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Abstract We calculate the octet baryon magnetic moments
in covariant baryon chiral perturbation theory with the
extended-on-mass-shell renormalization scheme up to next-
to-next-to-leading order. At this order, there are nine low-
energy constants, which cannot be uniquely determined by
the seven experimental data alone. We propose two strate-
gies to circumvent this problem. First, we assume that chiral
perturbation theory has a certain convergence rate and use
this as one additional constraint to fix the low-energy con-
stants by fitting to the experimental data. Second, we fit to
lattice QCD simulations to determine the low-energy con-
stants. We then compare the resulting predictions of the light
and strange quark mass dependence of the octet baryon mag-
netic moments by the three mostly studied formulations of
baryon chiral perturbation theory, namely, the extended-on-
mass-shell, the infrared, and the heavy baryon approaches.
It is shown that once more precise lattice data become avail-
able, one will learn more about the convergence pattern of
baryon chiral perturbation theory.

1 Introduction

SU(3) flavor symmetry and its breaking play an important
role in our understanding of the strong interaction in the non-
perturbative regime. In the limit of an exact SU(3) flavour
symmetry, one can relate the magnetic moments of the octet
baryons and the ��0 transition to those of the proton and
the neutron via the celebrated Coleman-Glashow formulae

a e-mail: lisheng.geng@buaa.edu.cn

[1]. Nonetheless, in nature SU(3) flavor symmetry is broken.
This must be properly taken into account in order to improve
the description of the baryon magnetic moments by inducing
a realistic SU(3)-breaking mechanism. Chiral perturbation
theory (ChPT), the low-energy effective field theory of QCD
(see e.g. [2–6]), provides an appropriate framework to tackle
this problem in a systematic fashion. However, it was noticed
long ago that the leading order (LO) chiral corrections are
large and tend to worsen the results, as exemplified, e.g., in
[7–10]. This issue has often been used to question the validity
of the SU(3) baryon ChPT altogether, see e.g. [11].

It was shown in Ref. [12] that one can achieve, however,
an order by order improvement in the description of the octet
baryon magnetic moments with the extended-on-mass-shell
(EOMS) formulation of baryon ChPT [13,14].1 Although it
seems that the puzzle has been solved, a natural question is
what happens at the next-to-next-to-leading order (NNLO).
Because of the increased number of unknown low-energy
constants (LECs), a clear answer to this question has not yet
been provided.

In the last two decades several calculations of the octet
baryon magnetic moments in heavy baryon (HB) ChPT up to
NNLO have been performed both with [9,18,19] and without
[20] the inclusion of the baryon decuplet. It was shown in
Ref. [20] that at NNLO the convergence of the HBChPT is
quite good, contrary to the pattern exhibited at NLO. One

1 Note that the contribution of the virtual decuplet baryons has a negli-
gible effect on the overall description of the baryon magnetic moments
[15], consistent with the heavy baryon (HB) findings of Ref. [16]. On the
other hand, see Ref. [17] for discussions from a different perspective,
focusing more on the contributions to individual baryons.
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should note that, however, in Ref. [20] the contributions of
the two NNLO LECs bD

′,F ′
6 are absorbed into the two LO

ones bD,F
6 . This is legitimate as long as one works at the

physical quark masses, as the primed LECs merely amount
to a quark mass dependent shift of the unprimed ones that
can not be disentangled.

Despite of all these studies, it remains unclear whether
the convergence pattern of the HB [9], the infrared (IR) [10],
and the EOMS formulation [12] observed in the description
of the octet baryon magnetic moments, one of the cleanest
observables, is particular to NLO and accidental, where no
unknown LECs contribute, or it might be a more genuine
feature of different formulations. Given that ChPT plays an
indispensable role in our understanding of low energy strong
interaction physics, it is of utmost importance to clarify this
puzzling situation.

In this work we address this question by performing a
study of the octet baryon magnetic moments at NNLO using
the EOMS renormalization scheme. Since at this order the
number of LECs is larger than that of the data, we first
use convergence as a criterion to constrain the two LO
LECs, bD,F

6 , which cannot be distinguished from the two

NNLO LECs bD
′,F ′

6 at the physical point. We then predict
the light quark mass dependence of the octet baryon mag-
netic moments and contrast them with the results of the HB
and IR formulations, and the state of the art lattice QCD sim-
ulations. Second, we fit the LECs to the lattice QCD data
and then predict the strange quark mass dependence of the
magnetic moments. It is shown that depending on how one
determines the LECs, the predicted dependence is rather dif-
ferent, which could be investigated in more detail by future
lattice QCD simulations.

This paper is organized as follows. In Sect. 2, we present
the theoretical framework. Results and discussions are given
in Sect. 3, followed by a short summary in Sect. 4.

