The figure on the left side shows ä
a [given by (25)] vs. time t

and the figure on the right side shows evolution of the Hubble parameter
given by (24) for � = 3H +�3, �3 > 0. In both the figures, the curves

in the solid line represent ä
a for γ = 1

3 , the dashed lines represent for
γ = 2

3 and the dash-dotted lines represent for γ = 4
3 , respectively. In

all the cases here we have considered �3 = 0.2, t0 = 0

Fig. 6 The figure on the left side shows ä
a [given by (27)] vs. time t

and the figure on the right side shows evolution of the Hubble param-
eter given by (26) against time t for � = 3�0H + �3, �3 > 0, 0 <

�0 < 1. In both the figures, the curves in the solid lines represent for

δ = 1
12 , α = 2

√
15

5 , the dashed lines represent for δ = 1
12 , α = 2 and

the dash-dotted lines represent for δ = 1
8 , α = 2, respectively

4 Exterior Schwarzschild-de Sitter spacetime and
junction conditions at the surface of the collapsing
star

Let the surface of the collapsing star be 
, a time-like 3D
hypersurface and it divides the 4D spacetime into two distinct
4D manifolds M±. The interior of the collapsing star is the
manifold M−, described by the flat FRW metric (2), while
the exterior manifold M+ corresponds to Schwarzschild-de

Sitter spacetime having line element

ds2+ = −U (ρ)dT 2 + 1

U (ρ)
dρ2 + ρ2d�2

2,

withU (ρ) = 1− 2M
ρ

−(
�
3

)
ρ2 where M and � are constants.

Now the intrinsic metric on the surface 
 of the collapsing
star is chosen as

ds2

 = −dτ 2 + D2(τ )d�2

2.
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According to Santos [44,45], the Israel’s junction [46] con-
ditions across 
 are given by

1. Continuity of the line element across the bounding sur-
face 
, i.e.

(ds2−)
 = (ds2+)
 = ds2

, (28)

where ( )
 means the value of the corresponding quan-
tity on the surface 
.

2. The extrinsic curvature should be continuous through the
bounding surface 
, i.e.

K+
ab = K−

ab, on 
. (29)

According to Eisenhart [47], the explicit expression for
extrinsic curvature components are

K±
ab = −n±

μ

∂2χ
μ
±

∂ξa∂ξb
− n±

μ�
μ
αβ

∂χα±
∂ξa

∂χ
β
±

∂ξb
, (30)

where χα±, α = 0, 1, 2, 3 are the co-ordinates in M±, n±
μ are

the components of the normal vector to 
 in the co-ordinates
χα±, and ξa = (τ, θ, φ) are the intrinsic co-ordinates to 
.

In view of M−, the surface 
 is described mathematically
as


 : f−(r, t) = r − r
 = 0,

with r
 as constant. As the vector with components ∂ f
∂χα−

is
orthogonal to 
, so the unit normal vector is

n−
α = (0, a, 0, 0).

Similarly, from the point of view of M+, the mathematical
description of 
 is given by


 : f+(ρ, T ) = ρ − ρ
(T ) = 0,

with unit normal vector

n+
α =

[
U − 1

U

( dρ

dT

)2]− 1
2
(

− dρ

dT
, 1, 0, 0

)
.

Due to the continuity Eq. (29) we have

dt

dτ
= 1, D(τ ) = R
 = r
a (31)

and

dT

dτ
=

{
U (ρ) − 1

U (ρ)

( dρ

dT

)2}− 1
2
, D(τ ) = ρ
(T ).

(32)

Thus the coordinate system in the interior and on the bound-
ary are identical [see Eq. (31)] while the exterior time is
redshifted compared to the interior or boundary time [see
Eq. (32)]. The non-vanishing components of the extrinsic
curvature for the interior metric are [using Eq. (30)]

K−
ττ = 0, K−

θθ = cosec2θK−
φφ = r
a(t) = R
, (33)

and those for the exterior spacetime on the boundary 
 are
[using Eq. (30)]

K+
ττ = −

[
UT̈

ρ̇
+ dU

dρ
Ṫ

]




, (34)

and

K+
θθ = cosec2θK+

φφ =
[
ṪU (ρ)ρ

]