2 Theoretical framework

The octet baryon magnetic moments are defined via baryon
matrix elements of the electromagnetic current Jμ as follows

〈
B̄|Jμ|B〉 = ū B(p f )

[
γμF

B
1 (t) + iσμνqν

2m
FB

2 (t)

]
uB(pi ),

(1)

where ū B and uB are Dirac spinors,m is the baryon mass, and
FB

1 and FB
2 denote the Dirac and Pauli form factor, respec-

tively. The four-momentum transfer is defined asq = p f −pi
and t = q2. At t = 0, FB

2 (0) is the so-called anoma-
lous magnetic moment, κB , and the magnetic moment is
μB = κB + qB , with qB the charge of the baryon.

In ChPT, one can calculate the baryon magnetic moments
order by order, i.e.,

μB = μ
(2)
B + μ

(3)
B + μ

(4)
B + · · · , (2)

where the numbers in the superscripts are the chiral order,
defined as nChPT = 4L − 2NM − NB + ∑

k kVk for a prop-
erly renormalized diagram with L loops, NM (NB) meson
(baryon) propagators, and Vk vertices from the kth order
Lagrangian. Because of the large non-zero baryon mass in
the chiral limit, this power counting is broken in a naive
application of the MS regularization scheme [3]. To recover
the power counting, several approaches have been proposed,
such as the HB method [21,22], the IR approach [23] and the
EOMS scheme [13,14]. In recent years, it has been shown
that the EOMS scheme has some advantages because it sat-
isfies all symmetry and analyticity constrains and converges
relatively faster in certain cases, see e.g. Ref. [24] for a short
review.

The Feynman diagrams needed to calculate μB up to
NNLO are shown in Fig. 1. The LO contributions are pro-
vided by the following Lagrangian [25],

L(2)
MB = bD6

8m0

〈
B̄σμν

{
F+

μν, B
}〉 + bF6

8m0

〈
B̄σμν

[
F+

μν, B
]〉

,

(3)

where σμν = i
2

[
γ μ, γ ν

]
, F+

μν = (u†QFμνu + uQFμνu†),
Q = |e|diag(2,−1,−1)/3 is the quark charge matrix with
e the electron charge, u = exp

[
i�/2Fφ

]
, with � the uni-

modular matrix containing the pseudoscalar nonet, Fφ the
pseudoscalar decay constant, and Fμν = ∂μAν − ∂ν Aμ is
the conventional photon field strength tensor. Moreover, 〈. . .〉
denotes the trace in flavor space. At LO, there are only two
LECs, bD6 and bF6 .

The leading SU(3) breaking corrections come from loop
diagrams. They arise at order O(p3) in the chiral counting
and are determined completely in terms of the lowest order
LECs from L(1)

B + L(2)
M + L(1)

MB , namely,

L(1)
B = 〈

B̄iγ μDμB − m0 B̄ B
〉
, (4)

L(2)
M = F2

φ

4

〈
uμu

μ + χ+〉
, (5)

L(1)
MB = D

2

〈
B̄γ μγ 5 {

uμ, B
}〉 + F

2

〈
B̄γ μγ 5 [

uμ, B
]〉

, (6)

wherem0 denotes the baryon mass in the chiral limit, DμB =
∂μB + [�μ, B], �μ = 1

2 (u†∂μu + u∂μu†) − i
2 (u†vμu +

uvμu†), with vμ the vector source, uμ = i(u†∂μu −
u∂μu†) + (u†vμu − uvμu†) and χ± = u†χu† ± uχ†u.
Here, χ = 2B0M, with M the quark mass matrix M =
diag(ml ,ml ,ms). In what follows, we work in the isospin
limit ml = (mu +md)/2. Further, B0 = |〈0|q̄q|0〉|/F2

φ . The
axial vector couplings D and F are determined from hyperon
decays to be D = 0.8 and F = 0.46, and these values will
be taken throughout.
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Fig. 1 Feynman diagrams
contributing to the octet baryon
magnetic moments up to NNLO.
a Contributes to LO, while b and
c depict the NLO corrections.
All other diagrams represent the
NNLO contribution. Solid,
dashed and wiggly lines denote
baryons, Goldstone bosons and
photons, respectively. The small
and medium solid dots refer to
vertices obtained from L(1)

MB and

L(1)
B , in order. The heavy dots

refer to vertices from L(2)
MB . The

circles refer to vertices from
L(2)
M . The crosses refer to mass

insertions ∼ bD,F . The square

refers to a vertex from L(4)
MB .

The partners of the wave
function renormalization (g) and
baryon mass insertion (i) are not
shown explicitly

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

The explicit expressions of the LO and NLO results can
be found in Ref. [12]. In the following, we focus on the
NNLO contributions. At this order one has to include one-
loop diagrams with exactly one vertex from L(2)

MB as well

as additional tree contributions from L(4)
MB . The fourth order

contribution to μB is given as (see Fig. 1):

μ(4) = μ(4,d) + μ(4,e) + μ(4, f ) + μ(4,g)

+μ(4,h) + μ(4,i) + μ(4, j). (7)

The terms contributing to μ
(4,d)
B collect the tree contri-

butions with exactly one insertion from the following chiral
Lagrangian [20,26],

L(4)
MB = + bD

′
6

8m0

〈
χ+〉 〈

B̄σμν{F+
μν, B}〉

+ bF
′

6

8m0

〈
χ+〉 〈

B̄σμν[F+
μν, B]〉

+ α1

8m0

〈
B̄σμν

[[
F+

μν, B
]
, χ+]〉

+ α2

8m0

〈
B̄σμν

{[
F+

μν, B
]
, χ+}〉

+ α3

8m0

〈
B̄σμν

[{
F+

μν, B
}
, χ+]〉

+ α4

8m0

〈
B̄σμν

{{
F+

μν, B
}
, χ+}〉

+ β1

8m0

〈
B̄σμνB

〉 〈
χ+F+

μν

〉
, (8)

where bD
′

6 , bF
′

6 , α1,2,3,4 and β1 are LECs.
At this order, we also have to consider double derivative

operators at the meson-baryon vertex with the photon hook-
ing on to the meson loop, see Fig. 1h. The corresponding
terms of the dimension two Lagrangian read [20,26]

L(2′)
MB = i

2

{
b9

〈
B̄σμνuμ

〉 〈uνB〉 + b10,11

〈
B̄σμν

([
uμ, uν

]
, B

)
±
〉}

,

(9)

where b9,10,11 are LECs. They are estimated via resonance
saturation in Ref. [20] and re-evaluated at m0 = 0.94 GeV,
yielding b9 = 0.43 GeV−1, b10 = 0.86 GeV−1, and b11 =
0.45 GeV−1. We will call these values of the LECs set I.
An improved determination has been given in Ref. [10], the
corresponding values are b9 = 1.36 GeV−1, b10 = 1.24
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GeV−1, and b11 = 0.46 GeV−1. We will refer to these as
set II.

At NNLO, one also needs the LO chiral corrections to
the baryon masses, which are provided by the following
Lagrangian [25]:

L(2′′)
MB = bD

〈
B̄ {χ+, B}〉 + bF

〈
B̄

[
χ+, B

]〉
. (10)

The two LECs bD and bF are fixed by fitting to the
octet baryon mass splittings at O(p2), yielding bD =
0.066 GeV−1 and bF = −0.21 GeV−1.

The NNLO tree-level contributions can be obtained rather
straightforwardly. The results are shown in the Appendix.
Following the EOMS prescription to restore the power count-
ing, we obtain the following NNLO loop results,

μ
(4,e)
B (Mφ) = C (4,e)

B (φ)
M2

φ

16π2F2
φ

log

(
M2

φ

λ2

)

, (11)

μ
(4, f )
B (Mφ) = −C (4, f )

B (φ)

16π2F2
φm

2
0

√
4m2

0 − M2
φ

×
{ (

2M5
φ − 4m2

0M
3
φ

)
cos−1

(
Mφ

2m0

)

+
√

4m2
0 − M2

φ

{

m2
0M

2
φ

[

log

(
M2

φ

λ2

)

+ 2

]

−M4
φ log

(
M2

φ

m2
0

)}}

, (12)

μ
(4,g)
B (Mφ) = C (4,g)

B (φ)M2
φ

16π2F2
φm

2
0

(
4m2

0 − M2
φ

)

×
{(

4m2
0 − M2

φ

){

m2
0

[

log

(
λ2

m2
0

)

− 4

]

+
(

2M2
φ − 3m2

0

)
log

(
M2

φ

m2
0

)}

+ 4Mφ

(
3m2

0 − Mφ
2)

√
4m2

0 − M2
φ cos−1

(
Mφ

2m0

)}

,

(13)

μ
(4,h)
B (Mφ) = C (4,h)

B (φ)

m0M2
φ log

(
M2

φ

λ2

)

8π2F2
φ

, (14)

μ
(4,i)
B (Mφ) = C (4,i)

B (φ)

4π2m3
0F

2
φ

(
4m2

0 − M2
φ

)3/2

×
{

2Mφ

(
−16m6

0 + 30m4
0M

2
φ − 10m2

0M
4
φ + M6

φ

)

× cos−1
(

Mφ

2m0

)

+
√

4m2
0 − M2

φ

[

4m6
0 − 13m4

0M
2
φ + 2m2

0M
4
φ

−
(
M3

φ − 4m2
0Mφ

)2
log

(
M2

φ

m2
0

)]}

, (15)