, (35)

where an overdot denotes differentiation w.r.t. τ .
So from (33) and (35) and using the junction condition

(29) together with (32) give the following relations (on 
)

U = 1 − Ṙ2, (36)

and

T = (1 − R2H2)−1. (37)

Using the explicit expression for U , we have from Eq. (36),

1

2
Ṙ2 − M

R
− �

6
R2 = 0 (on the boundary). (38)

This is nothing but the energy conservation equation on the
boundary surface 
 [48]. Note that in the absence of the
cosmological term �, i.e. if the exterior of the collapsing
star is purely Schwarzschild in nature, then from Eq. (38) we
see that the Schwarzschild mass M is nothing but the total
mass of the collapsing cloud [see Eq. (5)] due to Cahill and
McVittie [42]. Further, the presence of the �-term in Eq. (38)
shows a repulsive term in the Newtonian potential [49]

φ(R) = M

R
+ �

6
R2.

5 Thermodynamics of the collapsing star

The second law of BH mechanics states that obeying the
energy conditions, the area of the bounding horizon (future
outer dynamical horizon in case of collapse) is always non-
decreasing. However, in the cosmological context this second
law is extended and termed as generalized second law of ther-
modynamics which states that the sum of the entropy of the
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horizon and the entropy of the matter bounded by the horizon
(cosmological horizon) should not decrease with time. How-
ever, in case of gravitational collapse entropy of the infalling
matter is not considered so one confines himself to the orig-
inal second law of thermodynamics. For static case entropy
is defined as the area of the event horizon while for dynamic
case one considers apparent horizon. But apparent horizon is
no longer an outer horizon when BH forms during gravita-
tional collapse and hence second law can not be applicable.
This can be resolved by considering trapping horizon of the
spacetime as the union of the inner apparent horizon and the
outer event horizon i.e. the boundary of the trapping region.
Then validity of the second law can be examined both for
BH and naked singularity (in case of collapsing scenario) by
seeing the increasing/decreasing nature of the volume of the
trapping horizon.

In this section, we shall investigate the validity of the
second law of thermodynamics in the present context. For
BH thermodynamics, the second law states that the area
of a future (outer) horizon is non-decreasing provided the
energy conditions are satisfied. However, in the cosmological
context, generalized second law of thermodynamics (GSLT)
implies the non-decreasing nature of the total entropy (i.e.
entropy of the horizon together with the entropy of the mat-
ter distribution bounded by the horizon) variation in course
of evolution, although there does not have any proper ther-
modynamic definition of the entropy function considering
the microscopic description of spacetime. Fortunately, in
case of collapse dynamics, one does not have to take into
account of the entropy of the infalling matter, only one has to
examine the increasing or decreasing nature of the entropy
function at the trapping horizon (i.e. apparent horizon for
FRW model). But if the final fate of the collapsing object is
a BH then apparent horizon is an inner trapping horizon and
second law of BH thermodynamics can not be applied to it
[50]. To avoid this difficulty one may redefine the trapping
horizon of the spacetime as the union of the inner appar-
ent horizon and the outer event horizon or in other words
as the boundary of the trapped region in the spacetime. As
irrespective of the final fate of the collapsing object, the
volume of the trapped region increases with time, so the
entropy of the trapping horizon can be defined as the rate
of change of the volume of the trapped region w.r.t. the
area radius R. Hence when the final fate of a collapsing
star is a BH then the entropy of the horizon is defined as
[50]

Sh = π(R2
eh − R2

ah), (39)

where Reh is the Schwarzschild radius of the exterior space-
time. On the other hand, in case of NS as the final fate, the
horizon entropy is defined as [50]

Sh =
{

πR2
ah, for t ∈ [tc, taH )

πR2
eh, for t ∈ [taH ,∞).

(40)

Now to examine the validity of the second law of thermody-
namics, we consider the two cases namely that either the exte-
rior spacetime is purely Schwarzschild or the Schwarzschild-
de Sitter model:

a. Schwarzschild spacetime outside the collapsing
star:

In this case,

Reh = 2M = RṘ2. (41)

So,

Sh = π

(
R2 Ṙ4 − 1

H2

)
= π

(
H4R6 − 1

H2

)
(42)

when BH as the end state of collapse and

Sh =
{

π
H2 , for t ∈ [tc, taH )

πH4R6, for t ∈ [taH ,∞)
(43)

when collapse leads to a NS. Thus

Ṡh=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

[
2

(
2H3R6 + 1

H3

)
Ḣ + 6H5R6

]
, for taH < tc (BH)

− 2π
H3 Ḣ , for t ∈ [tc, taH )

2πH3R6[2Ḣ+3H2], for t ∈ [tc, ∞) (NS) .