μ
(4, j)
B (Mφ) = C (4, j)

B (φ)

4π2F2
φm

3
0

(
4m2

0 − M2
φ

)3/2

×
{√

4m2
0 − M2

φ

[

− 20m6
0 + 15m4

0M
2
φ − 2m2

0M
4
φ

−
(

4m6
0 − 21m4

0M
2
φ + 9m2

0M
4
φ − M6

φ

)

× log

(
M2

φ

m2
0

)]

−2Mφ

(
−32m6

0 + 37m4
0M

2
φ − 11m2

0M
4
φ + M6

φ

)

× cos−1
(

Mφ

2m0

)}

, (16)

where the coefficients C (4,e, f,h,i, j)
B (φ = π, K , η) are tabu-

lated in the Appendix and λ is the renormalization scale. We
have checked that our results agree with those of Ref. [20] in
the heavy mass limit up to analytical terms.

3 Results and discussions

At LO and NLO, the two LECs bD,F
6 can be determined by

fitting to the seven experimental data μp,n,�,�+,�−,�−,�0 .
An extensive discussion of the EOMS results in comparison
with the HB and IR results is given in Ref. [12]. At NNLO,
however, there are nine LECs, two from the LO contribu-
tion and seven from the NNLO contribution. As a result, the
experimental data alone can not uniquely determine all the
nine LECs. In Ref. [20], the two NNLO LECs bD

′,F ′
6 are

absorbed by the two LO LECs, bD,F
6 , while in the present

work we keep explicitly bD
′,F ′

6 . Note that at the physical

point, only the combinations b̄D,F
6 = bD,F

6 + 〈χ+〉bD′,F ′
6

are relevant. In our numerical analysis, the decay constant
and the chiral limit value of the baryon masses are chosen to
be Fφ = 0.108 GeV, an average of the pion, kaon, and eta
decay constants, and m0 = 0.94 GeV, following the argu-
ment in Ref. [20]. The dimensional regularization scale is set
at λ = 1.0 GeV. We also have performed calculations allow-
ing for slight variation of m0 or λ about these values, e.g.,
λ = 0.9 ∼ 1.1 GeV and m0 = 0.8 ∼ 1.1 GeV, and found
that such changes have negligible effects on our results. It
should be noted that in principle at the order we are working,
one should use the chiral limit values for D, F , and Fφ . Using
the physical/average values for them will lead to differences
of higher chiral order. We checked that using the chiral limit
values for D, F , and Fφ , such as those determined in Ref.
[27,28], affect little our results and conclusions.
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Fig. 2 Left panel: dependence
of the convergence rate
CR = 0.6 on bD,F

6 in the EOMS
scheme. Right panel:
convergence rates, CR , of the
HB, IR, and EOMS scheme as a
function of bD,F

6 . The green
shaded area in both plots are the
same. The blue stars denote the
optimal bD,F

6 , located in the
center of the shaded area and
later used to study convergence,
i.e.,
(bD6 , bF6 ) = (3.54, 1.17)EOMS,
(4.22, 2.30)HB, (3.96, 1.00)IR

Table 1 Contributions of
different chiral orders of the HB,
IR, and EOMS schemes up to
NNLO with the LECs of Table 2

Baryons EOMS IR HB

μ
(3)
B /μ

(2)
B μ

(4)
B /μ

(3)
B μ

(3)
B /μ

(2)
B μ

(4)
B /μ

(3)
B μ

(3)
B /μ

(2)
B μ

(4)
B /μ

(3)
B

p − 0.27 − 0.38 − 0.16 0.01 − 0.44 − 0.07

n − 0.19 0.02 −0.17 0.61 − 0.18 0.74

� − 0.52 − 0.08 − 0.73 − 0.27 − 0.83 0.32

�− 0.18 − 0.04 2.58 − 0.73 − 0.30 0.30

�+ − 0.31 − 0.15 − 0.05 4.20 − 0.61 − 0.22

�0 − 0.52 − 0.13 − 0.73 − 0.31 − 0.83 − 0.35

�− 0.03 − 12.88 3.10 − 1.02 − 0.74 − 0.12

�0 − 0.54 − 0.13 − 0.77 − 0.32 − 0.87 − 0.36

��0 − 0.31 0.27 −0.38 − 0.11 − 0.43 0.46

Table 2 LO and NNLO low-energy constants denoted by the blue stars in Fig. 2, where b̄D6 and b̄F6 are linear combinations of the two LO and