(44)

In Table 1 we have discussed possible final state, Ṡh , restric-
tions for the validity of the 2nd law of thermodynamics and
the Hubble parameter for different particle creation rate in
the Schwarzschild spacetime outside the collapsing star.

b. Exterior Schwarzschild-de Sitter spacetime.
Using Eq. (38), the Schwarzschild radius of the exterior

spacetime is given by

Reh = 2Msd = RṘ2 − �

3
R3. (45)

Hence the entropy of the horizon is given by

Sh =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

{(
H2 − �

3

)2

R6 − 1
H2

}
, for taH < tc

π
H2 , for t ∈ [tc, taH )

πR6
(
H2 − �

3

)2

, for t ∈ [taH ,∞).

(46)
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The entropy variation takes the form

Ṡh=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

[
6HR6

(
H2 − �

3

)2

+ 4HR6
(
H2 − �

3

)
Ḣ + 2

H3 Ḣ

]
, for taH < tc

− 2π
H3 Ḣ , for t ∈ [tc, taH )

2πHR6
(
H2 − �

3

)[
3

(
H2 − �

3

)
+ 2Ḣ

]
, for t ∈ [taH ,∞).

(47)

In Table 2 we have discussed possible final state, Ṡh ,
restrictions for the validity of the 2nd law of thermodynamics
and the Hubble parameter for different particle creation rate
in the Exterior Schwarzschild-de Sitter spacetime.

From both the tables, we see that for the choices second
and fifth for the particle creation rate BH is the definite end
state of the collapse, while for the remaining choices we do
not have definite conclusion about the final state of collapse
– it depends on some restrictions involving the parameters.
For thermodynamic analysis, we have defined the horizon
entropy [in Eqs. (42), (43) and (46)] separately for the two
possible end state of collapse and have examined the validity
of the second law of thermodynamics. The tables show that no
definite conclusion about the second law of thermodynamics
is possible for any form of the particle creation rate parameter
(presented in the table), it always involves some inequality
related to corresponding parameters.

6 A field theoretic description of collapsing process

The section deals with a description of the collapsing process
from the field theoretic point of view, i.e. the whole dynami-
cal process (i.e. the collapsing scenario) is considered as the
evolution of a scalar field φ having self interacting potential
V (φ). Equivalently, the collapsing sphere containing effec-
tive imperfect fluid can be described by a minimally coupled
scalar field. Thus, the energy density and the thermodynamic
pressure of the cosmic substrum can be described by the
scalar field quantities as

ρ = 1

2
φ̇2 +V (φ) and pef f = p+� = 1

2
φ̇2 −V (φ).

Hence for the present adiabatic thermodynamic system scalar
field quantities can be expressed as

φ̇2 = −2Ḣ and V (φ) = 3H2 + Ḣ . (48)

Note that in the above expression in Eq. (48), we have elim-
inated the dissipative term � by the adiabatic condition Eq.
(1), particle creation rate � is obtained from the Eq. (8) and
we have used the first Friedmann equation (6) to eliminate

the energy density ρ. Now, from the above expression of
(48) both φ (integrating first equation of (48)) and V (φ) can
be written in parametric form (with H as the parameter) for
different particle creation rate as in Table 3.

Although in the table we have presented the potential for
the corresponding scalar field as a function of the Hubble
parameter but one can easily see that some of the poten-
tials are interesting. For example, for the second and sixth
choices the potential may be considered as φ4-type, for the
third choice the potential is of exponential type, cosh2 φ

type potential corresponds to fourth and seventh choices and
we have φ2 potential in the fifth choice. One may note that
the above canonical scalar field cannot be phantom because
in that case H should increase with evolution which is not
supported by observation. Moreover, phantom fields lead to
instabilities at the classical and quantum levels [56,57]. Fur-
ther, tachyonic scalar field is not of much interest due to its
unstable nature.

7 Discussion and concluding remarks

The aim of this paper is to analyze the physical process during
collapsing phase of a star. Although we have studied the col-
lapsing scenario due to the local condensation of the perfect
fluid, but still we believe that this is true for other matter fields
that satisfy the energy conditions. The inside matter of the
spherical star is chosen as perfect fluid with barotropic equa-
tion state p = (γ − 1)ρ (γ �= 0, a constant). The collapse
dynamics is assumed to be a non-equilibrium thermodynamic
process having dissipation due to particle creation mecha-
nism. For simplicity, the thermodynamic process is assumed
to be adiabatic in nature so that the dissipative effect behaves
as bulk viscous pressure and is related linearly to the particle
creation rate [see Eq. (1)]. Although the choice of the particle
creation rate (8) is purely phenomenological but it has some
justification from cosmological scenario [26,29]. Recently, it
has been shown that [29] such choice of particle creation rate
can describe the cosmic evolution from matter dominated era
to present accelerating phase up to phantom barrier. It is gen-
erally believed that a collapsing star that consists of homoge-
neous and isotropic fluid is a very ideal situation, and in more
realistic cases the internal region of the collapsing star should
be inhomogeneous. However, as argued above, we believe
that the main properties of the present model should remain
valid even in more realistic situations. Also as expected the
collapse dynamics does not depend on the exterior geometry
(Schwarzschild/Schwarzschild-de Sitter in the present case).

The curiosity about the collapsing process is due to the
lack of definite conclusion about the final fate of the object.
It is interesting to examine whether the Cosmic Censorship
Conjecture (CCC) of Penrose is obeyed or violated by the
collapsing mechanism. We have examined the final fate of
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the collapse by comparing the time of collapse and the time
of formation of the apparent horizon – whether the final sin-
gularity is covered or not by the apparent horizon for various
choices of the parameters involved in the choice of the par-
ticle creation rate. It is found that in some cases we have
definite conclusion about the final phase of collapse (BH or
NS) and in other cases depending on some restrictions related
to the parameters involved the end state of collapse may be
BH or NS. But in any case formation of BH is more favoured
than NS as the end state of collapse for the present particle
creation mechanism.

Also we have examined the thermodynamic laws particu-
larly the second law during the collapsing phase. It is found
that depending on some restrictions it is possible to have an
increase of entropy during the collapse both for BH or NS
as the final state of collapse. Interestingly, it is found that in
some cases where NS is the definite end state the restrictions
in the two time intervals namely [tc, taH ) and [taH ,∞) are
contradictory. So the second law of thermodynamics will be
violated in any one of the time intervals. But in other cases
we do not have such definite conclusion.

In the present collapse dynamics of a spherical star, exte-
rior geometry is chosen as Schwarzschild or Schwarzschild-
de Sitter spacetime. The junction conditions on the boundary
show a energy conservation equation on it, the corresponding
Newtonian force with cosmological constant [58] is

F(R) = − M

R2 + �

3
R.

As for collapse dynamics, the required force should be attrac-
tive in nature, so the area radius R should have an upper bound( 3M

�

) 1
3 . Also, the rate of collapse is given by

R̈ = − M

R2 + �

3
R.

From the above expression, we may conclude that the col-
lapsing rate is much faster when the exterior spacetime
is Schwarzschild rather than the Schwarzschild-de Sitter
model. Physically, the cosmological term put some outward
pressure to the collapsing star and hence delayed the col-
lapsing process. Also in the context of recent observations
the cosmological constant plays the role of dark energy and
is best fitted with observations.

Finally, one should note that due to the presence of a cos-
mological constant (DE), a potential barrier is induced into
the equation of motion. As a result, particles with a small
velocity will be unable to reach the central object.

Therefore, we conclude that the final fate of a collaps-
ing star in nonequlibrium thermodynamic prescription with
particle creation mechanism, depends on the choice of the
particle creation rate but in most of the cases the collapsing
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process favours the CCC. For future work, it will be inter-
esting to use this idea astrophysically for a particle orbiting
a DE black hole so that an estimation of minimum veloc-
ity with which the particle can enter the inside of the BH
and consequently, the amount of DE inside the BH may be
determined.
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