NNLO LECs, b̄D6 = bD6 + 〈χ+〉bD′
6 , b̄F6 = bF6 + 〈χ+〉bF ′

6

Chiral Schemes bD6 bF6 α1 α2 α3 α4 β1 bD
′

6 bF
′

6 b̄D6 b̄F6

IR 3.96 1.00 − 0.89 − 0.57 − 0.19 0.41 − 2.98 − 3.85 − 1.21 0.04 − 0.23

HB 4.22 2.30 − 1.49 0.07 − 1.27 1.74 − 2.41 − 2.79 − 0.82 1.38 1.46

EOMS 3.54 1.17 0.08 0.48 0.08 0.83 − 0.90 − 1.69 −0.21 1.82 0.95

3.1 Using convergence to constrain the low-energy
constants

We assume that BChPT has a reasonable convergence rate in
the u, d, s three flavor sector, namely, higher order contribu-
tions are suppressed compared to lower order ones, in terms
of MK /�ChPT ≈ 0.5. Under this assumption, we can use the
convergence criterion and the experimental data to constrain
the nine LECs. More specifically, we define the convergence
rate (CR) as

CR = max(μ
(3)
B /μ

(2)
B , μ

(4)
B /μ

(3)
B ) with

B = p, n,�,�+, �0, �−,��0, �−, �0. (17)

When fitting, we can set the convergence rate to a partic-
ular value, e.g., 0.5, and search for a combination of LECs

that can satisfy such a requirement. In the left panel of Fig. 2,
we show how one can fix the range of bD,F

6 by requiring
CR ≤ 0.6 in the EOMS scheme. It can be seen that indeed
there exist some combinations of bD,F

6 which can satisfy the
requirement, namely the green shaded area. In the right panel
of Fig. 2, we show the best convergence rate achievable in
the EOMS scheme, in comparison with those in the HB and
IR schemes. One can see that only in the EOMS scheme a
convergence rate about 0.6 can be achieved,2 while the con-
vergence rates in the HB and IR schemes are relatively larger.
This is consistent with the findings at NLO [12]. On the other

2 Note that in the searches for the best convergence rate, in the EOMS
scheme the �− channel is excluded because of its accidentally tiny
contribution at NLO. In the same manner, in the IR scheme the �± and
�− channels are also excluded .
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Fig. 3 Octet baryon magnetic moments as functions of the
pion mass squared. The central values of the LECs are given
in Table 2, while the shaded bands represent higher order

contributions not considered (see text for details). The half
filled square indicates that we have chosen a positive sign for
μ��0

Table 3 χ̃2 between the ChPT
results obtained in the HB, IR,
and EOMS schemes and the
LQCD data of Refs. [30–32]
with the optimal b(D,F)

6 denoted
by the blue stars in Fig. 2

Chiral schemes χ̃2

S. Boinepalli et al. [30] NPLQCD [32] T. Primer et al. [31]

IR 12.98 2.58 0.69

HB 43.45 12.5 4.64

EOMS 3.66 1.11 0.50

hand, from a typical convergence pattern of the three renor-
malization schemes shown in Table 1 with the corresponding
LECs given in Table 2, one notices that the contributions of
different chiral orders in the HB ChPT are more moderate,
though not as small as one naively expects.

It should be noted that in the numerical study we have
taken the values given above for the LECs D, F , bD , bF , b9,
b10, and b11. In principle, there are some uncertainties. These
can originate either from the data used to fix them, or from
the chiral orders at which they are determined, or from the
validity of the assumption adopted, such as resonance satura-
tion for the case of b9, b10, and b11. Unfortunately, there is no
easy way to quantify these uncertainties. We have checked
that using set II instead of set I, we find some quantitative
differences but the overall trends are not affected.

One way to test the LECs determined above and also to
distinguish different formulations of BChPT is to study the
light quark mass dependence of the magnetic moments. Fix-
ing the strange quark mass to its physical value with the LO
ChPT relation 2B0ms = (2M2

K − M2
π )|phys., we show the

Table 4 Low-energy constants
determined by fitting to the
lattice QCD data of Ref. [30]
and the corresponding χ̃2 in the
IR, HB, and EOMS BChPT up
to NLO

bD6 bF6 χ̃2

IR 5.07 −0.92 13.18

HB 5.29 2.95 5.75

EOMS 3.73 1.00 0.61

pion mass dependence of the magnetic moments in Fig. 3.
The lines are obtained with the LECs tabulated in Table 2,
while the bands denote higher order contributions not con-
sidered in the NNLO study. They are obtained according to
Ref. [29]:

δμ
(i)
B = max

(
Qi−1|μ(2)

B |, Qi+1− j |μ( j)
B |

)
, 2 ≤ j ≤ i,

(18)

where δμ
(i)
B are the uncertainties of chiral order i , Q =

Mπ/�ChPT, Mπ = 0.138 GeV, and �ChPT ∼ 1 GeV is the
chiral symmetry breaking scale. In addition, the requirement
[29]
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Fig. 4 Fits to the lattice QCD data of Ref. [30] at O(p3) with the EOMS, HB, and IR BChPT. The bands represent estimated higher order
corrections as explained in the text

Fig. 5 Fits to the lattice QCD data of Ref. [30] at O(p4) with the EOMS, HB, and IR BChPT. The bands represent higher order contributions as
explained in the text

δμ
(i+1)
B ≥ Qδμ

(i)
B (19)

is also satisfied. It is clear that these contributions reflect
partly the convergence pattern, i.e., the slower the conver-
gence, the larger the higher order contributions.

One can see that the three schemes display rather dif-
ferent pion mass dependence. For comparison, the state of
the art lattice QCD results [30–32] are shown as well. Note
that such a comparison is only meant to be qualitative, since
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Table 5 Low-energy constants
obtained by fitting to the lattice
QCD data of Ref. [30] and the
corresponding χ̃2 in the IR, HB,
and EOMS BChPT up to NNLO

bD6 bF6 α1 α2 α3 α4 β1 bD
′

6 bF
′

6 χ̃2

IR 4.02 2.08 −0.20 −0.83 0.06 0.20 −2.88 −3.66 −3.59 0.14

HB 2.16 1.08 −1.47 0.28 −1.47 1.53 −2.12 0.56 0.89 0.24

EOMS 3.03 1.40 0.17 0.30 0.15 0.60 −0.56 −0.69 −0.59 0.13

Table 6 Contributions of
different chiral orders of the HB,
IR, and EOMS schemes up to
O(p4) with the LECs obtained
by fitting to the lattice QCD data

Baryons EOMS IR HB

μ
(3)
B /μ

(2)
B μ

(4)
B /μ

(3)
B μ

(3)
B /μ

(2)
B μ

(4)
B /μ

(3)
B μ

(3)
B /μ

(2)
B μ

(4)
B /μ

(3)
B

p −0.26 −0.12 −0.12 2.09 −0.73 −1.08

n −0.22 −1.09 −0.17 0.38 −0.35 −2.36

� −0.61 −0.26 −0.72 −0.15 −1.62 −0.85

�− 0.13 −1.85 1.02 −1.30 −0.41 −0.81

�+ −0.31 −0.01 −0.04 10.21 −1.03 −0.82

�0 −0.61 −0.29 −0.72 −0.31 −1.62 −0.82

�− 0.02 −28.25 1.22 −1.53 −1.03 −0.44

�0 −0.64 −0.38 −0.76 −0.27 −1.71 −0.91

��0 −0.37 −0.33 −0.38 −0.22 −0.84 −0.78

Fig. 6 Predicted dependence of the octet baryon magnetic moments
on the strange quark mass with the LECs determined by fitting to the
lattice QCD data of Ref. [30] at O(p4) with the EOMS, HB, and IR

BChPT. The u/d quark mass is fixed at their physical value while the
strange quark mass is proportional to 2M2

K − M2
π according to leading

order ChPT. The bands represent higher order contributions
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Fig. 7 The same as Fig. 6, but with the LECs given in Table 2

these simulations are performed with the strange quark mass
close to its physical value but not exactly at the physical
point and furthermore current lattice QCD simulations still
contain systematic uncertainties not under complete con-
trol. It is clear that the EOMS results are in better agree-
ment with the lattice data, as corroborated by the unweighted
χ̃2 = ∑

(μth − μlattice)
2 between the results of each scheme

and the lattice QCD data [30–32] shown in Table 3. One
should note that only at relatively large pion masses, e.g.,
Mπ > 200 or 300 MeV, one can distinguish the results from
different formulations of BChPT using lattice QCD simula-
tions.

3.2 Fitting to the lattice QCD data

Now we take a more practical attitude, forgetting about the
convergence constraint, and determine the relevant LECs by
fitting to the lattice QCD data directly. Among the three lat-
tice QCD studies we considered, the one of Ref. [30] features
the largest number of simulation points. Therefore, we fit to
these data to determine the LECs. At O(p3), one has only
two LECs. Their values from the best fit together with the
corresponding χ̃2 are tabulated in Table 4. The predicted pion
mass dependence is shown in Fig. 4, where the lattice data
from Refs. [31,32] are also shown. One can see that only the
EOMS formulation can describe the lattice QCD data reason-
ably well, consistent with the finding in the SU(2) sector [33].
Furthermore, as shown in Table 4, the LECs of the EOMS

formulation determined from the fit to the lattice QCD data
are similar to those determined by the experimental data [12].

The situation becomes different, however, if we fit to the
lattice data with the O(p4) BChPT results, all the three for-
mulations can describe the lattice data with similar quality,
as shown in Fig. 5 and Table 5. On the other hand, it seems
that with the LECs determined from the best fit, the predicted
μ��0 by the IR formulation is in better agreement with the
experimental value (if a positive sign is taken). Nevertheless,
one should note that the convergence pattern, particularly
those of the IR and HB schemes, is destroyed (see Table 6).

One way to distinguish the different formulations in the
present case is to study the strange quark mass dependence of
the magnetic moments, shown in Figs. 6, and 7. One can see
that depending on how one determines the LECs, either by
fitting to the lattice QCD data or to the experimental data with
the convergence constraint, the dependences on the strange
quark mass are quite different.3 It is clear that one needs more
lattice data with varying strange quark mass to check which
scenario is more realistic.

4 Summary

We studied the octet baryon magnetic moments in baryon
chiral perturbation theory with the extended-on-mass-shell

3 We note that the EOMS predictions in the two cases are similar to
each other.
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renormalization scheme up to next-to-next-to-leading order.
We determined the low-energy constants following two dif-
ferent strategies, either by fitting to the experimental data
with convergence as a further constraint or by fitting to lat-
tice QCD data directly. It was shown that in the first case the
extended-on-mass shell formulation seems to describe better
the lattice QCD data, while in the second case, although all
three formulations of baryon chiral perturbation theory can
describe the lattice QCD data, they predict rather different
strange quark mass dependence. Clearly more lattice QCD
simulations are needed to better understand the situation and
the convergence pattern of baryon chiral perturbation theory.
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Appendix

A. NNLO tree level contributions

Here, we list the tree level contributions at NNLO.

μ(4,d)
p = 2

3

(
3bF

′
6

(
2M2

K + M2
π

)
+ bD

′
6

(
2M2

K + M2
π

)

+2
(

3α2M
2
K + α3M

2
K + α4M

2
K − β1M

2
K

+3α1

(
M2

K − M2
π

)
− α3M

2
π + β1M

2
π

))
,

μ(4,d)
n = −4

3

(
bD

′
6

(
2M2

K + M2
π

)
+ 2α4M

2
K

+β1M
2
K + 2α3

(
M2

K − M2
π

)
− β1M

2
π

)
,

μ
(4,d)
� = −2

9

(
3bD

′
6

(
2M2

K + M2
π

)

+2
(
α4

(
8M2

K − 5M2
π

)
+ 3β1

(
M2

K − M2
π

)))
,

μ
(4,d)

�+ = 2

3

(
3bF

′
6

(
2M2

K + M2
π

)
+ bD

′
6

(
2M2

K + M2
π

)

+2
(
β1

(
M2

π − M2
K

)
+ 3α2M

2
π + α4M

2
π

))
,

μ
(4,d)

�− = 2

3

(
−3bF

′
6

(
2M2

K + M2
π

)
+ bD

′
6

(
2M2

K + M2
π

)

−2β1M
2
K − 6α2M

2
π + 2α4M

2
π + 2β1M

2
π

)
,

μ
(4,d)

�0 = 2

3

(
bD

′
6

(
2M2

K + M2
π

)
+ 2

(
β1

(
M2

π − M2
K

)
+ α4M

2
π

))
,

μ
(4,d)

��0 = 2√
3

(
bD

′
6

(
2M2

K + M2
π

)
+ 2α4M

2
π

)
,

μ
(4,d)

�− = −2

3

(
3bF

′
6

(
2M2

K + M2
π

)
− bD

′
6

(
2M2

K + M2
π

)

−2
(
−3α2M

2
K − α3M

2
K + α4M

2
K − β1M

2
K

+3α1

(
M2

K − M2
π

)
+ α3M

2
π + β1M

2
π

))
,

μ
(4,d)

�0 = −4

3

(
bD

′
6

(
2M2

K + M2
π

)
+ 2α4M

2
K + β1M

2
K

−2α3

(
M2

K − M2
π

)
− β1M

2
π

)
. (20)

B. Coefficients appearing in the NNLO loop contributions

Here, we list the coefficients appearing in the loop contribu-
tions at NNLO.

C (4,e)
pπ = −1

2
(bF6 + bD6 ),

C (4,e)
pK = −bF6 , C (4,e)

nπ = 1

2
(bD6 + bF6 ),C (4,e)

nK = 1

2
(bD6 − bF6 ),

C (4,e)
�π = 0, C (4,e)

�K = 1

2
bD6 ,

C (4,e)
�+π

= −bF6 , C (4,e)
�+K = −1

2
(bD6 + bF6 ),

C (4,e)
�−π

= bF6 ,

C (4,e)
�−K = 1

2
(bF6 − bD6 ), C (4,e)

�0π
= 0, C (4,e)

�0K
= −1

2
bD6 ,

C (4,e)
�−π

= 1

2
(bF6 − bD6 ),

C (4,e)
�−K = bF6 , C (4,e)

�0π
= 1

2
(bD6 − bF6 ), C (4,e)

�0K
= 1

2
(bD6 + bF6 ),

C (4,e)
��0π

= − 1√
3
bD6 , C (4,e)

��K = − 1

2
√

3
bD6 . (21)

and

C(4, f )
pπ = −1

4
(D + F)2(bD6 − bF6 ),

C(4, f )
pK = 1

2

((
D2

9
− 2DF + F2

)

bD6 + (D − F)2bF6

)

,

C(4, f )
pη = 1

36
(D − 3F)2(bD6 + 3bF6 ), C(4, f )

nπ = 1

2
(D + F)2bF6 ,

C(4, f )
nK = −1

2

((
−7

9
D2 + 2

3
DF + F2

)
bD6 + (D − F)2 bF6

)
,

C(4, f )
nη = − 1

18
(D − 3F)2bD6 ,

C(4, f )
�π = 1

3
D2bD6 , C(4, f )

�K = − 1

18
(D2 + 9F2)bD6 + DFbF6 ,

C(4, f )
�η = −1

9
D2bD6

C(4, f )
�+π

= −1

9
(D2 + 6DF − 6F2)bD6 + F2bF6 ,

C(4, f )
�+K = −1

6
(D2 + 6DF + F2)bD6 + 1

2
(D − F)2bF6 ,
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C(4, f )
�+η

= 1

9
D2(bD6 + 3bF6 ),

C(4, f )
�−π

= −1

9
(D2 − 6DF − 6F2)bD6 − F2bF6 ,

C(4, f )
�−K = −1

6
(D2 − 6DF + F2)bD6 − 1

2
(D + F)2bF6 ,

C(4, f )
�−η

= 1

9
D2(bD6 − 3bF6 ),

C(4, f )
�0π

= −1

9
(D2 − 6F2)bD6 ,

C(4, f )
�0K

= −1

6
(D2 + F2)bD6 − DFbF6 ,

C(4, f )
�0η

= 1

9
D2bD6 , C(4, f )

�−π
= −1

4
(D − F)2(bD6 + bF6 ),

C(4, f )
�−K = 1

2

(
1

9
D2 + 2DF + F2

)
bD6 − 1

2
(D + F)2bF6 ,

C(4, f )
�−η

= 1

36
(D + 3F)2(bD6 − 3bF6 ),

C(4, f )
�0π

= −1

2
(D − F)2bF6 ,

C(4, f )
�0K

= −1

2

(
−7

9
D2 − 2

3
DF + F2

)
bD6 + 1

2
(D + F)2bF6 ,

C(4, f )
�0η

= − 1

18
(D + 3F)2bD6 ,

C(4, f )
��0π

= 1

3
√

3

(
D2bD6 − 6DFbF6

)
,

C(4, f )
��0K

= 1

2
√

3
(3F2 − D2)bD6 − 1√

3
DFbF6 ,

C(4, f )
��0η

= − 1

3
√

3
D2bD6 . (22)

The wave function renormalization coefficients are invari-
ant under SU(2) transformations, therefore we give only the
values of the different multiplets

C (4,g)
Nπ = 3

4
(D + F)2, C (4,g)

NK = 5

6
D2 − DF + 3

2
F2,

C (4,g)
Nη = 1

12
(D − 3F)2,

C (4,g)
�π = 1

3
D2 + 2F2, C (4,g)

�K = D2 + F2,

C (4,g)
�η = 1

3
D2,

C (4,g)
�π = D2, C (4,g)

�K = 1

3
D2 + 3F2, C (4,g)

�η = 1

3
D2,

C (4,g)
�π = 3

4
(D − F)2,

C (4,g)
�K = 5

6
D2 + DF + 3

2
F2, C (4,g)

�η = 1

12
(D + 3F)2.

(23)

and

C (4,h)
pπ = 2(b10 + b11), C (4,h)

pK = b9 + 4b11,

C (4,h)
nπ = −2(b10 + b11), C (4,h)

nK = −2b10 + 2b11,

C (4,h)
�π = 0, C (4,h)

�K = −2b10, C (4,h)

�+π
= b9 + 4b11,

C (4,h)

�+K = 2(b10 + b11),

C (4,h)

�−π
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�−K = 2(b10 − b11),

C (4,h)
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�0K
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�−π
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�0K
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C (4,h)
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and

C (4,i)
pπ = −(D + F)2 (

bDMK
2 + bF

(
Mπ

2 − MK
2)) ,

C (4,i)
pK = −2bDMπ
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= 4bDF
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2bDDFMK
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bDMK
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(
MK
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2)) ,
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�−K = 2bDMπ
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bDMK
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and
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K

)
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